drocessor
handbook

0510354045

04

¥

FEEERRERIERERERIINER

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111

SALES AND SERVICE OFFICES

UNITED STATES —ALABAMA, Huntsville « ARIZONA, Phoenix and Tucson e
CALIFORNIA, El Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Mills « COLORADO, Englewood ¢ CONNECTICUT, Fairfield and Meriden e DISTRICT
OF COLUMBIA, Washington (Lanham, MD) e FLORIDA, Ft. Lauderdale and Orlando e
GEORGIA, Atlanta « HAWAII, Honolulu ® ILLINOIS, Chicago (Rolling Meadows)
INDIANA, Indianapolis ® IOWA, Bettendorf ¢ KENTUCKY, Louisville » LOUISIANA,
Now Orleans (Metairie) « MARYLAND, Odenton ¢ MASSACHUSETTS, Marlborough,
Waltham and Westfield » MICHIGAN, Detroit (Farmington Hills) e MINNESOTA,
Minneapolis » MISSOURI, Kansas City (Independence) and St. Louis ¢ NEW
HAMPSHIRE, Manchester « NEW JERSEY, Cherry Hill, Fairfield, Metuchen and
Princeton « NEW MEXICO, Albuquerque ¢ NEW YORK, Albany, Buffalo (Cheek-
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse e
NORTH CAROLINA, Durham/Chapel Hill « OHIO, Cleveland (Euclid), Columbus and
Dayton » OKLAHOMA, Tulsa *» OREGON, Eugene and Portland « PENNSYLVANIA,
Allentown, Philadelphia (Bluebell) and Pittsburgh ¢ SOUTH CAROLINA, Columbia e
IENNESSEE, Knoxville and Nashville ¢ TEXAS, Austin, Dallas and Houston ¢ UTAH,
Sall Lake City » VIRGINIA, Richmond ¢ WASHINGTON, Bellevue » WISCONSIN,
Milwaukee (Brookfield) e

INTERNATIONAL—ARGENTINA, Buenos Aires « AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney ¢ AUSTRIA, Vienna » BELGIUM, Brussels e
BOLIVIA, La Paz « BRAZIL, Rio de Janeiro and Sao Paulo ¢ CANADA, Calgary,

I dmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg ®

CHILE, Santiago « DENMARK, Copenhagen ¢ FINLAND, Helsinki « FRANCE,
Gronoble and Paris ¢« GERMANY, Berlin, Cologne, Frankfurt, Hamburg, Hannover,
Munich and Stuttgart ¢ HONG KONG e INDIA, Bombay » INDONESIA, Djakarta e
IHELAND, Dublin * ITALY, Milan and Turin e JAPAN, Osaka and Tokyo « MALAYSIA,
Kuala Lumpur « MEXICO, Mexico City ¢« NETHERLANDS, Utrecht ¢« NEW ZEALAND,

Auckland » NORWAY, Oslo » PUERTO RICO, Santurce » SINGAPORE ¢ SWEDEN,
Gothenburg and Stockholm « SWITZERLAND, Geneva and Zurich ¢ UNITED
KINGDOM, Birmingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading
= VENEZUELA, Caracas e

2.

04/05/10/354045
processor
handbook

digital equipment corporation

Copyright © 1975, by Digital Equipment Corporation

DEC, PDP, UNIBUS are registered trademarks
of Digital Equipment Corporation.

CHAPTER

1.1
1.2
1.3

SR
ooh

CHAPTER 2 SYSTEM ARCHITECTURE

CHAPTER

3.1
32
3.3

3.4
3.5

S Y
No

CHAPTER

4.1
4.2
4.3
4.4
4.5
4.6
4.7

CONTENTS

I INFRODUCTION i e

PDP:11. FAMILY : ‘Sidesieiinits Raacilon . (o ade 0
SCOREL 7 o
COMPUTERS

1.3.1 PDP-11/04
1.3.2 PDP-11/05 & PDP-11/10
1.3.3 PDP-11/35 & PDP-11/40
1534 APDR-UL 4B, Lot v A e
1.3.5 Comparison of Computers
PERIPHERALS/OPTIONSccooooviiiiiiiiciien
SOETWARE - oo St ns i S8 el
NUMBER SYSTEMS .. .ottt e iiiinsiaiin

UNIBUS &t v oo ia i S Sl S R BB
CENTRALLIPROCESSOR il 0 ol
MEMORY: e i i o s e L e a1
AUTOMATIC PRIORITY INTERRUPTS

3 ADDRESSING MODES ..

SINGLE OPERAND ADDRESSINGccociieiieis
DOUBLE OPERAND ADDRESSINGccocoooe.e.
DIRECT -ABDRESSING® il i st sviining s o
3.3.1 Register Mode

3.3.2 Auto-increment Mode
3.3.3 Auto-decrement Mode
334 7 IndexiiModer Tra it rte K ek at S TR
DEFERRED (INDIRECT) ADDRESSING
USE OF THE PC AS A GENERAL REGISTER
3.5.1 Immediate Modeccooiiii
3.5.2 Absolute Addressing
3.5.3 Relative Addressing
3.5.4 Relative Deferred Addressing
USE OF STACK POINTER AS GENERAL REGISTER ...
SUMMARY OF ADDRESSING MODES
3.7.1 General Register Addressing
3.7.2 Program Counter Addressing

4 INSTRUCTION. SET-. . b ki o s oy

INTRODUCTION Z i o iy wiinss s B SRt i i
INSTRUCTION FORMATS ...,
LIST-OF INSTRUCTIONS =5/ 5. 8 Sl a il s
SINGLE OPERAND INSTRUCTIONS ...
DOUBLE OPERAND INSTRUCTIONS ...
PROGRAM CONTROL INSTRUCTIONS
MISCEELEANEQUS <o vl St il i B A

ES Rl e e e e
VAR WONNNER =

CHAPTER 5 PROGRAMMING TECHNIQUES

5.1
5.2

NO O h

CHAPTER

6.1
6.2
6.3
6.4

CHAPTER

7.1
7.2
7.3
7.4

CHAPTER

8.1
8.2
8.3
8.4
8.5

THE STACK ..
SUBROUTINE

LINKAGE et s aley aliiae b e i,

9.2, 17 ISubroutine fCalls . i 7 T HTRESA A
5.2.2 Argument Transmission ...

5.2.3 Subroutine Return

5.2.4 PDP-11 Subroutine Advantage

INTERRUPTS

5.3.1 General Principles
5.3.2 Nesting

REENTRANCY

POSITION INDEPENDENT CODE

CO-ROUTINES

PROCESSOR TRAPS

5.7.1 Power

5.7.2 0Odd Addressing Errors

Fallure 5. S357¢

5.7.3 Time-Out Errors

5.7.4 Reserv

5.7.5 Trap Handling

6 PDP-11/04

DESCRIPTION
, OPTIONS ...

SPECIFICATIONS

7 PDP-11/05

DESCRIPTION
INTERNAL CP
SPECIFICATIO

8 PDP-11/35

DESCRIPTION
OPTIONS

ed Instructions

el O e e e S iR

U EQUIPMENE Sa st 258 0
NS 5 T I s e SR e

&U1TYA0 i AR L e B

ARIEMETIC ORTIONS R L iuie il e s hiin s 10 ot
CONSOLE OPERATION ...

GENERAL ...
RELOCATION
PROTECTION

STATUS REGISTERS

INSTRUCTION
STACK LIMIT

SEoUSE R e

o e e b e e
NNNNNNOOOWO

2
&

CHAPTER 10 PDP-11/45

101 HDESCRIPTIQNG st 0 B3 hiendm i it s b e S il
10.2 MEMORY
10:3 #'PRECESSOR "TRAPS tri tol i 0l
10.4 MULTIPROGRAMMING
10.5 SPECIFICATIONS
10.6 CONSOLE OPERATION
CHAPTER 11 PDP-11/45 MEMORY MANAGEMENT 11-1
11.1 BASIC ADDRESSING LOGICoooooviiiiiiiiiiiiinn, 11-1
112 “VIRTUAE ADBRESSING 0ot o e 11-2
11.3 INTERRUPT CONDITIONS UNDER MANAGEMENT
CONTROIE e - el o iaas S AL e Aot s 11-3
11.4 CONSTRUCTION OF A PHYSICAL ADDRESS .. 11-3
11.5 MANAGEMENT REGISTERScceeeonnn. 11-5
11.6 FAULT RECOVERY REGISTERS ... v 8
P72 -EXRMPLES v inidivin iy Ll l=12
11.8 TRANSPARENCY ... g Al
11.9 MANAGEMENT REGISTER MAP ... 11-18
CHAPTER 12 PDP-11/45 FLOATING POINT PROCESSOR 12-1
1240 2 INTRODUCTIONEG v col i v s e e 12-1
12:2 COPERATION s vons oo 0y e o 12-1
123 ARCHITECTURE" . =i S e G 12-2
12.4 FLOATING POINT DATA FORMATS vt 12-3
125 FPP STATUS'REGISTER .0 1t .0 12-4
12.6° "FEC'REGISTER " " SEel e 12-6
12.7 FPP INSTRUCTION ADDRESSING 12-6
12.8 INSTRUCTION TIMINGooeoe 12-7
12:9:-EPRAUINSTRUCTIONS &« ti o e ol i 12-7
Appendix A UNIBUS Addresses ..o A-1
Appendix B Instruction Timing ... B-1
Appendix C Instruction Index C-1

CHAPTER 1

INTRODUCTION

1.1 PDP-11 FAMILY

The PDP-11 family includes several central processor units (CPU’s), a
large number of peripheral devices and options, and extensive soft-
ware. New equipment will be compatible with existing family members.
The user can choose the system which is most suitable for his appli-
cation, but as needs change, he can easily add or change hardware.

All PDP-11 computers discussed in this Handbook have the following
features:

e 16-bit word (two 8-bit bytes)

direct addressing of 32K 16-bit words or 64K 8-bit bytes (K = 1024)
Word or byte processing

very efficient handling of 8-bit characters without the need to rotate,
swap, or mask

e Asynchronous operation
system components run at their highest possible speed, replacement
with faster subsystems means faster operation without other hardware
or software changes

e Modular component design
extreme ease and flexibility in configuring systems

e Stack processing
hardware sequential memory manipulation makes it easy to handle
structured data, subroutines, and interrupts

e Direct Memory Access (DMA)
inherent in the architecture is direct memory access for multiple
devices]

o 8 internal general-purpose registers
used interchangeably for accumulators or address generation

e Automatic Priority Interrupt
four-line, muiti-level system permits grouping of interrupt lines accord-
ing to response requirements

e Vectored interrupts
fast interrupt response without device polling

e Single & double operand instructions
powerful and convenient set of programming instructions

e Power Fail & Automatic Restart
hardware detection and software protection for fluctuations in the AC
power

1-1

1.2 SCOPE
This Handbook describes the following computers designed and man-
ufactured by Digital Equipment Corporation.

PDP-11/04
PDP-11/05
PDP-11/10
PDP-11/35
PDP-11/40
PDP-11/45

The intent is to provide extensive information on operation of the com-
puters in general, performance and features of the computers, and
basic programming. This Handbook is not intended to be the sole ref-
erence for the computers. More comprehensive and detailed information
is available in Processor Manuals, Maintenance Manuals, and Program-
ming Manuals. Improvements and modifications in equipment made
after July 1975 are not reflected in this Handbook.

1.3 COMPUTERS

1.3.1 PDP-11/04 v

The PDP-11/04 computer uses MOS semiconductor memory, and is
housed in a 54 “ high assembly. Between 4K and 28K words of memory
can be implemented within the basic assembly unit, which includes ex-
pansion space and DC power for adding options.

The PDP-11/04 is a full-fledged computer that can execute all the basic
PDP-11 instructions. It enjoys the advantage of being able to use all the
extensive -developed software and peripheral equipment. If there is ever
a need to upgrade to a more powerful central processor, the PDP-11/04
can simply be replaced by a different PDP-11 CPU, and software and
peripherals remain the same in the system.

The minimum PDP-11/04 includes:

® 4K words of MOS memory
Increased processing speed at a lower cost per bit.

® Automatic bootstrap loader
Automatic starts from a variety of peripheral devices.

o Self-test feature
ROM hardware automatically performs diagnostics on the CPU and
memory. Pinpoints failures to the circuit board level, thereby reducing
maintenance costs.

® Operator’s front panel
Allows complete control:of the computer via any ASCII terminal. All
front panel functions are key entries on the terminal either local or
remote, thereby eliminating the need and cost of a programmer’s
console.

The following optional equipment is available:

Battery backup

Programmer’s console

Line frequency clock

Serial communications line interface

1-2

The PDP-11/04 is prewired to accept extra memory, communication in-
terfaces, and standard peripheral device controllers. The included CPU
power supply has sufficient excess capacity to handle optional internal
equipment.

1.3.2 PDP-11/05 & PDP-11/10

The PDP-11/05 and the PDP-11/10 central processors are electrically
the same. Digital Equipment Corporation offers the PDP-11/05 for
the Original Equipment Manufacturer (OEM). As such it is sold in
those configurations and with those services that are convenient for the
OEM. The PDP-11/10 is offered for the End User, and is sold in con-
figurations that optimize its use with our small system software. More
services and software are included with the PDP-11/10 for the End User.

The central processors are housed in a 514" or 101" high assembly
unit that mounts in a standard 19” rack. The PDP-11/05 can accept
between 4K and 28K words of memory; the basic PDP-11/10 includes
8K of core memory.

The PDP-11/05 and 11/10 includes as standard items several features
that have been unbundled in the PDP-11/04.

e |nput/Output computer terminal interface control
The serial line interface can be used to operate a Teletype, a DEC-
writer (LA36, 30 character/sec printer and input keyboard), or an
Alphanumeric CRT Terminal (VT50) 240 character/sec display and
input keyboard).

e Programmer’s Console
Switches and display for entering and verifying data as well as con-
trolling basic computer operations. There is a Power/Panel Lock
switch with a removable key.

e Line Frequency Clock
An internal timing signal derived from the power source for keeping
track of when events happen. (Equivalent to the KW11-L clock option)

1.3.3 PDP-11/35 & PDP-11/40

The PDP-11/35 and the PDP-11/40 central processors are functionally
identical. The 11/40 is packaged in a 21" high front panel slide chassis,
which in turn is mounted in a standard 72" cabinet, allowing con-
venient access and expansion. The 11/35 is mounted in a 104" or 21"
high slide mounted chassis for compactness. The computers were de-
signed to fit a broad range of applications, from simple situations where
the computer consists of only 8K of memory and an 1/0O device, to large
multi-user, multi-task environments requiring up to 124K of core mem-
ory. The machines provide a balance between high-speed processing
and economy coupled with expandability. The processor assembly is
pre-wired to accept a Floating Point option, and a Memory Management
option for addressing over 28K of core memory. Memory Management
also provides relocation and protection, especially useful in a multi-user
operation.

Included with the basic 11/35 & 11/40 are:
e 8K of core memory

153

® Programmer Console with LED display and removable key for Power/
Panel Lock

* Power supply with excess capacity to drive internal optional equip-
ment

® Prewired mounting space to accept Floating Point and Memory Man-
agement hardware options.

1.3.4 PDP-11/45

The PDP-11/45 is a powerful 16-bit computer designed as a powerful
computational tool for high-speed real-time applications and for large
multi-user, multi-task applications requiring up to 124K words of ad-
dressable memory space. It will operate with solid state and core mem-
ories, and includes many features not normally associated with 16-bit
computers. Among its major features are a fast central processor with
choices of 300 or 495 nanosecond memory, an advanced Floating Point
Processor, and a sophisticated memory management scheme.

Included with the basic PDP-11/45 are:

® 16K words of memory

e Choice of bipolar, MOS, and core memory
® Programmer console

e Cabinet

¢ Prewired mounting space to accept Floating Point and Memory Man-
agement hardware

1-4

1.3.5 Comparison of Computers

378VIIVAVY ATIVNOILdO SI = 1d0

a3anToNI S| ANV QYVANVYLS S| = S3A

379V1IVAY LON = ON

sak sak sak sak sak 3do Y3ITIOYLNOD INIT TVI¥3S

sak 1do ydo 1do 1do sak dv¥1S1008 IYYMAUYH

sak sak sak sak sak do 3TOSNOD S.HINNVYHDOUd

sak ydo ydo sak sok 3do Y2013 AWIL-TVIY

sak sak sak sk s9k sk 1¥VISIH 0LNVY/1IV4 ¥3IMOd

sak ou ou ou ou ou Si1dNYYILNI FYYML40S OLNY

sak sak sak sak sak sak SIdNYYILNI FIUYMAY¥VH 0LNY

€ Qddo) 2z (3do) gz 1 1 1 SIAOW DNISS300¥d

sak 1do 1do ou ou ou 1INIWIDVYNYIN AHOWIW

sak sak 1do ou ou 1do ALIMYd AYOW3IW
J3su Q00T
J3suU 009G

J9SU QOE 0J9SU QOQT 99SU (086 J9SU(OBE J9SU (86 J3sU GZ/ a33dS AYOW3W 3AILD3443
J¥00
SOW

yviodig 3409 3400 3400 3400 SOW IdAL AMOW3IW

Avel P i7A Wret w82 n8e n8e (spiom) 3ZIS AHOWIW XVIN
(3do)

319-¥9 ‘2€ (3do) ug-ge (3do) uqg-ge ou ou ou INIOd DNILYO1d J¥VYMAHYH

09SU QOE 99SU Q06 99SU Q06 D9SU OQTE 929sU OOIE 93su 0062 YIASNVYYHL HIY-01-93Y

91 8 8 8 8 8 SYILSIDIY TVHINID

3do 3do ydo ou ou ou 1IWIT MOV1S IT1aYWINVIDO0Nd

sak sak sak sak sak sak HNISSIO0Nd MIOVIS

sak sak sak sak sak sak AINNYHDOULOUIIW
W30 pue

desn puz Jasn pul W30 Jasn pu3 W30 W30 L3INYVYIN NIV

S¥/11-dad O¥/11-ddd GE/1T-dad OT/I1-ddd SO/T11-ddd t0/11-dad

1-5

1.4 PERIPHERALS/OPTIONS

Digital Equipment Corporation designs and manufactures many of the
peripheral devices offered with PDP-11's. As a designer and manufac-
turer of peripherals, DIGITAL can offer extremely reliable equipment,
lower prices, more choice and quantity discounts.

1/0 Devices

All PDP-11 systems can use a Teletype as the basic I/O device. However,
1/0 capabilities can be increased with high-speed paper tape reader-
punches, line printers, card readers or alphanumeric display terminals.
The LA36 DECwriter, a totally designed and built teleprinter, can serve
as an alternative to the Teletype. It has several advantages over stan-
dard electromechanical typewriter terminals, including higher speed,
fewer mechanical parts and very quiet operation.

PDP-11 devices include:

Cassette, TA11l

Floppy disk, RX01

DECterminal alphanumeric display, VT50

DECwriter teleprinter, LA36

High Speed Line Printers, LS11, LP11, LV11

High Speed Paper Tape Reader and Punch, PC11
Teletypes, LT33

Card Readers, CR11, CD11, CM11

Graphics Terminal, GT40

Synchronous and Asynchronous Communications Interfaces

Storage Devices

Storage devices range from convenient, small-reel magnetic tape (DEC-
tape) units to mass storage magnetic tapes and disk memories. With the
UNIBUS, a large number of storage devices, in any combination, may be
connected to a PDP-11 system. TU56 DECtapes, highly reliable tape
units with small tape reels, designed and built by DEC, are ideal for ap-
plications with modest storage requirements. Each DECtape provides
storage for 144K 16-bit words. For applications which require handling
of large volumes of data, DEC offers the industry compatible TU16
Magtape.

Disk storage include fixed-head disk units and moving-head removable
cartridge and disk pack units. These devices range from the 256K word
RSO3 fixed head disk, to the RPO4 Disk Pack which can store up to 44
million words.

1.5 SOFTWARE

The PDP-11 family of central processors and peripherals is supported
by a comprehensive family of licensed software products. This software
family includes support for small stand-alone configurations, disk based
real-time and program development systems, large multi-programming
and time-sharing systems, and many diverse dedicated applications.
Some examples of general purpose operating systems and standard high
level language processors are:

1-6

e PAPER TAPE SYSTEM (PTS-11)—A core only high-speed paper tape
system with program development in assembly language. Editor, de-
bugger, and linker are supplied along with a relocating assembler.

e CASSETTE PROGRAMMING SYSTEM (CAPS-11)—A small program de-
velopment system with a core based monitor, utilizing dual magnetic
tape cassettes as file structured media. Complete program develop-
ment utilities such as a relocating assembler, linker, editor, debugger,
and file interchange program are included.

e SINGLE USER ON-LINE PROGRAM DEVELOPMENT SYSTEM (RT-11)—
A small, powerful, easy-to-use disk (or DECtape) based system for
program development or fast on-line (real-time) applications. A Fore-
ground/Background version can accommodate simultaneous program
development in the background with on-line applications in the fore-
ground. A MACRO assembler, linker, editor, debugger, and file utility
programs are included.

e MULTI-TASKING PROCESS CONTROL 'SYSTEM (RSX-11M)—An effi-
cient multi-tasking system suitable for controlling many processes
simultaneously, in a protected environment with concurrent develop-
ment of new programs. Utilities include a MACRO assembler, task
builder (linker), editor, debugger, and file utility programs.

e COMPREHENSIVE MULTI-PROGRAMMING SYSTEM (RSX-11D)—The
total job operating system. As a compatible extension of RSX-11M,
the system allows concurrent fully hardware protected execution of
multiple on-line jobs, with BATCH program development. Complete
utilities include a MACRO assembler, task builder (linker), editor, de-
bugger, and file utility programs.

e EXTENDED RESOURCE TIME SHARING SYSTEM (RSTS/E)—A disk-
based time-sharing system implementing BASIC-PLUS, an enriched
version of the popular BASIC language. Up to 32 simultaneous users
share system resource via interactive terminals. Additional features
such as output spooling, and comprehensive file protection are in-
cluded.

e INTERACTIVE APPLICATION SYSTEM (IAS)—A multifunction operating
system executing on the larger PDP-11 hardware configurations. It can
handle a mix of time-sharing, batch, and real-time applications con-
currently. It is also a multi-lingual system, allowing users to choose
the high-level language most appropriate for the particular problem at
hand.

Languages

e BASIC-11—An extended version of Dartmouth Standard BASIC is
available for PTS-11, CAPS-11 and RT-11. Many applications, such as
signal processing and graphics are accessed by the user through ex-
tensions to this simple, yet powerful, language. A multiuser version is
available under PTS-11 and RT-11.

e PDP-11 FORTRAN IV—An extended version of ANSI standard FOR-
TRAN is supplied with RSX-11M and RSX-11D, and available under
RT-11. As an optimizing compiler, FORTRAN IV is designed for fast
compilation, yet requires very little main memory, and generates
highly efficient code without sacrificing execution speed. Under RT-11,

1-7

FORTRAN IV features the same signal-processing and graphics ex-
lensions as BASIC-11.

FORTRAN-IV PLUS—A compatible extension to PDP-11 FORTRAN v,
this system uses sophisticated optimizations to achieve the fastest
possible execution speed of the generated code. FORTRAN IV-PLUS
requires a PDP-11/45 and Floating Point Processor hardware, in addi-
tion to the RSX-11D operating system. ;

* PDP-11 COBOL—To supplement the business data processing needs
often associated with large scale PDP-11 system applications, an
ANSI-74 COBOL language is available under RSX-11D. Running as a
BATCH job, COBOL enhances the RSX-11D total job computing sys-
tem, where some business data processing is required.

In addition to the above mentioned general purpose licensed software
products, DIGITAL offers a great number of optional and applications
oriented products. A wide range of educational, consulting, and mainte-
hance services are also offered, to ensure full utility of any PDP-11
system. For a complete and detailed listing of DIGITAL software prod-
ucts and services, consult the latest CATALOG OF SOFTWARE PRODUCTS
and SERVICES.

1.6° NUMBER SYSTEMS

Throughout this Handbook, 3 number systems will be used; octal,
binary, and decimal. So as not to clutter all numbers with subscripted
bases, the following general convention will be used:

Octal—for address locations, contents of addresses, and operation
codes for instructions; in most cases there will be words of 6
octal digits

Binary—for describing a single binary element; when referring to
a PDP-11 word it will be 16 bits long

Decimal—for all normal referencing to quantities

Octal Representation

O)] O O [J 6-digit octal

The 16-bit PDP-11 word can be represented conveniently as a 6-digit
octal word. Bit 15, the Most Significant Bit (MSB), is used directly as
the Most Significant Digit of the octal word. The other 5 octal digits are
formed from the corresponding groups of 3 bits in the binary word.

1-8

When an extended address of 18 bits is used (shown later in the Hand-
book), the Most Significant Digit of the octal word is formed from bits
17, 16, and 15. For unsigned numbers, the correspondence between
decimal and octal is:

Decimal Octal
0 000000
(2'—1)= 65,535 177777 (16-bit limit)
(2¥—1)=262,143 777777 (18-bit limit)

2's Complement Numbers
In this system, the first bit (bit 15) is used to indicate the sign;

O=positive
1=negative

For positive numbers, the other 15 bits represent the magnitude directly;
for negative numbers, the magnitude is the 2's complement of the
remaining 15 bits. (The 2’s complement is equal to the 1’s complement
plus one.) The ordering of numbers is shown below:

Decimal 2's Complement (Octal)
Sign Bit Magnitude Bits

largest positive 432,767 0 77777
432,766 0 77776
+1 0 00001
0 0 00000
-1 1 77777
-2 1 77776
—32,767 1 00001
most negative —32,768 1 00000

1-9

1-10

CHAPTER 2

SYSTEM ARCHITECTURE

2.1 UNIBUS

Most computer system components and peripherals connect to and com-
municate with each other on a single high-speed bus known as the
UNIBUS— a key to the PDP-11's many strengths. Addresses, data, and
control information are sent along the 56 lines of the bus.

< UNIBUS o L

e L

CPU

CORE
MEMORY 1/0 1/0 1/0 1/0

Figure 2-1 PDP-11 System Simplified Block Diagram

The form of communication is the same for every device on the UNIBUS.
The processor uses the same set of signals to communicate with mem-
ory as with peripheral devices. Peripheral devices also use this set of
signals when communicating with the processor, memory or other pe-
ripheral devices. Each device, including memory locations, processor
registers, and peripheral device registers, is assigned an address on the
UNIBUS. Thus, peripheral device registers may be manipulated as flex-
ibly as core memory by the central processor. All the instructions that
can be applied to data in core memory can be applied equally well to
data in peripheral device registers. This is an especially powerful feature,
considering the special capability of PDP-11 instructions to process data
in any memory location as though it were an accumulator.

2.1.1 Bidirectional Lines

With bidirectional and asynchronous communications on the UNIBUS,
devices can send, receive, ahd exchange data independently without
processor intervention. For example, a cathode ray tube (CRT) display
can refresh itself from a disk file while the central processor unit (CPU)
attends to other tasks. Because it is asynchronous, the UNIBUS is com-
patible with devices operating over a wide range of speeds.

2.1.2 Master-Slave Relation

Communication between two devices on the bus is in the form of a
master-slave relationship. At any point in time, there is one device that
has control of the bus. This controlling device is termed the ‘‘bus mas-
ter.” The master device controls the bus when communicating with
another device on the bus, termed the ‘‘slave.” A typical example of
this relationship is the processor, as master, fetching an instruction from
memory (which is always a slave). Another example is the disk, as

2-1

master, transferring data to memory, as slave. Master-slave relation-
ships are dynamic. The processor, for example, may pass bus control
to a disk. The disk, as master, could then communicate with a slave
memory bank.

Since the UNIBUS is used by the processor and all 1/O devices, there is
a priority structure to determine which device gets control of the bus.
Every device on the UNIBUS which is capable of becoming bus master
is assigned a priority. When two devices, which are capable of becoming
a bus master, request use of the bus simultaneously, the device with
the higher priority will receive control.

2.1.3 Interlocked Communication

Communication on the UNIBUS is interlocked so that for each control
signal issued by the master device, there must be a response from the
slave in order to complete the transfer. Therefore, communication is
independent of the physical bus length (as far as timing is concerned)
and the timing of each transfer is dependent only upon the response
time of the master and slave devices. The asynchronous operation pre-
cludes the need for synchronizing with, and waiting for, clock impulses.
Thus, each system is allowed to operate at its maximum possible speed.

Input/output devices transferring directly to or from memory are given
highest priority and may request bus mastership and steal bus and mem-
ory cycles during instruction operations. The processor resumes opera-
tion immediately ‘after the memory transfer. Multiple devices can operate
simultaneously at maximum direct memory access (DMA) rates by
‘“‘stealing'’ bus cycles.

Full 16-bit words or 8-bit bytes of information can be transferred on the
bus between a master and a slave. The information can be instructions,
addresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and
storing the results into memory after execution of instructions. Direct
data transfers occur between a peripheral device control and memory.

2.2 CENTRAL PROCESSOR

The central processor, connected to the UNIBUS as a subsystem, con-
trols the time allocation of the UNIBUS for peripherals and performs
arithmetic and logic operations and instruction decoding. It contains
multiple high-speed general-purpose registers which can be used as accu-
mulators, address pointers, index registers, and other specialized func-
tions. The processor can perform data transfers directly between 1/0
devices and memory without disturbing the processor registers; does
both single- and double-operand addressing and handles both 16-bit
word and 8-bit byte data.

2.2.1 General Registers
The central processor contains 8 general registers which can be used
for a variety of purposes. (The PDP-11/45 contains 16 general

2-2

T

registers.) The registers can be used as accumulators, index registers,
autoincrement registers, autodecrement registers, or as stack pointers
for temporary storage of data. Chapter 3 on Addressing describes these
uses of the general registers in more detail. Arithmetic operations can
be from one general register to another, from one memory or device
register to another, or between memory or a device register and a gen-
eral register. Refer to Figure 2-2.

GENERAL RO
REGISTERS
R1
R2
R3
R4
RS

(SP)
STACK POINTER

PROGRAM COUNTER
Fgure 2-2 The General Registers

R7 is used as the machine’s program counter (PC) and contains the
address of the next instruction to be executed. It is a general register
normally used only for addressing purposes and rot as an accumulator
for arithmetic operations.

The R6 register is normally used as the Stack Pointer indicating the last
entry in the appropriate stack (a common temporary storage area with
“Last-in First-Out’’ characteristics).

2.2.2 Instruction Set

The instruction complement uses the flexibility of the general-purpose
registers to provide over 400 powerful hard-wired instructions—the most
comprehensive and powerful instruction repertoire of any computer in
the 16-bit class. Unlike conventional 16-bit computers, which usually
have three classes of instructions (memory reference instructions, oper-
ate or AC control instructions and 1/O instructions) all operations in the
PDP-11 are accomplished with one set of instructions. Since peripheral
device registers can be manipulated as flexibly as core memory by the
central processor, instructions that are used to manipulate data in core
memory may be used equally well for data in peripheral device registers.
For example, data in an external device register can be tested or modified
directly by the CPU, without bringing it into memory or disturbing the
general registers. One can add data directly to a peripheral device reg-
ister, or compare logically or arithmetically. Thus all PDP-11 instructions
can be used to create a new dimension in the treatment of computer
1/O and the need for a special class of 1/O instructions is eliminated.

The basic order code of the PDP-11 uses both single and double operand
address instructions for words or bytes. The PDP-11 therefore performs

2-3

very efficiently in one step, such operations as adding or subtracting two
operands, or moving an operand from one location to another.

PDP-11 Approach

ADD A,B ;add contents of location A to loca-
tion B, store results at location B

Conventional Approach

LDA A ;load contents of memory location A
into AC
ADD B ;add contents of memory location B to
AC
STA B ;store result at location B
Addressing

Much of the power of the PDP-11 is derived from its wide range of ad-
dressing capabilities. PDP-11 addressing modes include sequential
addressing forwards or backwards, addressing indexing, indirect address-
ing, 16-bit word addressing, 8-bit byte addressing, and stack addressing.
Variable length instruction formating allows a minimum number of bits

to be used for each addressing mode. This results in efficient use of
program storage space.

2.2.3 Processor Status Word

. L o7 Tl

CURRENT MODE ‘—* I r

PREVIOUS MODE*
PRIORITY
CONDITION CODES

~MODE } USED ONLY ON PDP-11/35, 11/40, & 11/45 WITH
MEMORY MANAGEMENT

Figure 2-3 Processor Status Word

The Processor Status word (PS), at location 777776, contains infor-
mation on the current status of the PDP-11. This information includes
the current processor priority: current and previous operational modes;
the condition codes describing the results of the last instruction; and
an indicator for detecting the execution of an instruction to be trapped
during program debugging.

Processor Priority

The Central Processor operates at any one of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor must be operating
at a lower priority than the external device's request in order for the
interruption to take effect. The current priority is maintained in the

2.4

R

processor status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask.

Condition Codes
The condition codes contain information on the result of the last CPU
operation.

The bits are set as follows:

Z = 1, if the result was zero

N = 1, if the result was negative

C = 1, if the operation resulted in a carry from the MSB
V =1, if the operation resulted in an arithmetic overflow

Trap

The trap bit (T) can be set or cleared under program control. When set,
a processor trap will occur through location 14 on completion of instruc-
tion execution and a new Processor Status Word will be loaded. This bit
is especially useful for debugging programs as it provides an efficient
method of installing breakpoints.

2.2.4 Stacks

In the PDP-11, a stack is a temporary data storage area which allows a
program to make efficient use of frequently accessed data. A program
can add or delete words or bytes within the stack. The stack uses the
“last-in, first-out’’ concept; that is, various items may be added to a
stack in sequential order and retrieved or deleted from the stack in
reverse order. On the PDP-11, a stack starts at the highest location re-
served for it and expands linearly downward to the lowest address as
items are added. The stack is used automatically by program interrupts,
subroutine calls, and trap instructions. When the processor is inter-
rupted, the central processor status word and the program counter are
saved (pushed) onto the stack area, while the processor services the
interrupting device. A new status word is then automatically acquired
from an area in core memory which is reserved for interrupt instruc-
tions (vector area). A return from the interrupt instruction restores the
original processor status and returns to the interrupted program without
software intervention.

2.3 MEMORY

Memory Organization

A memory can be viewed as a series of locations, with a number (ad-
dress) assigned to each location. Thus an 8,192-word PDP-11 memory
could be shown as in Figure 2-4.

LOCATIONS

(000000
000001
000002
000003
000004

OCTAL
ADDRESSES

037774

037775

037776

\ 037777

Figure 2-4 Memory Addresses

Because PDP-11 memories are designed to accommodate both 16-bit
words and 8-bit bytes, the total numiber of addresses does not corre-
spond to the number of words. An 8K-word memory can contain 16K
bytes and consist of 037777 octal locations. Words always start at even-
numbered locations.

A PDP-11 word is divided into a high byte and a low byte as shown in
Figure 2-5.

15 X 8 7 0

HIGH BYTE LOW BYTE 1
1 n " | A A 1 L 1 " " 1 A

Figure 2-5 High & Low Byte

Low bytes are stored at even-numbered memory locations and high
bytes at odd-numbered memory locations. Thus it is convenient to view
the PDP-11 memory as shown in Figure 2-6.

2-6

16-BIT WORD 8-BIT BYTE

{5 BYTE BYTE Y
000001 HIGH Low 000000 Low 000000
WORD
000003 HIGH Low 000002 HIGH 000001
000005 HIGH Low 000004 Low 000002
WORD
HIGH 000003
{ Low 000004
/AFJ_,_\/ 2
037773 HIGH Low 037772 { HIGH 037775
037775 HIGH Low 037774 Low 037776
037777 HIGH Low 037776 HIGH 037777
WORD ORGANIZATION BYTE ORGANIZATION

Figure 2-6 Word and Byte Addresses

Certain memory locations have been reserved by the system for inter-
rupt and trap handling, processor stacks, general registers, and periph-
eral device registers. Addresses from O to 370, are always reserved and
those to 777, are reserved on large system configurations for traps and
interrupt handling.

A 16-bit word used for byte addressing can address a maximum of 32K
words. However, the top 4,096 word locations are reserved for peripheral
and register addresses and the user therefore has 28K of core to pro-
gram. With the PDP-11/35, 11/40, and 11/45 the user can expand above
28K with the Memory Management. This device provides an 18-bit
effective memory address which permits addressing up to 124K words
of actual memory.

If the Memory Management option is not used, an octal address be-
“tween 160 000 and 177 777 is interpreted as 760 000 to 777 777. That
is, if bit 15, 14 and 13 are 1's, then bits 17 and 16 (the extended ad-
dress bits) are considered to be 1’s, which relocates the last 4K words
(8K bytes) to become the highest locations accessed by the UNIBUS.

2.4 AUTOMATIC PRIORITY INTERRUPTS

The multi-level automatic priority interrupt system permits the processor
to respond automatically to conditions outside the system. Any number
of separate devices can be attached to each level.

2-7

DEVICE
P REQUEST
PRIORITY LINE

-*—BR7

~——BRS

--——BR4

th b [
e

INCREASING _ PRIORITY

© seew

Figure 2-7 UNIBUS Priority

Each peripheral device in the PDP-11 system has a pointer to its own
pair of memory words (one points to the devices’s service routine, and
the other contains the new processor status information). This unique
identification eliminates the need for polling of devices to identify an
interrupt, since the interrupt service hardware selects and begins ex-
ecuting the appropriate service routine after having automatically saved
the status of the interrupted program segment.

The devices’ interrupt priority and service routine priority are indepen-
dent. This allows adjustment of system behavior in response to real-time
conditions, by dynamically changing the priority level of the service
routine.

The interrupt system allows the processor to continually compare its
own programmable priority with the priority of any interrupting devices
and to acknowledge the device with the highest level above the proces-
sor's priority level. The servicing of an interrupt for a device can be in-
terrupted in order to service an interrupt of a higher priority. Service to
the lower priority device is resumed automatically upon completion of
the higher level servicing. Such a process, called nested interrupt ser-
vicing, can be carried out to any level without requiring the software to
save and restore processor status at each level.

When a device (other than the central processor) is capable of becom-
ing bus master and requests use of the bus, it is generally for one of
two purposes:

1. To make a non-processor transfer of data directly to or from
memory

2-8

2. To interrupt a program execution and force the processor to
go to a specific address where an interrupt service routine
is located.

Direct Memory Access

All PDP-11’s provide for direct access to memory. Any number of DMA
devices may be attached to the UNIBUS. Maximum priority is given to
DMA devices, thus allowing memory data storage or retrieval at memory
cycle speeds. Response time is minimized by the organization and logic
of the UNIBUS, which samples requests and priorities in parallel with
data transfers.

Direct memory or direct data transfers can be accomplished between
any two peripherals without processor supervision. These non-processor
request transfers, called NPR level data transfers, are usually made for
Direct Memory Access (memory to/from mass storage) or direct device
transfers (disk refreshing a CRT display).

Bus Requests

Bus requests from external devices can be made on one of five request
lines. Highest priority is assigned to non-processor request (NPR). These
are direct memory access type transfers, and are honored by the pro-
cessor between bus cycles of an instruction execution.

The processor’s priority can be set under program control to one of eight
levels using bits 7, 6, and 5 in the processor status register. These bits
set a priority level that inhibits granting of bus requests on lower levels
or on the same level. When the processor’s priority is set to a level, for
example PS6, all bus requests on BR6 and below are ignored.

When more than one device is connected to the same bus request (BR)
line, a device nearer the central processor has a higher priority than a
device farther away. Any number of devices can be connected to a given
BR or NPR line.

Thus the priority system is two-dimensional and provides each device
with a unique priority. Each device may be dynamically, selectively
enabled or disabled under program control.

Once a device other than the processor has control of the bus, it may
do one of two types of operations: data transfers or interrupt operations.

NPR Data Transfers

NPR data transfers can be made between any two peripheral devices
without the supervision of the processor. Normally, NPR transfers are
between a mass storage device, such as a disk, and core memory. The
structure of the bus also permits device-to-device transfers, allowing
customer-designed peripheral controllers to access other devices, such
as disks, directly.

An NPR device has very fast access to the bus and can transfer at high
data rates once it has control. The processor state is not affected by
the transfer; therefore the processor can relinquish control while an in-
struction is in progress. This can occur at the end of any bus cycles

2:9

except in between a read-modify-write sequence. An NPR device in con-
trol of the bus may transfer 16-bit words from memory at memory speed.

BR Transfers

Devices that gain bus control with one of the Bus Request lines (BR 7-
BR4) can take full advantage of the Central Processor by requesting an
interrupt. In this way, the entire instruction set is available for manipu-
lating data and status registers.

When a service routine is to be run, the current task being performed
by the central processor is interrupted, and the device service routine
is initiated. Once the request has been satisfied, the Processor returns
to its former task.

Interrupt Procedure

Interrupt handling is automatic in the PDP-11. No device polling is re-
quired to determine which service routine to execute. The operations
required to service an interrupt are as follows:

1. Processor relinquishes control of the bus, priorities permitting.

2. When a master gains control, it sends the processor an interrupt
command and an unique memory address which contains the ad-
dress of the device’s service routine, called the interrupt vector
address. Immediately following this pointer address is a word (lo-
cated at vector address +2) which is to be used as a new Processor
Status Word.

3. The processor stores the current Processor Status (PS) and the cur-
rent Program Counter (PC) into CPU temporary registers.

4. The new PC and PS (interrupt vector) are taken from the specified
address. The old PS and PC are then pushed onto the current stack.
The service routine is then initiated.

5. The device service routine can cause the processor to resume the
interrupted process by executing the Return from Interrupt instruc-
tion, described in Chapter 4, which pops the two top words from
the -current processor stack and uses them to load the PC and PS
registers.

A device routine can be interrupted by a higher priority bus request any
time after the new PC and PS have been loaded. If such an interrupt
occurs, the PC and PS of the service routine are automatically stored
in the temporary registers and then pushed onto the new current stack,
and the new device routine is initiated.

Interrupt Servicing

Every hardware device capable of interrupting the processor has a unique
set of locations (2 words) reserved for its interrupt vector. The first word
contains the location of the device’s service routine, and the second, the
Processor Status Word that is to be used by the service routine. Through

2-10

proper use of the PS, the programmer can switch the operational mode
of the processor, and modify the Processor’s Priority level to mask out
lower level interrupts.

Reentrant Code

Both the interrupt handling hardware and the subroutine call hardware
facilitate writing reentrant code for the PDP-11. This type of code allows
a single copy of a given subroutine or program to be shared by more
than one process or task. This reduces the amount of core needed for
multi-task applications such as the concurrent servicing of many periph-
eral devices.

-

Power Fail and Restart

Whenever AC power drops below 95 volts for 110v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automaticaily
traps to location 24 and the power fail program has 2 msec. to save all
volatile information (data in registers), and to condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

s
2 o

2-12

CHAPTER 3

ADDRESSING MODES

Data stored in memory must be accessed, and manipulated. Data handling is
specified by a PDP-11 instruction (MOV, ADD etc.) which usually indicates:

the function (operation code)

a general purpose register to be used when locating the source operand
and/or a general purpose register to be used when locating the destination
operand.

an addressing mode (to specify how the selected register(s) is/are to be
used)

Since a large portion of the data handled by a computer is usually structured (in
character strings, in arrays, in lists etc.), the PDP-11 has been designed to handle
structured data efficiently and flexibly. The general registers may be used with an
instruction in any of the following ways:

as accumulators. The data to be manipulated resides within the register.

as pointers. The contents of the register are the address of the operand,
rather than the operand itself.

as pointers which automatically step through core locations. Automatically
stepping forward through consecutive core locations is known as au-
toincrement addressing; automatically stepping backwards is known as
autodecrement addressing. These modes are particularly useful for pro-
cessing tabular data.

as index registers. In this instance the contents of the register, and the
word following the instruction are summed to produce the address of the
operand. This allows easy access to variable entries in a list.

PDP-11's also have instruction addressing mode combinations which facilitate
temporary data storage structures for convenient handling of data which must be
frequently accessed. This is known as the * stack.”

In the PDP-11 any register can be used as a “stack pointer’’under program con-
trol, however, certain instructions associated with subroutine linkage and inter-
rupt service automatically use Register 6 as a “*hardware stack pointer’’. For this
reason R6 is frequently referred to as the HSPY

R7 is used by the processor as its program counter (PC). It is recommended that
k7 not be used as a stack pointer.

31

An important PDP-11 feature, which must be considered in conjunction
with the addressing modes, is the register arrangement;

Six general purpose registers, (RO-R5)
A hardware Stack Pointer (SP), register (R6)

A Program Counter (PC), register (R7).

Instruction mnemonics and address mode symbols are sufficient for
writing machine language programs. The programmer need not be con-
cerned about conversion to binary digits; this is accomplished auto-
matically by the PDP-11 MACRO Assembler.

3.1 SINGLE OPERAND ADDRESSING
The instruction format for all single operand instructions (such as clear,
increment, test) is:

[AL.‘ MODEIRnJ

el B y

OFlcopE— ==t T
DESTINATION ADDRESS

Bits 15 through 6 specify the operation code that defines the type of in-
struction to be executed.

Bits 5 through O form a six-bit field called the destination address field.
This consists of two subfields:

a) Bits O through 2 specify which of the eight general purpose registers
is to be referenced by this instruction word.

b) Bits 3 through 5 specify how the selected register will be used (ad-
dress mode). Bit 3 is set to indicate deferred (indirect) addressing.

3.2 DOUBLE OPERAND ADDRESSING

Operations which imply two operands (such as add, subtract, move and
compare) are handled by instructions that specify two addresses. The
first operand is called the source operand, the second the destination
operand. Bit assignments in the source and destination address fields
may specify different modes and different registers. The Instruction
format for the double operand instruction is:

3-2

T T B R B R R N

|
i
|

SOURCE ADDRESS ——— Ll j
DESTINATION ADDRESS —

I'he source address field is used to select the source operand, the first
operand. The destination is used similarly, and locates the second op-
erand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination
operand) of location B. After execution B will contain the result of the
addition and the contents of A will be unchanged.

Examples in this section and further in this chapter use the following
sample PDP-11 instructions:

Mnemonic Description Octal Code

CLR clear (zero the specified destination) 0050DD

CLRB clear byte (zero the byte in the specified 1050DD
destination)

INC increment (add 1 to contents of destination) 0052DD

INCB increment byte (add 1 to the contents of 1052DD

destination byte)

COM complement (replace the contents of the 0051DD
destination by their logical complement;
each O bit is set and each 1 bit is cleared)

COMB complement byte (replace the contents of the 1051DD
destination byte by their logical complement;
each O bit is set and each 1 bit is cleared).

ADD add (add source operand to destination 06SSDD
operand and store the result at destination
address)

DD = destination field (6 bits)

SS = source field (6 bits)

() = contents of

3-3

3.3 DIRECT ADDRESSING
The following table summarizes the four basic modes used with direct addressing.

DIRECT MODES

Mode Name Assembler Function
Syntax
0 Register Rn Register contains operand
2 Autoincrement (Rn)+ Register is used as a pointer to
sequential data then in-
cremented
4 Autodecrement -(Rn) Register is decremented and

then used as a pointer.

6 Index X(Rn) Value X is added to (Rn) to pro-
duce address of operand. Nei-
ther X nor (Rn) are modified.

3.3.1 Register Mode
OPR Rn

With register mode any of the general registers may be used as simple accumula-
tors and the operand is contained in the selected register. Since they are hard-
ware registers, within the processor, the general registers operate at high speeds
and provide speed advantages when used for operating on frequently-accessed
variables. The PDP-11 assembler interprets and assembles instructions of the
form OPR Rn as register mode operations. Rn represents a general register name
or number and OPR is used to represent a general instruction mnemonic. As-
sembler syntax requires that a general register be defined as follows:

RO = %0 (% sigh indicates register definition)
R1 =%1
R2 = %2, etc.

Registers are typically referred to by name as RO, R1, R2, R3, R4, R5, R6 and R7.
However R6 and R7 are also referred to as SP and PC, respectively.

Register Mode Examples
(all numbers in octal)

Symbeolic Octal Code Instruction Name
1. INCR3 005203 Increment
Operation: Add one to the contents of general register 3

34

RO
o
. R2
e o O/) oy o[o o§o|01 '%E.Es%ﬁ' R3
L SPOE s e 9 R4
G copk (N (m)‘)L’H——T j i
OF STINATION FIELD R6 (SP)
R7 (PC)
2 ADD R2,R4 060204 Add
Operation: Add the contents of R2 to the contents of R4.
BEFORE AFTER
re [000002 | re [000002 |
ra [oooooa | ma[" ooooos |
3 COMB R4 105104 Complement Byte
Operation: One’s complement bits 0-7 (byte) in R4. (When

general registers are used, byte instructions only
operate on bits 0-7; i.e. byte O of the register)

BEFORE AFTER
ra [022222 | R4 oz2155 |

3.3.2 Autoincrement Mode
OPR (Rn) +

This mode provides for automatic stepping of a pointer through sequential ele-
ments of a table of operands. It assumes the contents of the selected general reg-
ister to be the address of the operand. Contents of registers are stepped (by one
for bytes, by two for words, always by two for R6 and R7) to address the next se-
quential location. The autoincrement mode is especially useful for array process-
ing and stacks. It will access an element of a table and then step the pointer to
address the next operand in the table. Although most useful for table handling,
this mode is completely general and may be used for a variety of purposes.

3-5

Autoincrement Mode Examples

Symbolic Octal Code Instruction Name
1. CLR (R5) + 005025 Clear
Operation: Use contents of R5 as the address of the operand.
Clear selected operand and then increment the
contents of R5 by two.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [oosozs]| ms | 030000 J20000 [oosces | ms[__ osoo0z |
2. CLRB (RS) + 105025 Clear Byte
Operation: Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment
the contents of R5 by one.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 [105025] RS | 030000 | 20000 [1os02s] RS | 030001 |
30000 | 111 | 16 30000 111 1 000
30002 ! 30002 i
3. ADD (R2) + ,R4 062204 Add
Operation: The contents of R2 are used as the address of the
operand which is added to the contents of R4. R2
is then incremented by two.
BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS
10000 [os2204] re[100002] woco [oee204a] me [100004 |

3-6

1 1.1 Autodecrement Mode

OPR-(Rn)

I'his mode is useful for processing data in a list in reverse direction. The contents
0l the selected general register are decremented (by two for word instructions, by
one for byte instructions) and then used as the address of the operand. The
thoice of postincrement, predecrement features for the PDP-11 were not arbitrary
tacisions, but were intended to facilitate hardware/software stack operations.

Autodecrement Mode Examples

Symbolic
1 INC-(RO)

Operation:

BEFORE

Octal Code Instruction Name

005240 Increment
The contents of RO are decremented by two and

used as the address of the operand. The operand is
increased by one.

AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
100 [oos2a0 | e [otr7re] 1000 [oosea0] ro [o1777a 1
2. INCB-(RO) 105240 Increment Byte
Operation: The contents of RO are decremented by one then
used as the address of the operand. The operand
byte is increased by one.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
oo | 10s240 | mro[otrzre | wooo [tosza0 | me[orrrrs]
17774 000 | 000 17774 001 | 000
17776 i 17776 |
3 ADD-(R3),RO 064300 Add
Operation: The contents of R3 are decremented by 2 then

used as a pointer to an operand (source) which is
added to the contents of RO (destination operand).

3-7

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10020 l 064300 RO 000020 I 10020 | 064300 RO 0000070
,/

77774 000050 77774 000050
77776 77776

3.3.4 Index Mode
OPR X(Rn)

The contents of the selected general register, and an index word following the in-
struction word, are summed to form the address of the operand. The contents of
the selected register may be used as a base for calculating a series of addresses,
thus allowing random access to elements of data structures. The selected register
can then be modified by program to access data in the table. Index addressing in-
structions are of the form OPR X(Rn) where X is the indexed word and is located
in the memory location following the instruction word and Rn is the selected gen-
eral register.

Index Mode Examples

Symbolic Octal Code Instruction Name
1. CLR 200(R4) 005064 Clear
000200
Operation: The address of the operand is determined by ad-

ding 200 to the contents of R4. The location is
then cleared.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 005064 R4 | 001000 1020 005064 R4 h 001000 l
1022 000200 1022 000200
1024 . 1000 1024
/—\ L +200
———1200
1200 177777 1200 000000
1202
2. COMB 200(R1) 105161 Complement Byte
000200
Operation: The contents of a location which is determined by

adding 200 to the contents of R1 are one’'s com-
plemented. (i.e. logically complemented)

3-8

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 105161 R1 017777 1020 105161 R1 | 047777 l
1022 000200 1022 000200

017777

\ +200

020177

20176 0111000 20176 166{000

3. ADD 30(R2),20(R5) 066265 Add
000030
000020
Operation: The contents of a location which is determined by

adding 30 to the contents of R2 are added to the
contents of a location which is determined by ad-
ding 20 to the contents of R5. The result is stored
at the destination address, i.e. 20(R5)

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 re [ootwo] 1020 066265 re[ootoo |
1022 000030 1022 000030

1024 000020 & g92e00 1024 56050 RS 002000

1130 000001 1130
2020 000001 2020

1100 2000
+30 +20
1130 2020

3.4 DEFERRED (INDIRECT) ADDRESSING

The four basic modes may also be used with deferred addressing. Whereas in the
register mode the operand is the contents of the selected register, in the register
deferred mode the contents of the selected register is the address of the operand.

In the three other deferred modes, the contents of the register selects the address
of the operand rather than the operand itself. These modes are therefore used
when a table consists of addresses rather than operands. Assembler syntax for
indicating deferred addressing is “‘@"'(or “‘()"’when thisis not ambiguous). The
following table summarizes the deferred versions of the basic modes:

Mode Name Assembler Function
Syntax
1 Register Deferred @Rn or (Rn)
Register contains the address of
the operand
3 Autoincrement Deferred @(Rn) + Register is first used as a

pointer to a word containing the
address of the operand, then in-
cremented (always by 2; even
for byte instructions).

5 Autodecrement Deferred @-(Rn) Register is decremented (always
by two; even for byte instruc-
tions) and then used as a
pointer to a word containing the
address of the operand

7 Index Deferred @X(Rn) Value X (stored in a word follow-
ing the instruction) and (Rn) are
added and the sum is used as a
pointer to a word containing the
address of the operand. Neither !
X nor (Rn) are modified. |

Since each deferred mode is similar to its basic mode counterpart, separate de-
scriptions of each deferred mode are not necessary. However, the following exam-
ples illustrate the deferred modes.

Register Deferred Mode Example

Symbolic Octal Code Instruction Name
CLR @RS 005015 Clear
Operation: The contents of location specified in R5 are i
cleared.
BEFORE AFTER
ADDRESS SPACE REGISTER ADORESS SPACE REGISTER

677 rs [oorroo] ter? ms [oot7o0 |
1700 000100 1700 000000

3-10

Autoincrement Deferred Mode Example

Symbolic

INC@(R2) +

Opaeration

BEFORE
ADDRESS SPACE

Octal Code Instruction Name

005232 Increment

The contents of R2 are used as the address of the
address of the operand.

Operand is increased by one. Contents of R2 is in-
cremented by 2.

AFTER
REGISTER ADDRESS SPACE REGISTER

Re |

010300 | © Re 010302

1010

000025

102

S

»
10300

v01010

1010 000026
1012

10300 001010

Autodecrement Deferred Mode Example

Symbolic Octal Code Complement
COM @-(RO) 005150
Operation: The contents of RO are decremented by two and
then used as the address of the address of the op-
erand. Operand is one’s complemented. (i.e. logi-
cally complemented)
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 RO [010776 J 10100 165432 ro [otor74]
10102 10102 /
10774 010100 10774 010100
10776 10776

Index Deferred Mode Example
Symbolic

ADD @ 1000(R2),R1

Operation:

Octal Code Instruction Name

067201 Add
001000

1000 and contents of R2 are summed to produce
the address of the address of the source operand
the contents of which are added to contents of R1;
the result is stored in R1.

3-11

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 Rt [001234 I 1020 067201 R1 l 001236 J
1022 001000 R2 000100 1022 001000 R 000100

1024 1024

1050 000002 1050 000002

1100 001050 1000 1100 001050
+100
-1100

3.5 USE OF THE PC AS A GENERAL REGISTER

Although Register 7 is a general purpose register, it doubles in function as the
Program Counter for the PDP-11. Whenever the processor uses the program
counter to acquire a word from memory, the program counter is automatically in-
cremented by two to contain the address of the next word of the instruction being
executed or the address of the next instruction to be executed. (When the pro-
gram-uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard PDP-11 addressing modes. However, there
are four of these modes with which the PC can provide advantages for handling
position independent code (PIC - seeChapter 5) and unstructured data. When re-
garding the PC these modes are termed immediate, absolute (or immediate de-
ferred), relative and relative deferred, and are summarized below:

Mode Name Assembler Function
Syntax
2 Immediate #n Operand follows instruction
3 Absolute @#A Absolute Address follows in-
struction
6 Relative A Relative Address (index value)

follows the instruction.

7 Relative Deferred @A Index value (stored in the
word following the instruction)
is the relative address for the
address of the operand.

The reader should remember that the special effect modes are the same as modes
described in 3.3 and 3.4, but the general register selected is R7, the program
counter.

When a standard program is available for different users, it often is helpful to be
able to load it into different areas of core and run it there. PDP-11's can accompl-
ish the relocation of a program very efficiently through the use of position inde-

3-12

pendent code (PIC) which is written by using the PC addressing modes. If an in-
struction and its objects are moved in such a way that the relative distance
between them is not altered, the same offset relative to the PC can be used in all
positions in memory. Thus, PIC usually references locations relative to the current
location. PIC is discussed in more detail in Chapter 5.

Ihe PC also greatly facilitates the handling of unstructured data. This is partic-
ularly true of the immediate and relative modes.

1.5.1 Immediate Mode
OPR #n,DD

Immediate mode is equivalent to using the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word.

Immediate Mode Example

Symbolic Octal Code Instruction Name
ADD # 10,RO 062700 Add
000010
Operation: The value 10 is located in the second word of the

instruction and is added to the contents of RO.
Just before this instruction is fetched and exe-
cuted, the PC points to the first word of the in-
struction. The processor fetches the first word and
increments the PC by two. The source operand
mode is 27 (autoincrement the PC). Thus, the PC
is used as a pointer to fetch the operand (the sec-
ond word of the instruction) before being in-
cremented by two to point to the next instruction.

BEEORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 \Ro [ooo020 1020 062700 ro [oocozo |
22
1021 000010 s 1022 000010 e
1024 1024

3.5.2 Absolute Addressing
OPR @ #A

I'his mode is the equivalent of immediate deferred or autoincrement deferred us-
ing the PC. The contents of the location following the instruction are taken as the
address of the operand. Immediate data is interpreted as an absolute address
(1.e., an address that remains constant no matter where in memory the as-
sembled instruction is executed).

3-13

Absolute Mode Examples

Symbolic Octal Code Instruction Name
1. CLR @#1100 005037 Clear
001100
Operation: Clear the contents of location 1100.
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
20 005037 \ 20 005037
22 001100 PC 22 001100 / PC
24
1100 1777777 1100 000000
1102 1102
2. ADD @ # 2000,R3 063703
002000
Operation: Add contents of location 2000 to R3.
BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20 063703 rs [ooosoo | 20 063703 rRs | oowoo |
22 002000 \PC 22 002000 PC
24 24 b
2000 000300 2000 000300 (

3.5.3 Relative Addressing :
OPR A or OPR X(PC)
where X is the location of A relative to the instruction.

This mode is assembled as index mode using R7. The base of the address calcu-
lation, which is stored in the second or third word of the instruction, is not the ad-
dress of the operand, but the number which, when added to the (PC), becomes
the address of the operand. This mode is useful for writing position independent
code (see Chapter 5) since the location referenced is always fixed relative to the -
PC. When instructions are to be relocated, the operand is moved by the same
amount.

3-14

Relative Addressing Example

Symbolic Octal Code Instruction Name
INCA 005267 Increment
000054
Operation: To increment location A, contents of memory loca-

tion immediately following instruction word are ad-
ded to (PC) to produce address A. Contents of A
are increased by one.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005267 1020 0005267
1022 000054 \ 1022 000054
1024 PC 1024 «—PC
1026 1026

+54
1100 000000 1100 000001

3.5.4 Relative Deferred Addressing
OPR@A or
OPR@X(PC), where x is location containing address of A, relative to the in-
struction.
This mode is similar to the relative mode, except that the second word of the in-
struction, when added to the PC, contains the address of the address of the oper-
and, rather than the address of the operand.

Relative Deferred Mode Example

Symbolic Octal Code Instruction Name
CLR @A 005077 Clear
000020
Operation: Add second word of instruction to PC to produce

address of address of operand. Clear operand.

HBEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
1020 005077 \ 1020 005077
1oee 000020 PC 1022 000020 PC
1024 1024 /

1044

10foo l 100001 | 10100 000000

3-15

[4
1044 010100 A 1044 010100

3.6 USE OF STACK POINTER AS GENERAL REGISTER

The processor stack pointer (SP, Register 6) is in most cases the general
register used for the stack operations related to program nesting. Auto-
decrement with Register 6 ‘“‘pushes’’ data on to the stack and autoincre-
ment with Register 6 “pops’’ data off the stack. Index mode with SP
permits random access of items on the stack. Since the SP is used by

the processor for interrupt handling, it has a s

pecial attribute: autoin-

crements and autodecrements are always done in steps of two. Byte
operations using the SP in this way leave odd addresses unmodified.

3.7 SUMMARY OF ADDRESSING MODES
3.7.1 General Register Addressing

R is a general register, Oto7
(R) is the contents of that register

Mode O Register OPR R

R

INSTRUCTION

Mode 1 Register deferred OPR (R)

R

INSTRUCTION ADDRESS OPERAND

Mode 2 Auto-increment

R contains address, then increment (R)

R

+2 FOR WORD,
+1 FOR BYTE

R contains operand

{
|

R contains address

OPR (R)+

Mods 1 Auto-increment OPR @(R)+ R contains address of address,
deferred then increment (R) by 2

R
st on | -[avoress ADDRESS

T

Mode 4 Auto-decrement OPR —(R)

Decrement (R), then R contains address

R
. " -2 FOR WORD,] |
l INGTRUCTION ~1 FOR BYTE' OPERAND

Mode 5 Auto-decrement OPR @—(R) Decrement (R) by 2,
deferred then R contains
address of address

R
wz,mumoﬂ-——-r ADDREM = ADDRESS OPERAND
3 i

Mode 6 Index OPR X(R) (R) 4+ X is address

pc [nstRucTion |—— ——eroRess

Mode 7 Index deferred OPR @X(R) (R) + X is address of address

INSTRUCTION ‘7 ADDRESS

Aonani-}_-r OPERANDJ

3.7.2 Program Counter Addressing

Register = 7

Mode 2 Immediate

PC | INSTRUCTION

Mode 3 Absolute

PC | INSTRUCTION

OPR #n

OPR @#A

pcr2 [A e OPERAND |

Mode 6 Relative

PC | INSTRUCTION

OPR A

Operand n follows instruction

Address A follows instruction

PC + 4 + X is address
\.\,./
updated PC

%
PC+4 NEXT INSTR

Mode 7 Relative deferred

PC | INSTRUCTION

PC+2

PC+4 | NEXT INSTR

OPR @A

PC + 4 4 X is address of address
S

updated PC

ADDREM oPERAND |

3-18

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION

I'he specification for each instruction includes the mnemonic, octal code,
binary code, a diagram showing the format of the instruction, a symbolic
notation describing its execution and the effect on the condition codes,
a description, special comments, and examples.

MNEMONIC: This is indicated at the top corner of each page. When the
word instruction has a byte equivalent, the byte mnemonic is also shown.

INSTRUCTION FORMAT: A diagram accompanying each instruction
shows the octal op code, the binary op code, and bit assignments. (Note
that in byté instructions the most significant bit (bit 15) is always a 1.)

SYMBOLS:
() = contents of
SS or src = source address
DD or dst = destination address
loc = location
< = becomes
1 = “is popped from stack”
! = “is pushed onto stack”
A = boolean AND
v = boolean OR
»= exclusive OR
~ = boolean not
Reg or R = register
B = Byte

0 for word
i { 1 for byte

4.2 INSTRUCTION FORMATS

The major instruction formats are:

Single Operand Group

OP Code dst
l 1 i I 1 1 L 1 1 1 l
15 6 5]
Double Operand Group
OP Code Src dst
l 1 A1 1 1 I L 1 i l
15 12 11 6 5
Register-Source or Destination
OP Code reg Src/dst
1 1 1 | 1) 1 1 i
15 5 6 S
Branch
Base Code offset
1 L 1 l 1 1 l 1 1 1 1 l
15 4

4-2

Byte Instructions

I'he PDP-11 processor includes a full complement of instructions that
manipulate byte operands. Since all PDP-11 addressing is byte-oriented,
byte manipulation addressing is straightforward. Byte instructions with
autoincrement or autodecrement direct addressing cause the specified
register to be modified by one to point to the next byte of data. Byte
operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word
or byte processor. The numbering scheme for word and byte addresses
in core memory is:

HIGH BYTE WORD OR BYTE
ADDRESS ADDRESS
002001 BYTE 1 BYTE O 002000
002003 BYTE 3 BYTE 2 002002

The most significant bit (Bit 15) of the instruction word is set to indicate
a byte instruction.

Example:
Symbolic Octal
CLR. 0050DD Clear Word
CLRB 1050DD Clear Byte
NOTE

The term PC (Program Counter) in the Opera-
tion explanation of the instructions refers to the
updated PC.

43

4.3 LIST OF INSTRUCTIONS

Instructions are shown in the following sequence. Other instructions are

found in Chapters 9, 11, and 12.

A—The SXT, XOR, MARK, SOB, and RTT instructions are not imple-

mented in the PDP-11/04, 11/05, and 11/10.
*—The SPL instruction is implemented only in the PDP-11/45.

SINGLE OPERAND

Mnemonic Instruction Op Code
General
CLR(B) clear destination 1050DD
COM(B) complement dst m051DD
INC(B) incrementdst m052DD
DEC(B) decrement dstoooviiiiiiiiinn. 1053DD
NEG(B) negate dst ...l =054DD
TSIR(B) atestidst iy oo o Rl u1057DD
Shift & Rotate
ASR(B) arithmetic shift right =062DD
ASL(B) arithmetic shift left =063DD
ROR(B) rotate right =060DD
ROI(B): " rotatelleft 0 e nl v s s Lot Lo m061DD
SWAB SWa PV S s i A s 0003DD
Multiple Precision
ADC(B): » add icarry faesein. i Mt i st m055DD
SBC(B) subtract carry m056DD
A SXT sign extend: ... i N 0067DD
DOUBLE OPERAND
General
MOV(B) move source to destination m1SSDD
CMP(B) compare src todst m2SSDD
ADD add src to dst 06SSDD
SUB subtract src from dst 16SSDD
Logical
BIT(B) iebititestea . il Lol v et U m3SSDD
BIC(B) bit clear m4SSDD
BIS(B)ziahit iseti - a s iiem i (b ol S i m5SSDD
A XOR exclusive ORA s itmiistar i sie Sl e 074RDD

4-4

Page

46
4.7

4-9
4-10
4-11

4-13
4-14
4-15
4-16
4-17

4-19
4-20
4-21

4-23
4-24
4-25
4-26

4-28
4-29
4-30

4-31

PROGRAM CONTROL ‘

Mnemonic Instruction Op Code
or
Base Code
Rranch
BR branch (unconditional) 000400
BNE branch if not equal (to zero) 001000
BEQ branch if equal (to zero) 001400
BPL branchiif'plus. .c....o.l .ol o0 100000
BMI branch if minus 100400
BvVC branch if overflow is clear 102000
BVS branch if overflow is set 102400
BCC branch if carry is clear 103000
BCS branch if carry isset 103400
Signed Conditional Branch
BGE branch if greater than or equal
(tosyzero) “oon v o Li o L0 R 002000
BLT branch if less than (zero) 002400
BGT branch if greater than (zero) 003000
BLE branch if less than or equal (to zero).... 003400
Unsigned Conditional Branch
BHI branch if higher 101000
BLOS branch if lower or same 101400
BHIS branch if higher or same 103000
BLO branch ififlower ... 5 103400
Jump & Subroutine
JMP JUMPE i st o ot i pias R 0001DD
JSR jump to subroutine 004RDD
RTS return from subroutine 00020R
A MARK 0 [Gt S B i MR 006400
A SOB subtract one and branch (if # 0) 077R00
* SPL set priority level 00023N
Trap & Interrupt
EMT emulator trap 104000—104377
TRAP traps T SSeestah el 104400—104777
BPT breakpoint trap 000003
10T input/output trap 000004
RTI return from interrupt 000002
A RTT return from interrupt 000006
MISCELLANEOUS
HALT halts:. 2 7 s o s et e 000000
WAIT wait for interrupt 000001
RESET reset external bus 000005
Condition Code Operation
CLC, CLV, CLZ,CLN,CCC clear 000240
SEC, SEV, SEZ, SEN, SCC setc............ 000260

Page

4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41

4-43
4-44
4-45
4-46

4.48
4-49
4-50
4-51

4-52
4-54
4-56
4-57
4.59
4 60

4-61
4-62
4-63
4-64
4-65
4-66

4-70
4-71
4-72

4-73
4-73

4.4 SINGLE OPERAND INSTRUCTIONS

clear destination =050DD
[O/100010\O'OOddddde
l 1 1 l 1 | l 1 1 1 1 l 1 1
15 6 5 0
Operation: (dst)<0
Condition Codes: N: cleared
Z: set
V: cleared
C: cleared
Description: Word: Contents of specified destination are replaced with ze-
roes.
Byte: Same
Example: CLR R1
Before After
(R1)=177777 (R1) = 000000
NZVC NzZvVC
1111 0100

4-6

COM
COMB

complement dst m051DD
O/1) [0: 70 MO OB O SO R [B s d e g i]
l 1 l 1 L l 1 1 1 1 l 1 L
15 6 5 (0]
Operation: (dst)e~(dst)

Condition Codes:

Description:

Example:

N: set if most significant bit of result is set; cleared otherwise
Z: set if result is O; cleared otherwise

V: cleared

C: set

Replaces the contents of the destination address by their log-
ical complement (each bit equal to O is set and each bit equal
to 1 is cleared)

Byte: Same
COM RO
Before After
(RO)=013333 (RO) = 164444
NZVC NZVC
0110 1001

4.7

INC

increment dst m052DD
FM PO DA T o B e MERO B B SR G B NN S dJ
| 1 .] 1 L |) | L L | !]
15 6 5 o
Operation: (dst)<(dst) + 1

Condition Codes: N: set if result is <O; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if (dst) held 077777; cleared otherwise

C: not affected
Description: Word: Add one to contents of destination
Byte: Same
Example: INC R2
Before After
(R2) =000333 (R2) = 000334
NZVC NZVC
0000 0000

48

DEC

decrement dst =053DD
F/i o TR o T P P et BT B A VT O s gt oo L et i v« it (s g | dJ
Jasy 1 | 1 %) 1 \ 1 | L L
15 6 5 0
Operation: (dst)<(dst)-1

Condition Codes:

Description:

Example:

N: set if result is <O; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if (dst) was 100000; cleared otherwise
C: not affected

Word: Subtract 1 from the contents of the destination
Byte: Same

DEC R5
Before After
(R5) = 000001 (R5) = 000000
NZVC NZVC
1000 0100

4.9

NEG
NEGB

negate dst =054DD
bl o0 Lo e ool [T deEdl, df - diddt id I
I 1 1 l 1 1 I 1 1 1 1 l L
15 6 5)
Operation: (dst)< —(dst)

Condition Codes: N: set if the result is <O; cleared otherwise
Z: set if result is O; cleared otherwise
V: set if the result is 100000; cleared otherwise
C: cleared if the result is O; set otherwise

Description: Word: Replaces the contents of the destination address by its
two’s complement. Note that 100000 is replaced by itself -(in
two's complement notation the most negative number has
no positive counterpart).

Byte: Same
Example: NEG RO
Before After
(R0O) =000010 (RO)=177770
NZVC NZVC
0000 1001

4-10

TST
TSTB

test dst m057DD
B0 0 L0 SN0 aui e e RN IRS et patd i gad it id
[| 1 l 1 1 l 1 1 L 1 l L IJ
15 6 5 o
Operation: (dst)<(dst)

Condition Codes: N: set if the result is <O; cleared otherwise
Z: set if result is O; cleared otherwise

V: cleared
C: cleared
Description: Word: Sets the condition codes N and Z according to the con-
tents of the destination address
Byte: Same
Example: TST R1
Before After
(R1)=012340 (R1)=012340
NZVC NZVC

0011 0000

Shifts
Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The low
order bit is filled with O in shifts to the left. Bits shifted out of the C bit, as shown
in the following examples, are lost.

Rotates

The rotate instructions operate on the destination word and the C bit as though
they formed a 17-bit ‘‘circular buffer’. These instructions facilitate sequential bit
testing and detailed bit manipulation.

4.12

arithmetic shift right

ASR
ASRB

u062DD

|ouooo11oo'1oaddd¢¢]
lllllllll el e e o

15

Operation:

Condition Codes:

Description:

6) (o}

(dst)<(dst) shifted one place to the right

N: set if the high-order bit of the result is set (result < 0);
cleared otherwise

Z: set if the result =0; cleared otherwise

V: loaded from the Exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)

C: loaded from low-order bit of the destination

Word: Shifts all bits of the destination right one place. Bit 15
is replicated. The C-bit is loaded from bit O of the destination.
ASR performs signed division of the destination by two.
Word:

dll”.
1

Byte:

gl 1 1 l 1 s]_J g] L L | 1 1J
1 DD ADDRESS 8 o

EVEN ADDRESS

ASL
ASLB

arithmetic shift left m063DD

lon Qa0 A e g b (e e g g g g d—I
| L i) | 1 L | N L 1 1 1 | !
15 GRRE)

Operation: (dst)«(dst) shifted one place to the left

Condition Codes: N: set if high-order bit of the result is set (result < 0); cleared
otherwise
Z: set if the result =0; cleared otherwise
V: loaded with the exclusive OR of the N-bit and C-bit (as set
by the completion of the shift operation)
C: loaded with the high-order bit of the destination

Description: Word: Shifts all bits of the destination left one place. Bit O is
loaded with an 0. The C-bit of the status word is loaded from
the most significant bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow in-
dication.
Word:

‘—[A.Ll..ll.l.ll.ll’—"

15 o

Byte:

s i,
ODD ADDRESS

._—Lml y ; lej”‘—t. [it L .j‘—°
o

7 EVEN ADDRESS

4-14

ROR
RORB

rotate right m060DD
: 0 d d,d d J
O/II 9 | g 1 2 l ! 1) 1 2 I 7 1 2 i g 1 1 I . | d
15 6 5 0

Condition Codes: N: set if the high-order bit of the result is set (result < 0);
cleared otherwise
Z: set if all bits of result =0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the low-order bit of the destination

Description: Rotates all bits of the destination right one place. Bit O is
loaded into the C-bit and the previous contents of the C-bit
are loaded into bit 15 of the destination.

Byte: Same

Example:
Word:

£

Byte:

ROL
ROLB

rotate left m061DD

En 0T O o PR s o e R e e SR R I
l 1 It | 1 I l 1 1 1 1 l 1 i

15 65 0

Condition Codes: N: set if the high-order bit of the result word is set
(result < 0): cleared otherwise
Z: set if all bits of the result word =0; cleared otherwise
V: loaded with the Exclusive OR of the N-bit and C-bit (as set
by the completion of the rotate operation)
C: loaded with the high-order bit of the destination

Description: Word: Rotate all bits of the destination left one place. Bit 15
is loaded into the C-bit of the status word and the previous
contents of the C-bit are loaded into Bit O of the destination.
Byte: Same

Example:
Word:

dst
T

'“Ll..l..l.ll..l
e

Bytes:

L 0DD l[EVEN
) el T e e et gt e o]

el Tl e o

4-16

SWAB

swap bytes 0003DD
L)
010]O|0|01010I011l| dldldldjdldJ
15 6 5
Operation: Byte 1/Byte O «Byte O/Byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit 7) of result is set;
cleared otherwise
Z: set if low-order byte of result =0; cleared otherwise

V: cleared
C: cleared
Description: Exchanges high-order byte and low-order byte of the destina-
tion word (destination must be a word address).
Example: SWAB R1
Before After
(R1)=077777 (R1)=177577
NZVC NzZVC
1111 0000

4-17

Multiple Precision

It is sometimes necessary to do arithmetic on operands considered as multipl
words or bytes. The PDP-11 makes special provision for such operations with the
instructions ADC (Add Carry) and SBC (Subtract Carry) and their byte equiva
lents.

For example two 16-bit words may be combined into a 32-bit double precisior
word and added or subtracted as shown below:

32 BIT WORD

Ve BEFIR

OPERAND L A1] I 29]
3 © [G

. N
OPERAND [7 81 l [ﬁ 80 I
3 % 5 9

RESULT I l L I
3 3 5 o

Example:

The addition of -1 and -1 could be performed as follows:
-1 = 37777777777
(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD R1,R2
ADC R3
ADD R4,R3

1. After (R1) and (R2) are added, 1 is loaded into the C bit
2. ADC instruction adds C bit to (R3); (R3) = 0

3. (R3) and (R4) are added

4. Result is 37777777776 or -2

4-18

ADC
ADCB

add carry m055DD
[0/1 OF 08 L O N QR TR /B OF ey e ds A e
l 1 A l {1 1 l i 1 1 1 l 1 1
15 GhyELE 0
Operation: (dst)<(dst) + (C)

Condition Codes: N: set if result <O: cleared otherwise
Z: set if result =0; cleared otherwise
V: set if (dst) was 077777 and (C) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Description: Adds the contents of the C-bit into the destination. This per-
mits the carry from the addition of the low-order words to be
carried into the high-order result.

Byte: Same

Example: Double precision addition may be done with the following in-
struction sequence:
ADD A0,BO ; add low-order parts
ADC Bl ; add carry into high-order
ADD Al,B1 ; add high order parts

4-19

SBC
SBCB

subtract carry u056DD
E” (o)l il KO o N B LU oLl oo B O e T i e d—l
l A 1 l {1 J l 1 1 1 1 l 1 1
15 6 5 0
Operation: (dst)<(dst)-(C)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: set if (dst) was 0 and C was 1; cleared otherwise

Description: Word: Subtracts the contents of the C-bit from the destina-
tion. This permits the carry from the subtraction of two low-
order words to be subtracted from the high order part of the

result.
Byte: Same
Example: Double precision subtraction is done by:
SUB A0,BO
SBC Bl
SUB Al1,B1

4-20

SXT

(not in the 11/04, 11/05 & 11/10)

sign extend 0067DD

15 6 5 o)
Operation: (dst) <« O if N bit is clear
(dst) <«-1 N bit is set
Condition Codes: . unaffected
Z: set if N bit clear
V: cleared
C: unaffected
Description: If the condition code bit N is set then a -1 is placed in the

destination operand: if N bit is clear, then a Ois placed in the
destination operand. This instruction is particularly useful in
multiple precision arithmetic because it permits the sign to
be extended through multiple words.

4-21

4.5 DOUBLE OPERAND INSTRUCTIONS

Double operand instructions provide an instruction (and time) saving facility
since they eliminate the need for “load’’and ‘‘save’ sequences such as those
used in accumulator-oriented machines.

4-22

MOV
MOVB

move source to destination m1SSDD

(o T2 T o Vo (o s 1 Jgud [Tt e L Pt g s g T S d]
1 I 1 1 1 1
0

15 1211 6 5

Operation: (dst)<(src)

Condition Codes: N: set if (src) <O; cleared otherwise
Z: set if (src) =0; cleared otherwise
V: cleared
C: not affected

Description: Word: Moves the source operand to the destination location.

The previous contents of the destination are lost. The con-
tents of the source address are not affected.
Byte: Same as MOV. The MOVB to a register (unique among
byte instructions) extends the most significant bit of the low
order byte (sign extension). Otherwise MOVB operates on
bytes exactly as MOV operates on words.

Example: MOV XXX,R1 ; loads Register 1 with the con-
tents of memory location; XXX represents a programmer-de-
fined mnemonic used to represent a memory location

MOV #20,RO ; loads the number 20 into
Register O; ** # "indicates that the value 20 is the operand

MOV @ # 20,-(R6) ; pushes the operand con-
tained in location 20 onto the stack

MOV (R6)+ @ #'177566 ; pops the operand off a stack
and moves it into memory location 177566 (terminal print
buffer)

MOV R1,R3 ; performs an inter
register transtfer

MOVB @ # 177562, @# 177566 ; moves a character
from terminal keyboard buffer to terminal buffer

4-23

CMP
CMPB

compare src to dst m2SSDD
l?ﬁ (o] 1 0 |s s s s : S s l d d d d d Ll
A 1 1 1 l {f | 1 1 | 1 1
15 R 6 5 (o]
Operation: (src)-(dst)

Condition Codes: N: set if result <0; cleared otherwise
Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow; that is, operands were
of opposite signs and the sign of the destination was the

same as the sign of the result; cleared otherwise

C: cleared if there was a carry from the most significant bit of

the result; set otherwise

Description: Compares the source and destination operands and sets the

condition codes, which may then be used for arithmetic and
logical conditional branches. Both operands are unaffected.
The only action is to set the condition codes. The compare is

customarily followed by a conditional branch instruction.

Note that unlike the subtract instruction the order of oper-

ation is (src)-(dst), not (dst)-(src).

4-24

ADD

add src to dst 06SSDD

Operation:

Condition Codes:

Description:

Examples:

(dst)<(src) + (dst)

N: set if result <O; cleared otherwise

Z: set if result = O; cleared otherwise

V- set if there was arithmetic overflow as a result of the oper-
ation: that is both operands were of the same sign and the
result was of the opposite sign; cleared otherwise

C: set if there was a carry from the most significant bit of the
result; cleared otherwise

Adds the source operand to the destination operand and
stores the result at the destination address. The original con-
tents of the destination are lost. The contents of the source
are not affected. Two’s complement addition is performed.

Add to register: ADD 20,RO
Add to memory: ADD R1,XXX
Add register to register: ADD R1,R2

Add memory to memory: ADD@ # 17750,XXX

XXX is a programmer-defined mnemonic for a memory loca-
tion.

SUB

subtract src from dst 16SSDD
T
doidivpadi e diesidieid
[1 l ‘ 1 1 1 O 3 L 2 1 3 I 3 L % L : il 1 l 1 lJ
15 (P i G esla) 0
Operation: (dst)<«(dst)-(src)

Condition Codes: N: set if result <O; cleared otherwise
Z: set if result =0; cleared otherwise

V: set if there was arithmetic overflow as a result of the oper-
ation, that is if operands were of opposite signs and the sign
of the source was the same as the sign of the result; cleared

otherwise

C: cleared if there was a carry from the most significant bit of

the result; set otherwise

Description: Subtracts the source operand from the destination operand
and leaves the result at the destination address. The orignial
contents of the destination are lost. The contents of the
source are not affected. In double-precision arithmetic the C-

bit, when set, indicates a “‘borrow’".

Example: SUB R1,R2
Before After
(R1)=011111 (R1)=011111
(R2) =012345 (R2) =001234
NZVC NZVC
1111 0000

4-26

Logical
Ihese instructions have the same format as the double operand arithmetic group.
They permit operations on data at the bit level.

4-27

BIT
BITB

bit test =3SSDD
o/ 0 1 SliTs RN SRR IR 1 d d d d d d
| 1 1 1 l 1 1 L Il I} 1 I
15 2 1 € 5 0
Operation: (src) A (dst)

Condition Codes:

Description:

Example:

N: set if high-order bit of result set; cleared otherwise
Z: set if resiilt =0; cleared otherwise

V: cleared

C: not affected

Performs logical ‘‘and’’comparison of the source and dest
nation operands and modifies condition codes accordingly
Neither the source nor destination operands are affectec
The BIT instruction may be used to test whether any of th:
corresponding bits that are set in the destination are also se
in the source or whether all corresponding bits set in the des
tination are clear in the source.

BIT #30.R3 ; test bits 3 and 4 of R3 to se

if both are off

(30)s=0 000 000 000 011 000

4-28

BIC

Condition Codes:

bit clear m4SSDD
0/1 AT R0 0| 's C se . me salsh Bl ddnds Han dd l
1 1 1 1 |] 1 1 1 | 1 1
15 12 1 6 5 [9)
Operation: (dst)<€~(src)A(dst)

N: set if high order bit of result set; cleared otherwise
Z: set if result =0; cleared otherwise

V: cleared

C: not affected

(R4) =001111

NZvC
111

4-29

- Description: Clears each bit in the destination that corresponds to a set
L bit in the source. The original contents of the destination are
e lost. The contents of the source are unaffected.
t '8 Example: BIC R3,R4
Before After
(R3) =001234 (R3)=001234

(R4) =000101

NZvVC
0001

Before: ({R3)=0 000 001 010 011 100
(R4)=0 000 001 DO1 001 001
After: (R4)=0 000 000 001 000 001

BIS

bit set m5SSDD
[0/1 e ls SR i TS 8 b G| B O o Ak e A Bl l
| s S L L | ! L 1 | | 1 1
15 12 1 6 5 0
Operation: (dst)=(src) v (dst)

Condition Codes:

Description:

Example:

N: set if high-order bit of result set, cleared otherwise
Z: set if result =0; cleared otherwise

V: cleared

C: not affected

Performs “Inclusive OR"'operation between the source and
destination operands and leaves the result at the destination
address; that is, corresponding bits set in the source are set
in the destination. The contents of the destination are lost.

BIS RO,R1
After

(RO) =001234
(R1) =001335

Before
(RO)=001234
(R1)=001111

NzZvVC NzZVC

Q000 0000
Before: (RO)=0 000 001 010 011 100
(R1)=0 000 001 001 001 001
After: (R1)=0 000 001 011 011 101

4-30

XOR

(not in the 11/04, 11/05 & 11/10)

exclusive OR 074RDD
T
(e BERI ir
I i 1 l 1 L o | o ‘ £ V] / 1 ! d L d L d l d 1 d 1 d—l
15 8 6 5)
Operation: (dst)<Rwv(dst)

Condition Codes: N: set if the result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: cleared
C: unaffected

Description: The exclusive OR of the register and destination operand is
stored in the destination address. Contents of register are
unaffected. Assembler format is: XOR R,D

Example: XOR RO,R2
Before After
(RO) =001234 (RO)=001234
(R2)=001111 (R2) = 000325
Before: (RO)=0 000 001 010 011 100

(R2)=0 000 001 001 001 001

After: (R2)=0 000 000 011 010 101

4-31

4.6 PROGRAM CONTROL INSTRUCTIONS
Branches

The instruction causes a branch to a location defined by the sum of the offse
(multiplied by 2) and the current contents of the Program Counter if:

a) the branch instruction is unconditional

b) it is conditional and the conditions are met after testing the conditio
codes (status word).

The offset is the number of words from the current contents of the PC. Note thz
the current contents of the PC point to the word following the branch instruction

Although the PC expresses a byte address, the offset is expressed in words. Th
offset is automatically multiplied by two to express bytes before it is added to th
PC. Bit 7 is the sign of the offset. If it is set, the offset is negative and the branc
is done in the backward direction. Similarly if it is not set, the offset is positiv
and the branch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200, words (40(
bytes) from the current PC, and in the forward direction by 177, words (37¢
bytes) from the current PC.

The PDP-11 assembler handles address arithmetic for the user and computes an
assembles the proper offset field for branch instructions in the form:

Bxx loc
Where “Bxx"" is the branch instruction and “loc” is the address to which th
branch is to be made. The assembler gives an error indication in the instruction

the permissable branch range is exceeded. Branch instructions have no effect o
condition codes.

4-32

w 2 v K

BR

branch (unconditional) 000400 Plus offset
0.0 R Ot O PO M O O e OFFSET j
1 1 1 | " 1 1 1 1 1 1 1 1 i
15 8 7 0
Operation: PC « PC + (2 x offset)
Description: Provides a way of transferring program control within a

range of -128 to + 127 words with a one word instruction.

New PC address = updated PC + (2 X offset)
UUpdated PC = address of branch instruction 4- 2

Example: With the Branch instruction at location 500, the following off-

sets apply.
New PC Address Offset Code Offset (decimal)
474 375 —3
476 376 -2
500 377 —1
502 000 0
504 001 +1
506 002 +2

4-33

BNE

branch if not equal (to zero) 001000 Plus offset
(O et o) ¥ Hol (oA o Wi & 5 6 ¥(o)
[L L i | ! 1 1 1 1 OFLFSET 1 1 J
15 g o}
Operation: PC «PC + (2xoffset)ifZ =0

Condition Codes:

Description:

Example:

Unaffected

Tests the state of the Z-bit and causes a branch if the Z-bit i
clear. BNE is the complementary operation to BEQ. It is usec
to test inequality following a CMP, to test that some bits se
in the destination were also in the source, following a BIT
and generally, to test that the result of the previous oper
ation was not zero.

CMP AB ; compare A and B
BNE C ; branch if they are not equal

will branch to C if A # B

and the sequence

ADD AB ;addAtoB
BNE C ; Branch if the result is not
equal to O

will branch to C it A + B # 0

4-34

BEQ

branch if equal (to zero) 001400 Plus offset
l 0 H0EoliE0 a0 tg e OFFSET
1 L ! 1 s 1 | 1 1 L 1 ! 1
15 gy 0
Operation: PC €« PC + (2 x offset) if Z'="1

Condition Codes:

Description:

Example:

Unaffected

Tests the state of the Z-bit and causes a branch if Z is set. As
an example, it is used to test equality following a CMP oper-
ation, to test that no bits set in the destination were also set
in the source following a BIT operation, and generally, to test
that the result of the previous operation was zero.

CMP AB , compare A and B

BEQ C ; branch if they are equal
will branchtoCifA = B A-B =0
and the sequence

ADD AB ;add A toB

BEQ C ; branch if the result =0

will branchto Cif A + B = 0.

4-35

BPL

branch if plus 100000 Plus offset
OFFSET
[1IOIOIOIOIO‘O|OI L | N N 1 1 lJ
15 7 0
Operation: PC « PC + (2 x offset) if N=0
Description: Tests the state of the N-bit and causes a branch if N is

clear, (positive result).

4-36

BMI

branch if minus 100400 Plus offset

[‘1°.°.°.°.°,°1’ AR b a VBT

15 8 7 0
Operation: PC «PC + (2 x offset) if N=1

Condition Codes: Unaffected

Description: Tests the state of the N-bit and causes a branch if N is
set. It is used to test the sign (most significant bit) of
the result of the previous operation), branching if neg-
ative.

4-37

BVC

branch if overflow is clear 102000 Plus offset
(I oI (S N R S frae o OFFSET]
l | 1 I 1 1 I 1 l 1 1 l 1 1
15 8 7 0
Operation: PC « PC + (2 x offset) if V=0
Description: Tests the state of the V bit and causes a branch if the V bit is

clear. BVC is complementary operation to BVS.

4-38

BVS

branch if overflow is set 102400 Plus offset
1,25 0 00 R0 £
l 1 1 1 A 1 & I A 1 l OnFFSEIT l 1 3]
15 8 7 0
Operation: PC « PC + (2 x offset) if V=1
Description: Tests the state of V bit (overflow) and causes a branch if the

V bit is set. BVS is used to detect arithmetic overflow in the
previous operation.

4-39

BCC

branch if carry is clear 103000 Plus offset
‘ F
) l i 1 - 1 g | 2 1 ! Il ! I b 1 l O'f SEIT l g l
15 ST o
Operation: PC « PC + (2 x offset) if C=0
Description: Tests the state of the C-bit and causes a branch if C is clear.

BCC is the complementary operation to BCS

4-40

BCS

branch if carry is set 103400 Plus offset
1 OFFSET
t | i 1 2 1 9 1 g 1 ! 1 ! 1 1 | L L | 1 L j
15 8 T (o]

Operation:

Description:

PC «PC + (2 x offset) if C=1

Tests the state of the C-bit and causes a branch if C is set. It

is used to test for a carry in the result of a previous oper-
ation.

4-41

Signed Conditional Branches

Particular combinations of the condition code bits are tested with the signed con-
ditional branches. These instructions are used to test the results of instructions in
which the operands were considered as signed (two's complement) values.

Note that the sense of signed comparisons differs from that of unsigned com-
parisons in that in signed 16-bit, two's complement arithmetic the sequence of
values is as follows:

largest 077777
077776
positive ;
000001
000000
177777
177776
negative
100001
smallest 100000

whereas in unsigned 16-bit arithmetic the sequence is considered to be

highest 121777

000002
000001
lowest 000000

4-42

i

BGE

branch if greater than or equal 002000 Plus offset
(to zero)

FSET
rololololol'lolo 1 IOFJ i l 1 LJ
15 I (o]

Operation: PC<«PC + (2xoffset)if NvV =0
Description: Causes a branch if N and V are either both clear or both set.

BGE is the complementary operation to BLT. Thus BGE will
always cause a branch when it follows an operation that
caused addition of two positive numbers. BGE will also cause
a branch on a zero result.

4-43

BLT

branch if less than (zero) 002400 Plus offset
e o T
HEL S oy b 0] SRESET S
15 8t . .7 0
Operation: PC < PC + (2 xoffset)if NvV =1
Description: Causes a branch if the ““Exclusive Or'’of the N and V bits are

1. Thus BLT will always branch following an operation that
added two negative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a
CMP instruction operating on a negative source and a posi-
tive destination (even if overflow occurred). Further, BLT will
never cause a branch when it follows a CMP instruction oper-
ating on a positive source and negative destination. BLT will
not cause a branch if the result of the previous operation was
zero (without overflow).

4-44

BGT

branch if greater than (zero) 003000 Plus offset

00 E0
L 1 L
15

A e poormene) BRI |

Operation:

Description:

87 0

PC<«PC + (2xoffset)if ZwWNwV) =0

Operation of BGT is similar to BGE, except BGT will not cause
a branch on a zero result.

4-45

BLE

branch if less than or equal (to zero)

003400 Plus offset

OO L0 0 B RCH AR 1 1 OFFSET
r l 1 " I 1 1 l l 1 s

, Y

Operation:

Description:

8 7 (o]
PC < PC + (2 x offset) if Zv(N v V)=1

Operation is similar to BLT but in addition will cause a
branch if the result of the previous operation was zero.

4-46

Unsigned Conditional Branches
The Unsigned Conditional Branches provide a means for testing the result of
comparison operations in which the operands are considered as unsigned values.

4-47

BHI

branch if higher 101000 Plus offset
[igo e, 0ye o vpel o BESE emens ol
15 8 7 (o]
Operation: PC <« PC + (2 xoffset)if C=0and Z=0
Description: Causes a branch if the previous operation caused neither a

carry nor a zero result. This will happen in comparison (CMP)
operations as long as the source has a higher unsigned value
than the destination.

448

BLOS

branch if lower or same 101400 Plus offset
R STo s e Bt ool o Feato e o T AR K)
fiobecdorbr o |t chsiel SIS e L R
15 8 7 0
Operation: PC<«PC + (2xoffset)ifCvZ =1
Description: Causes a branch if the previous operation caused either a

carry or a zero result. BLOS is the complementary operation
to BHI. The branch will occur in comparison operations as
long as the source is equal to, or has a lower unsigned value
than the destination.

4-49

BHIS

- branch if higher or same 103000 Plus offset
{08 O '
[l A 1 O l O A 1 1 1 l O 1 ' OJFFSE:" 1 1
15 T 0
Operation: PC<«PC + (2xoffset)if C =0
Description: BHIS is the same instruction as BCC. This mnemonic is in

cluded only for convenience.

4-50

BLO

branch if lower 103400 Plus offset
180 O ot OFFSET
l l 1 A I) o I L 1 I 1 I8
15 BRETD 0
Operation: PC <« PC + (2 x offset) if C=1
Description: BLO is same instruction as BCS. This mnemonic is included

only for convenience.

4-51

jump 0001DD
[oloo oloo olo'o 1 [d d dld d d]
‘5 1 A L 1 A 1 6 5 A d i 1 1 o
Operation: PC<(dst)

Condition Codes:

Description:

not affected

JMP provides more flexible program branching than provided
with the branch instructions. Control may be transferred to
any location in memory (no range limitation) and can be ac-
complished with the full flexibility of the addressing modes,
with the exception of register mode O. Execution of a jump
with mode O will cause an ‘‘illegal instruction”condition.
(Program control cannot be transferred to a register.) Regis-
ter deferred mode is legal and will cause program control to
be transferred to the address held in the specified register.
Note that instructions are word data and must therefore be
fetched from an even-numbered address. A 'boundary er-
ror'’trap condition will result when the processor attempts to
fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of

control to the address contained in a selectable element of a
table of dispatch vectors.

4-52

Subroutine Instructions

The subroutine call in the PDP-11 provides for automatic nesting of subroutines,
reentrancy, and multiple entry points. Subroutines may call other subroutines (or
indeed themselves) to any level of nesting without making special provision for
storage or return addresses at each level of subroutine call. The subroutine call-
ing mechanism does not modify any fixed location in memory, thus providing for
reentrancy. This allows one copy of a subroutine to be shared among several in-
terrupting processes. For more detailed description of subroutine programming
see Chapter 5.

4-53

JSR

jump to subroutine 004RDD
]
olo olilolo rerrld‘dldldxdld]
15 8 65 o)
Operation: v (SP)<reg (push reg contents onto processor stack)
reg<PC (PC helds location following JSR; this address
now put in reg)

PC «(dst) (PC now points to subroutine destination)
Description: In execution of the JSR, the old contents of the specified reg-

ister (the “LINKAGE POINTER") are automatically pushed
onto the processor stack and new linkage information placed
in the register. Thus subroutines nested within subroutines
to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which
any particular subroutine will be called or to include instruc-
tions in each routine to save and restore the linkage pointer.
Further, since all linkages are saved in a reentrant manner
on the processor stack execution of a subroutine may be in-
terrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine
can then be resumed when other requests are satisfied. This
process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access
the arguments following the call with either autoincrement
addressing, (reg) +, (if arguments are accessed sequentially)
or by indexed addressing, X(reg), (if accessed in random or-
der). These addressing modes may also be deferred,
@(reg) + and @X(reg) if the parameters are operand ad-
dresses rather than the operands themselves.

4-54

Example:

Before:

After:

JSR PC, dst is a special case of the PDP-11 subroutine call
suitable for subroutine calls that transmit parameters
through the general registers. The SP and the PC are the only
registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,
@(SP) + which exchanges the top element of the processor
stack and the contents of the program counter. Use of this

instruction allows two routines to swap program control and

resume operation when recalled where they left off. Such rou-
tines are called ‘‘co-routines.”

Return from a subroutine is done by the RTS instruction. RTS
reg loads the contents of reg into the PC and pops the top
element of the processor stack into the specified register.

JSR R5, SBR
(PC) R7 Stack
(SP) R6 [I’——» DATA 0
w
”

R6 n—2 DATA O
\ o

R5 PC+2-

4 4-55

RTS

return from subroutine 00020R
0)/:0 R, U B s
] |..1..|..l'.'.']
15 oo o
Operation: PCereg
reg< (SP) A
Description: Loads contents of reg into PC and pops the top element of
the processor stack into the specified register.
Return from a non-reentrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with a RTS PC and
a subroutine called with a JSR R5, dst, may pick up para-
meters with addressing modes (R5)+, X(R5), or @X(R5)
and finally exits with an RTS R5 :
Example: RTS R5
Before: (PC) R7 SBR Stack
#1
w

R6 n42 — DATA O

N

4-56

MARK

(not in the 11/04, 11/05 & 11/10)

mark 00 64 NN
T
L01010.011.1|011 OIOInlnlnlnlnan
15 8 7 6 5 (o]
Operation: SP< PC + 2nn nn = number of parameters
PC «R5
R5«(SP) A

Condition Codes: unaffected

Description: Used as part of the standard PDP-11 subroutine return con-
vention. MARK facilitates the stack clean up procedures in-
volved in subroutine exit. Assembler format is: MARK N

Example: MOV R5,-(SP) ;place old R5 on stack
MOV P1,-(SP) ;place N parameters
MOV P2,—(SP) ;on the stack to be

;used there by the
:subroutine
MOV PN,-(SP)
MOV #MARKN,-(SP) ;places the instruction
:MARK N on the stack
MOV SP ,R5 ;set up address at Mark N in-
struction
JSR PC,SuB ;jump to subroutine

At this point the stack is as follows:

OLD RS
P1

PN

MARK N

OLD PC

4-57

And the program is at the address SUB which is the beginning

of the subroutine.
SUB: ;execution of the subroutine it-

self

RTS R5 ;the return begins: this causes

the contents of R5 to be placed in the PC which then results
in the execution of the instruction MARK N. The contents of

old PC are placed in R5

MARK N causes: (1) the stack pointer to be adjusted to point
to the old R5 value; (2) the value now in R5 (the old PC) to be
placed in the PC; and (3) contents of the the old R5 to be
popped into R5 thus completing the return from subroutine.

4-58

SOB

(not in the 11/04, 11/05 & 11/10)

subtract one and branch (if # 0) 077R00 Plus offset

T
e Re T (G Sl S OFFSET l
l 1 | 1 1 1 A l 1 1

Operation:
Condition Codes:

Description:

9°8 (o) (o]

R< R -1 if this result # O then PC <« PC (2 x offset)

unaffected

The register is decremented. If it is not equal to 0, twice the
offset is subtracted from the PC (now pointing to the follow-
ing word). The offset is interpreted as a sixbit positive num-
ber. This instruction provides a fast, efficient method of loop
control. Assembler syntax is:

SOB RA
Where A is the address to which transfer is to be made if the
decremented R is not equal to 0. Note that the SOB instruc-

tion can not be used to transfer control in the forward direc-
tion.

4-59

SPL

(only in the 11/45])

Set Priority Level 00023N
OHAFO i Ote O
r l b A l o L o) O l 0 1 ! ! o l 0 1 ; 1) l y 1] ;¢ p J
15 AW 0
Operation: PS (bits 7-5) <Priority (priority = n n n)

Condition Codes: not affected

Description The least significant three bits of the instruction
are loaded into the Program Status Word (PS) bits
7-5 thus causing a changed priority. The old priority
is lost.
Assembler syntax is: SPL N

Note: This instruction is a no op in User and
Supervisor modes.

Traps

Trap instructions provide for calls to emulators, I/0 monitors, debugging pack-
ages, and user-defined interpreters. A trap is effectively an interrupt generated by
software. When a trap occurs the contents of the current Program Counter (PC)
and Program Status Word (PS) are pushed onto the processor stack and re-
placed by the contents of a two-word trap vector containing a new PC and new
PS. The return sequence from a trap involves executing an RTl or RTT instruc-
tion which restores the old PC and old PS by popping them from the stack. Trap
vectors are located at permanently assigned fixed addresses.

4-60

EMT

emulator trap 104000—104377
r1 l 0 1 O 1 o l 1 A o A o l o] ") ‘ 1 A l 1 d J
15 8T (o}
Operation: ¥ (SP)«PS
¥ (SP)«PC
PC«(30)
PS«(32)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: All operation codes from 104000 to 104377 are EMT instruc-
tions and may be used to transmit information to the emulat-
ing routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word
at address 30; the new central processor status (PS) is taken
from the word at address 32.

Caution: EMT is used frequently by DEC system software and
is therefore not recommended for general use.

Before: PS Stack
After: pe I ap l

PC (30) DATA 1

PS 1

sP el o e S i PEAY

4-61

104400—104777

Operation:

Condition Codes:

Description:

Y (SP)«PS
¥ (SP)<PC
PC«(34)
PS«(36)

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Operation codes from 104400 to 104777 are TRAP instruc-

tions. TRAPs and EMTs are identical in operation, except
that the trap vector for TRAP is at address 34.

Note: Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

4-62

BPT

breakpoint trap

000003
[0} (0] 0810 0O O (6] (0] " (0] (0] Qa0 0 (0] 1 1
l | i 1 I 4 n J 1 i£ I " 1 I L i]
15 (0]
Operation: ¥ (SP)<«PS
v (SP)«PC
PC «(14)
PS < (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector
Description: - Performs a trap sequence with a trap vector address of 14.
Used to call debugging aids. The user is cautioned against
employing code 000003 in programs run under these de-
bugging aids.

(no information is transmitted in the low byte.)

4-63

10T
input/output trap : 000004

|0 OU L0 10RO RO 00’00000 1 OOI
l T, | Il s l 1 1 ll A l A A
15 (0]

Operation: v (SP)«PS
v(SP)<PC

PC«(20)

PS«(22)

Condition Codes: N:loaded from trap vector
Z:loaded from trap vector
V:loaded from trap vector
C:loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20.
Used to call the 1/0 Executive routine IOX in the paper tape
software system, and for error reporting in the Disk Oper-
ating System.

(no information is transmitted in the low byte)

4-64

RTI

return from interrupt 000002
04503 V0RO 305 Ti0 % 014 %0 HHOLH DL 10110570 Nois Wi
| i Rt NN (e RNA T IR el nalal B R]
15 0
Operation: PC<(SPW
PS «(SP)A

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service routine. The
PCand PS are restored (popped) from the processor stack.

4-65

RTT

return from interrupt 000006

(not in the 11/04, 11/05 & 11/10)

|OIO.OOOOOOO (0}
1
15

l 1 1 l 1 1 I 1

Operation:

Condition Codes:

Description:

PC<«(SPY 4
PS«(SP) A
N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

This is the same as the RT! instruction except that it inhibits
a trace trap, while RTI permits a trace trap. If a trace trap is
pending, the first instruction after the RTT will be executed
prior to the next “T"trap. In the case of the RTI instruction
the ““T" trap will occur immediately after the RTI.

4-66

Reserved Instruction Traps - These are caused by attempts to execute instruction
codes reserved for future processor expansion (reserved instructions) or instruc-
tions with illegal addressing modes (illegal instructions). Order codes not corre-
sponding to any of the instructions described are considered to be reserved in-
structions. JMP and JSR with register mode destinations are illegal instructions.
Reserved and illegal instruction traps occur as described under EMT, but trap
through vectors at addresses 10 and 4 respectively.

Stack Overflow Trap

Bus Error Traps - Bus Error Traps are:
1. Boundary Errors - attempts to reference instructions or word
operands at odd addresses.

2. Time-Out Errors - attempts to reference addresses on the bus
that made no response within a certain length of time. In general,
these are caused by attempts to reference non-existent memory,
and attempts to reference non-existent peripheral devices.

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap - Trace Trap enables bit 4 of the PS and causes processor traps at
the end of instruction executions. The instruction that is executed after the in-
struction that set the T-bit will proceed to completion and then cause a processor
trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

The following are special cases and are detailed in subsequent paragraphs.
1. The traced instruction cleared the T-bit.

. The traced instruction set the T-bit.

. The traced instruction caused an instruction trap.

. The traced instruction caused a bus error trap.

. The traced instruction caused a stack overflow trap.

o O b~ W N

. The process was interrupted between the time the T-bit was set and the
etching of the instruction that was to be traced.

—+

7. The traced instruction was a WAIT.
8. The traced instruction was a HALT.

9. The traced instruction was a Return from Trap

Note: The traced instruction is the instruction after the one that sets the T-bit.

An instruction that cleared the T-bit - Upon fetching the traced instruction an in-
ternal flag, the trace flag, was set. The trap will still occur at the end of execution
of this instruction. The stacked status word, however, will have a clear T-bit.

An instruction that set the T-bit - Since the T-bit was already set, setting it again
has no effect. The trap will occur.

4-67

An instruction that caused an Instruction Trap. The instruction trap is
sprung and the entire routine for the service trap is executed. If the
service routine exits with an RTI or in any other way restores the stacked
status word, the T-bit is set again, the instruction following the traced
instruction is executed and, unless it is one of the special cases noted
above, a trace trap occurs.

An instruction that caused a Bus Error Trap. This is treated as an In-
struction Trap. The only difference is that the error service is not as
likely to exit with an RTI, so that the trace trap may not occur.

An instruction that caused a stack overflow. The instruction completes
execution as usual—the Stack Overflow does not cause a trap. The
Trace Trap Vector is loaded into the PC and PS, and the old PC and PS
are pushed onto the stack. Stack Overflow occurs again, and this time
the trap is made.

An interrupt between setting of the T-bit and fetch of the traced intruc-
tion. The entire interrupt service routine is executed and then the T-bit
is set again by the exiting RTI. The traced instruction is executed (if
there have been no other interrupts) and, unless it is a special case
noted above, causes a trace trap.

Note that interrupts may be acknowledged immediately after the loading
of the new PC and PS at the trap vector location. To lock out all inter-
rupts, the PS at the trap vector should raise the processor priority to
level 7.

A WAIT. The trap occurs immediately.

A HALT. The processor halts. When the continue key on the console is
pressed, the instruction following the HALT is fetched and executed.
Unless it is one of the exceptions noted above, the trap occurs imme-
diately following execution.

A Return from Trap. The return from trap instruction either clears or sets
the T-bit. It inhibits the trace trap. If the T-bit was set and RTT is the
traced instruction the trap is delayed until completion of the next in-
struction.

Power Failure Trap. is a standard PDP-11 feature. Trap occurs whenever
the AC power drops below 95 volts or outside 47 to 63 Hertz. Two milli-
seconds are then allowed for power down processing. Trap vector for
power failure is at locations 24 and 26.

4-68

Trap priorities. In case multiple processor trap conditions occur simul-
taneously the following order of priorities is observed (from high to low):

11/04, 11/05 & 11/10
Odd Address

Timeout

Trap Instructions
Trace Trap

Power Failure

Qb e

11/35 & 11/40

Odd Address

. Fatal Stack Violation

Memory Management Violation
Timeout

. Trap Instructions

. Trace Trap

. Warning Stack Violation

. Power Failure

PONOOTDWN

11/45

Odd Address

. Fatal Stack Violation

. Segment Violation

. Timeout

Parity Error

Console Flag

Segment Management Trap
Warning Stack Violation
Power Failure

CENOOAWN -

The details on the trace trap process have been described in the trace
trap operational description which includes cases in which an instruc-
tion being traced causes a bus error, instruction trap, or a stack over-
flow trap.

If a bus error is caused by the trap process handling instruction traps,
trace traps, stack overflow traps, or a previous bus error, the processor
is halted.

If a stack overflow is caused by the trap process in handling bus errors,
instruction traps, or trace traps, the process is completed and then the
stack overflow trap is sprung.

4-69

4.7 MISCELLANEOUS

HALT

halt ‘ 000000

T ~
OIO Ok s 0 WO IO WO S04 0485 0.0 504180450550 40) OJ
I 1 1 1 l A 50
o

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is
given control of the bus. The console data lights display the
contents of RO; the console address lights display the ad-
dress after the halt instruction. Transfers on the UNIBUS are
terminated immediately. The PC points to the next instruc-
tion to be executed. Pressing the continue key on the console
causes processor operation to resume. No INIT signal is
given.

Note: A halt issued in User Mode will generate a trap.

4-70

WAIT

wait for interrupt 000001
o |
L l 0 A o 1 o l o d o I O 1 o {1 O 1 o l 0 L o A 0 l o 1 o 1 1
15 0
Condition Codes: not affected
Description: Provides a way for the processor to relinquish use of

the bus while it waits for an external interrupt.
Having been given a WAIT command, the processor
will not compete for bus use by fetching instructions
or operands from memory. This permits higher trans-
fer rates between a device and memory, since no
processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all in-
structions, the PC points to the next instruction fol-
lowing the WAIT operation. Thus when an interrupt
causes the PC and PS to be pushed onto the pro-
cessor stack, the address of the next instruction
following the WAIT is saved. The exit from the in-
terrupt routine (i.e. execution of an RTI instruction)
will cause resumption of the interrupted process at
the instruction following the WAIT.

4-71

RESET

reset external bus 000005

[o o ey o o o A) s L TR Aoy S J T 1]
1 \ L 1 1 L 1 I 1 1 . n | L L
15 0

Condition Codes: not affected

Description: Sends INIT on the UNIBUS. All devices on the UNI-
BUS are reset to their state at power up.

4-72

Condition Code Operators

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC ScCC

condition code operators 0002XX
o
[0y 500 SR emn e o o e o i T
15 Sy iiid AT U0
Description Set and clear condition code bits. Selectable combinations of

these bits may be cleared or set together. Condition code bits
corresponding to bits in the condition code operator (Bits O-
3) are modified according to the sense of bit 4, the set/clear
bit of the operator. i.e. set the bit specified by bit 0, 1, 2 or 3,
if bit 4 is a 1. Clear corresponding bits if bit 4 =0.

Mnemonic
Operation OP Code
CLC Clear C 000241
CLv Clear V 000242
CLz Clear Z 000244
CLN ClearN 000250
SEC Set C 000261
SEV Set V 000262
SEZ Set Z 000264
SEN SetN 000270
SCC Set all CC's 000277
CCC ClearallCC's 000257
ClearVand C 000243
NOP No Operation 000240

Combinations of the above set or clear operations may be ORed together to form
combined instructions.

473

4-74

CHAPTER 5

PROGRAMMING TECHNIQUES

In order to produce programs which fully utilize the power and flexibility of the
PDP-11, the reader should become familiar with the various programming tech-
niques which are part of the basic design philosophy of the PDP-11. Although it is
possible to program the PDP-11 along traditional lines such as ‘‘accumulator ori-
entation’' this approach does not fully exploit the architecture and instruction set
of the PDP-11.

5.1 THE STACK

A “‘stack’’, as used on the PDP-11, is an area of memory set aside by the pro-
grammer for temporary storage or subroutine/interrupt service linkage. The in-
structions which facilitate ‘‘stack’’ handling are useful features not normally
found in low-cost computers. They allow a program to dynamically establish,
modify, or delete a stack and items on it. The stack uses the ‘last-in, first-out”
concept, that is, various items may be added to a stack in sequential order and re-
trieved or deleted from the stack in reverse order. On the PDP-11, a stack starts
at the highest location reserved for it and expands linearly downward to the low-
est address as items are added to the stack.

HIGH ADDRESSES

LOW ADDRESSES

Figure 5-1: Stack Addresses

The programmer does not need to keep track of the actual locations his data is
being stacked into. This is done automatically through a ‘‘stack pointer.” To keep
track of the last item added to the stack (or ‘‘where we are'' in the stack) a Gen-
eral Register always contains the memory address where the last item is stored in
the stack. In the PDP-11 any register except Register 7 (the Program Counter-PC)
may be used as a ‘‘stack pointer'’ under program control; however, instructions
associated with subroutine linkage and interrupt service automatically use Regis-
ter 6 (R6) as a hardware ‘‘Stack Pointer.”” For this reason R6 is frequently re-
ferred to as the system ‘‘SP.”

B

Stacks in the PDP-11 may be maintained in either full word or byte units. This is
true for a stack pointed to by any register except R6, which must be organized in

full word units only.

007100
007076
007074
007072
007070
007066
007064

007100
007077
007076
007075

WORD STACK

ITEM #1

ITEM #2

ITEM #3

ITEM #4

BYTE STACK

ITEM

#1

ITEM

#2

ITEM

#3

ITEM

#*4

*«—SP 007072

NOTE:BYTES ARE
ARE ARRANGED IN
WORDS AS FOLLOWING:
BYTESS M BYTE 2

BYTE { |BYTE O

- SP 007075

Figure 5-2: Word and Byte Stacks

Items are added to a stack using the autodecrement addressing mode with the
appropriate pointer register. (See Chapter 3 for description of the autoincre-
ment /decrement modes).

This operation is accomplished as follows;
MOV Source,-(SP)

MOVB Source,-(SP)

;MOV Source Word onto the stack

or

;MOVB Source Byte onto the stack

This is called a ‘‘push’ because data is ‘‘pushed onto the stack.”

5:2

|
!
k
’
!
4
3
]
.
!
i

T TRy e e

To remove an item from stack the autoincrement addressing mode with the ap-
propriate SP is employed. This is accomplished in the following manner:

MOV (SP) + ,Destination ;MOV Destination Word off the stack

or

MOVB (SP) + ,Destination ;MOVB Destination Byte off the stack

Removing an item from a stack is called a *‘pop" for ‘‘popping from the stack."
After an item has been ‘‘popped,” its stack location is considered free and avai-
lable for other use. The stack pointer points to the last-used location implying
that the next (lower) location is free. Thus a stack may represent a pool of share-
able temporary storage locations.

HIGH MEMORY

—SP
' [T) -sp €0
Loy 4 E1 le-sP
O O N EMPTY STACK 2.PUSHING A DATUM 3 PUSHING ANOTHER
AREA ONTO THE STACK DATUM ONTO THE
STACKS
EQ E0 S £0
E1 E1 <SP ' E1
€2 -sp Il £3 -sp
4. ANOTHER PUSH 5 POP 6. PUSH
E3
EOQ
Ef -sp
7. POP

Figure 5-3: Illustration of Push and Pop Operations

-

5-3 H

As an example of stack usage consider this situation: a subroutine (SUBR) wants
to use registers 1 and 2, but these registers must be returned to the calling pro-
gram with their contents unchanged. The subroutine could be written as follows:

Address Octal Code Assembler Syntax

076322 010167 SUBR: MOV R1,TEMP1 ;save R1
076324 000074 iy

076326 010267 MOV R2,TEMP2 ;save R2
076330 000072 *

076410 016701 MOV TEMP1, R1 ;Restore R1
076412 000006 *

076414 016702 MOV TEMP2, R2 ;Restore R2
076416 000004 %

076420 000207 RTS PC

076422 000000 TEMP1: O

076424 000000 TEMP2: 0

*Index Constants

Figure 5-4: Register Saving Without the Stack

OR: Using the Stack

Address Octal Code Assembler Syntax
010020 010143 SUBR: MOVRI, ~(R3) ;push R1
010022 010243 MOV R2, ~(R3) ;push R2
010130 012301 MOV (R3) +, R2 :pop R2
010132 012302 MOV (83) +.R1 :pop R1
010134 000207 RTS PC

Note: In this case R3 was used as a Stack Pointer

Figure 5-5: Register Saving using the Stack
The second routine uses four less words of instruction code and two words of
temporary ‘“stack’’ storage. Another routine could use the same stack space at

some !ater point. Thus, the ability to share temporary storage in the form of a
stack is a very economical way to save on memory usage.

5-4

As a further example of stack usage, consider the task of managing an input buf-
fer from a terminal. As characters come in, the terminal user may wish to delete
characters from his line; this is accomplished very easily by maintaining a byte
stack containing the input characters. Whenever a backspace is received a char-
acter is ‘“‘popped" off the stack and ejiminated from consideration. In this ex-
ample, a programmer has the choice of ‘‘popping'’ characters to be eliminated by
using either the MOVB (MOVE BYTE) or INC (INCREMENT) instructions.

001011
001010
001007
001006
001005
001004

INC R3

001003
001002
001001

s|mlziofH|lw|c|o

NI |miZlo|4|lw|lc|o

<rs [oowor |

Figure 5-6: Byte Stack used as a Character Buffer

NOTE that in this case using the increment instruction (INC) is preferable to
MOVB since it would accomplish the task of eliminating the unwanted character
from the stack by readjusting the stack pointer without the need for a destination
location. Also, the stack pointer (SP) used in this example cannot be the system
stack pointer (R6) because R6 may only point to word (even) locations.

5.2 SUBROUTINE LINKAGE

5.2.1 Subroutine Calls

Subroutines provide a facility for maintaining a single copy of a given routine
which can be used in a repetitive manner by other programs located anywhere
else in memory. In order to provide this facility, generalized linkage methods
must be established for the purpose of control transfer and information exchange
between subroutines and calling programs. The PDP-11 instruction set contains
several useful instructions for this purpose.

PDP-11 subroutines are called by using the JSR instruction which has the follow-
ing format.

a general register (R) for linkage

JSR R,SUBR
an entry location (SUBR) for the subroutine —J

5-5

When a JSR is executed, the contents of the linkage register are saved on the sys-
tem R6 stack as if a MOV reg,~(SP) had been performed. Then the same register
is loaded with the memory address following the JSR instruction (the contents of
the current PC) and a jump is made to the entry location specified.

002000
001776
001774

BEFORE

Address Assembler Syntax Octal Code
001000 JSRR5',SUBR 004567
001002 index constant for SUBR 000060
001064 SUBR: MOV AB Olnnmm

Figure 5-7: JSR using R5

AFTER

(RS): 000132 (R5)= 001004
(R6)=001776 (R6)=001774
(PC)=(R7)= 001000 (PC)=(R7)=00106 4
nnnnnn 002000 nnnnnn
mmmmam |+-sp [oo1776 | cot776 mmmmmm
001774 000132 <se [oowrza]
001772

001772

Figure 5-8: JSR

Note that the instruction JSR R6,SUBR is not normally considered to be a mean-
ingful combination.

5.2.2 Argument Transmission
The memory location pointed to by the linkage register of the JSR instruction may
contain arguments or addressses of arguments. These arguments may be ac-
cessed from the subroutine in several ways. Using Register 5 as the linkage regis-
ter, the first argument could be obtained by using the addressing modes in-
dicated by (R5), (R5) + ,X(R5) for actual data, or @(R5) +, etc. for the address of
data. If the autoincrement mode is used, the linkage register is automatically up-
dated to point to the next argument.

Figures 5-9 and 5-10 illustrate two possible methods of argument transmission.

Address Instructions and Data

010400
010402
010404
010406

020306 SUBR:
020310

Figure 5-9; Argument Transmission -

JSR R5,SUBR
Index constant for SUBR

arg #1
arg #2

MOV (R5) + R1
MOV (R5) + R2

5-6

SUBROUTINE CALL
ARGUMENTS

get arg #1
;get arg # 2 Retrieve Arguments
from SUB

Register Autoincrement Mode

Address Instructions and Data

010400 JSR R5,SUBR
010402 index constant for SUBR SUBROUTINE CALL

010404 077722 Address of Arg #1
010406 077724 Address of Arg. #2

010410 077726 Address of Arg. # 3

077722 Arg #1
077724 arg #2 arguments
077726 arg #3

020306 SUBR: MOV @(RS)+,R1 :get arg #1
020301 MOV @(R5) + ,R2 ‘get arg #2

Figure 5-10: Argument Transmission-Register Autoincrement Deferred Mode

Another method of transmitting arguments is to transmit only the address of the
first item by placing this address in a general purpose register. It is not necessary
to have the actual argument list in the same general area as the subroutine call.
Thus a subroutine can be called to work on data located anywhere in memory. In
fact, in many cases, the operations performed by the subroutine can be applied

actually move this data into the subroutine area.

Calling Program: MOV POINTER, R1
JSR PC,SUBR

SUBROUTINE ADD (R1)+,(R1) ;Add item #1 to item #2, place
result in item #2, R1 points
to item # 2 now

etc.
or

ADD (R1),2(R1) ;Same effect as above except that

R1 still points to item #1
etc.

TEM #1 Je—ari | il

ITEM #2

directly to the data located on or pointed to by a stack without the need to ever .

Figure 5-11: Transmitting Stacks as Arguments

5-7

Because the PDP-11 hardware already uses general purpose register R6 to point
to a stack for saving and restoring PC and PS (processor status word) informa-
tion, it is quite convenient to use this same stack to save and restore intermediate
results and to transmit arguments to and from subroutines. Using R6 in this
manner permits extreme flexibility in nesting subroutines and interrupt service
routines.

Since arguments may be obtained from the stack by using some form of register
indexed addressing, it is sometimes useful to save a temporary copy of R6 in
some other register which has already been saved at the beginning of a subrout-
ine. In the previous example R5 may be used to index the arguments while R6 is
free to be incremented and decremented in the course of being used as a stack
pointer. If R6 had been used directly as the base for indexing and not *‘copied’’, it
might be difficult to keep track of the position in the argument list since the base
of the stack would change with every autoincrement/decrement which occurs.

arg #1 arg #1
arg #2 arg #2
SP—+ arg #3 arg #3
but when another item
TO is pushed i 19
arg# 2 is at source arg #2 is at source
-2 (SP) -4(sP)

Figure 5-12: Shifting Indexed Base

However, if the contents of R6 (SP) are saved in R5 before any arguments are
pushed onto the stack, the position relative to R5 would remain constant.

arg # 1 -—RS5 arg #1 <+—R5
SP—f arg #2 arg #2
SP—» arg #3
arg#2 is at 2 (R5) arg #2 is still at 2(R5)

Figure 5-13: Constant Index Base Using ‘‘R6 Copy”’

5.2.3 Subroutine Return

In order to provide for a return from a subroutine to the calling program an RTS
instruction is executed by the subroutine. This instruction should specify the
same register as the JSR used in the subroutine call. When executed, it causes the
register specified to be moved to the PC and the top of the stack to be then placed
in the register specified. Note that if an RTS PC is executed, it has the effect of re-
turning to the address specified on the top of the stack.

Note that the JSR and the JMP Instructions differ in that a linkage register is al-
ways used with a JSR; there is no linkage register with a JMP and no way to re-
turn to the calling program.

When a subroutine finishes, it is necessary to ‘‘clean-up’’ the stack by eliminating
or skipping over the subroutine arguments. One way this can be done is by insist-
ing that the subroutine keep the number of arguments as its first stack item. Re-
turns from subroutines would then involve calculating the amount by which to re-
set the stack pointer, resetting the stack pointer, then restoring the original
contents of the register which was used as the copy of the stack pointer. The PDP-
11/40, however, has a much faster and simpler method of performing these
tasks. The MARK instruction which is stored on a stack in place of ‘‘number of ar-
gument” information may be used to automatically perform these ‘‘clean-up"”
chores.

5.2.4 PDP-11 Subroutine Advantages
There are several advantages to the PDP-11 subroutine calling procedure.

a. arguments can be quickly passed between the calling program and the subr-
outine.

b. if the user has no arguments or the arguments are in a general register or on
the stack the JSR PC,DST mode can be used so that none of the general pur-
pose registers are taken up for linkage.

c. many JSR'’s can be executed without the need to provide any saving procedure
for the linkage information since all linkage information is automatically
pushed onto the stack in sequential order. Returns can simply be made by
automatically popping this information from the stack in the opposite order of
the JSR's.

Such linkage address bookkeeping is called automatic “‘nesting’ of subroutine
calls. This feature enables the programmer to construct fast, efficient linkages in
a simple, flexible manner. It even permits a routine to call itself in those cases
where this is meaningful. Other ramifications will appear after we examine the
PDP-11 interrrupt procedures.

5.3 INTERRUPTS

5.3.1 General Principles

Interrupts are in many respects very similar to subroutine calls. However, they are
forced, rather than controlled, transfers of program execution occurring because
of some external and program-independent event (such as a stroke on the tele-
printer keyboard). Like subroutines, interrupts have linkage information such

5-9

that a return to the interrupted program can be made. More information is ac-
tually necessary for an interrupt transfer than a subroutine transfer because of
the random nature of interrupts. The complete machine state of the program im-
mediately prior to the occurrence of the interrupt must be preserved in order to
return to the program without any noticeable effects. (i.e. was the previous oper-
ation zero or negative, etc.) This information is stored in the Processor Status
Word (PS). Upon interrupt, the contents of the Program Counter (PC) (address of
next instruction) and the PS are automatically pushed onto the R6 system stack.
The effect is the same as if:

MOV PS ,~(SP) : Push PS
MOV R7,~(SP) : Push PC

had been executed.

The new contents of the PC and PS are loaded from two preassigned consecutive
memory locations which are called an “‘interrupt vector''. The actual locations are
chosen by the device interface designer and are located in low memory addresses
of Kernel virtual space (see interrupt vector list, Appendix B). The first word con-
tains the interrupt service routine address (the address of the new program se-
quence) and the second word contains the new PS which will determine the ma-
chine status including the operational mode and register set to be used by the
interrupt service routine. The contents of the interrupt service vector are set un-
der program control.

After the interrupt service routine has been completed, an RTI (return from inter-
rupt) is performed. The two top words of the stack are automatically ““popped"’
and placed in the PC and PS respectively, thus resuming the interrupted pro-
gram.

5.3.2 Nesting

Interrupts can be nested in much the same manner that subroutines are nested.
In fact, it is possible to nest any arbitrary mixture of subroutines and interrupts
without any confusion. By using the RTI and RTS instructions, respectively, the
proper returns are automatic.

SP—+PO

1. Process O is running;
SP is pointing to loca-
tion PO.

PO

2. Interrupt stops process 0 =
with PC = PCO, and Sp=R 50
status = PS O ;starts process 1.

5-10

3. Process 1 uses stack for

PO
temporary storage (TEO, TE1). S0
PCO
TEO
SP—» TE!

(o]}

4. Process 1 interrupted with PC=PC1 PO
and status =PS1; process 2 is started ::Z
TEO
TEN
PS1
SP—s PC 1

(o]

5. Process 2 is running and does a o
JSR R7,A to Subroutine A with -
PE =RPC 2 —
TEA
PSH
PC1H
SP—=» PC2

0

6. Subroutine A is running

and uses stack for o9
temporary storage. £
PCO
TEO
TE(
PS1
PC1
PC2
TAY
SP—» TA2

0o

7. Subroutine A releases the temporary

PO

storage holding TA1 and TA2. 750
PCO
TEO
TE1
PS1
PCA
SP—» BC2
(o]
PO
8. Subroutine A returns control to process ==
2 with an RTS R7,PC is reset to PC2. =7
TEO
EES
PSH
BREc PC1H

9. Process 2 completes with an RTI instruction PO

(dismisses interrupt) PC is reset 550
to PC(1) and statusis reset to PS1; PCO
process 1 resumes. TEO
SP— TES

o

10.Process 1 reieases the temporary PO
storage holding TEO and TE1. B0
SP—e PCO

11.Process 1 completes its operation with SRS

an RTI PC is reset to PCO and status is
reset to PSO. o

Figure 5-14: Nested Interrupt Service Routines and Subroutines

Note that the area of interrupt service programming is intimately involved with
the concept of CPU and device priority levels.

5:12

5.4 REENTRANCY

Further advantages of stack organization become apparent in complex situations
which can arise in program systems that are engaged in the concurrent handling
of several tasks. Such multi-task program environments may range from rela-
tively simple single-user ‘applications which must manage an intermix of 1/0 in-
terrupt service and background computation to large complex multi-programm-
ing systems which manage a very intricate mixture of executive and multi-user
programming situations. In all these applications there is a need for flexibility
and time/memory economy. The use of the stack provides this economy and
flexibility by providing a method for allowing many tasks to use a single copy of
the same routine and a simple, unambiguous method for keeping track of com-
plex program linkages.

The ability to share a single copy of a given program among users or tasks is
called reentrancy. Reentrant program routines differ from ordinary subroutines in
that it is unnecessary for reentrant routines to finish processing a given task be-
fore they can be used by another task. Multiple tasks can be in various stages of
completion in the same routine at any time. Thus the following situation may oc-
cur:

MEMORY

MEMORY
PROGRAM 1

PROGRAM 1 PZS0BROUTINE . A
PROGRAM 2 | SUBROUTINE A = _
PROGRAM 3 PROGRAM 2 [ZSUBROUTINE A

PROGRAM 3 [ZSUBROGTINE A

a

PDP-11 Approach Conventional Approach
Programs 1, 2, and 3 can A separate copy of Subroutine A
share Subroutine A. must be provided for each program.

Figure 5-15: Reentrant Routines

The chief programming distinction between a non-shareable routine and a reen-
trant routine is that the reentrant routine is composed solely of “pure code”, i.e.
it contains only instructions and constants. Thus, a section of program code is re-
entrant (shareable) if and only if it is ‘‘non self-modifying”, that is it contains no
information within it that is subject to modification.

Using reentrant routines, control of a given routine may be shared as illustrated
in Figure 5-16.

REENTRANT
ROUTINE
Q

Figure 5-16: Reentrant Routine Sharing

1. Task A has requested processing by Reentrant Routine Q.

2. Task A temporarily relinquishes control (is interrupted) of Reentrant Routine
Q before it finishes processing.

3. Task B starts processing in the same copy of Reentrant Routine Q.

4. Task B relinquishes control of Reentrant Routine Q at some point in its pro-
cessing.

5. Task A regains control of Reentrant Routine Q and resumes processing from
where it stopped.

The use ot reentrant programming allows many tasks to share frequently used
routines such as device interrupt service routines, ASCII-Binary conversion rou-
tines, etc. In fact, in a multi-user system it is possible for instance, to construct a
reentrant FORTRAN compiler which can be used as a single copy by many user
programs.

As an application of reentrant (shareable) code, consider a data processing pro-
gram which is interrupted while executing a ASClI-to-Binary subroutine which has
been written as a reentrant routine. The same conversion routine is used by the
device service routine. When the device servicing is finished, a return from inter-
rupt (RTI) is executed and execution for the processing program is then resumed
where it left off inside the same ASClI-to-Binary subroutine.

Shareable routines generally result in great memory saving. It is the hardware im-
plemented stack facility of the PDP-11 that makes shareable or reentrant rou-
tines reasonable.

A subroutine may be reentered by a new task before its completion by the pre-
vious task as long as the new execution does not destroy any linkage information
or intermediate results which belong to the previous programs. This usually
amounts to saving the contents of any general purpose registers, to be used and
restoring them upon exit. The choice of whether to save and restore this informa-
tion in the calling program or the subroutine is quite arbitrary and depends on the
particular application. For example in controlled transfer situations (i.e. JSR’s) a
main program which calls a code-conversion utility might save the contents of
registers which it needs and restore them after it has regained control, or the
code conversion routine might save the contents of registers which it uses and re-
store them upon its completion. In the case of interrupt service routines this
save/restore process must be carried out by the service routine itself since the in-
terrupted program has no warning of an impending interrupt. The advantage of

5-14

using the stack to save and restore (i.e. “push’” and ‘“pop"’) this information is

that it permits a program to isolate its instructions and data and thus maintain
its reentrancy.

In the case of a reentrant program which is used in a multi-programming envi-
ronment it is usually necessary to maintain a separate R6 stack for each user al-
though each such stack would be shared by all the tasks of a given user. For ex-
ample, if a reentrant FORTRAN compiler is to be shared between many users,

each time the user is changed, R6 would be set to point to a new user's stack area
as illustrated in Figure 5-17.

USER A STACK
USER B STACK
USER C STACK

Figure 5-17: Multiple R6 Stack

5.5 POSITION INDEPENDENT CODE - PIC

Most programs are written with some direct references to specific addresses, if
only as an offset from an absolute address origin. When it is desired to relocate
these programs in memory, it is necessary to change the address references
and/or the origin assignments. Such programs are constrained to a specifiec set
of locations. However, the PDP-11 architecture permits programs to be con-
structed such that they are not constrained to specific locations. These Position
Independent programs do not directly reference any absolute locations in
memory. Instead all references are ‘‘PC-relative’ i.e. locations are referenced im
terms of offsets from the current location (offsets from the current value of the
Program Counter (PC)). When such a program has been translated to machine

code it will form a program module which can be loaded anywhere in memory as
required.

e ——

Position Independent Code is exceedingly valuable for those utility routines
which may be disk-resident and are subject to loading in a dynamically changing
program environment. The supervisory program may load them anywhere it de-
termines without the need for any relocation parameters since all items remain in
the same positions relative to each other (and thus also to the PC).

e P RS——

Linkages to program routines which have been written in position independent
code (PIC) must still be absolute in some manner. Since these routines can be lo-
cated anywhere in memory there must be some fixed or readily locatable linkage
addresses to facilitate access to these routines. This linkage address may be a
simple pointer located at a fixed address or it may be a complex vector composed
of numerous linkage information items.

5:15

5.6 CO-ROUTINES

In some situations it happens that two program routines are highly interactive.
Using a special case of the JSR instruction i.e. JSR PC,@(R6) + which exchanges
the top element of the Register 6 processor stack and the contents of the Pro- |
gram Counter (PC), two routines may be permitted to swap program control and .
resume operation where they stopped, when recalled. Such routines are called
“co-routines’’. This control swapping is illustrated in Figure 5-18.

Routine #'1 is operating, it then executes:

MOV #PC2,-(R6)

JSR PC,@(R6) + =
with the following results: |
1) PC2 is popped from the stack e l pc2
and the SP autoincremented 7
2) SP is autodecremented and the
old PC (i.e. PC1) is pushed l
3) control is transferred to the Sp—w, PC1 [t
location PC2 (i.e. routine # 2)

Routine # 2 is operating, it then executes:

JSR PC ,@(R6) +

with the result the PC2 is exchanged
for PC1 on the stack and control is
transferred back to routine # 1.

Figure 5-18 - Co-Routine Interaction

5-16

5.7 PROCESSOR TRAPS

Ihere are a series of errors and programming conditions which will
cause the Central Processor to trap to a set of fixed locations. These
include Power Failure, Odd Addressing Errors, Stack Errors, Timeout
Errors, Memory Parity Errors, Memory Management Violations, Floating
Point Processor Exception Traps, Use of Reserved Instructions, Use of
the T bit in the Processor Status Word, and use of the 10T, EMT, and
I'RAP instructions.

5.7.1 Power Failure

Whenever AC power drops below 95 volts for 115v power (190 volts for
230v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save
all volatile information (data in registers), and condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the power up routine to restore the machine to its state prior to power
failure.

5.7.2 0Odd Addressing Errors

This error occurs whenever a program attempts to execute a word instruc-
tion on an odd address (in the middle of a word boundary). The in-
struction is aborted and the CPU traps through location 4.

5.7.3 Time-out Errors

These errors occur when a Master Synchronization pulse is placed on
the UNIBUS and there is no slave pulse within a certain length of time.
This error usually occurs in attempts to address non-existent memory or
peripherals.

The offending instruction is aborted and the processor traps through
location 4.

5.7.4 Reserved Instructions
There is a set of illegal and reserved instructions which cause the pro-
cessor to trap through location 10.

5.7.5 Trap Handling

Appendix B includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc-
curs, the processor saves the PC and PS on the Processor Stack and
begins to execute the trap routine pointed to by the trap vector.

CHAPTER 6

PDP-11/04

6.1 DESCRIPTION

CPU

The PDP-11/04 is a full scale PDP-11 computer that uses MOS memory in
4K to 28K word configurations. The central processor fits on a single
hex module, which is program compatible with the PDP-11/05. It also
provides all of the processing capability of the PDP-11/05 at a signif-
icantly higher speed.

Memory

The MOS memory is implemented with industry standard 4K RAMs and
is offered on a single hex module containing 4K to 16K 16-bit words.
The MOS UNIBUS memory is physically interchangeable with hex SPC
circuit boards and can therefore be installed in any location within the
backplane except the CPU slot. The MOS refresh circuits are contained
on the MOS memory module and have been partitioned on separate
buses to allow battery back-up.

ASCII Console

In order to replace the functions normally controlled through a pro-
grammer’s console, a Read Only Memory (ROM) program has been in-
cluded, which contains routines that replace Load, Examine, Deposit, and
Start functions. This feature gives full programmer’s console capability
when a serial I/O terminal, (VT50, LA36 or Teletype) and controller are
added to the system. Bootstrap commands can alsc be generated from
the ASCII keyboard.

ROM Hardware Diagnostic

Another program in ROM automatically tests certain CPU instructions
to verify if a diagnostic can be loaded or a bootstrap operation per-
formed. It also tests all of memory (up to 28K) just prior to calling a
bootstrap program.

Hardware Bootstraps

Bootstrap programs for all major peripheral devices (paper tape,
magnetic tape, moving head disks, and floppy disks) are implemented
in ROM. The system device can be booted by 3 techniques:

1. Automatically on a power up condition.

2. Manually by depressing the “BOOT’’ switch on the operator’s console.

3. Manually by issuing a bootstrap command from an ASCI!l terminal
device.

Packaging
The PDP-11/04 is available in 2 basic configurations, both of which use
514" of front panel height; see Figure 6-1. There is slot independence,

6-1

meaning memory and small peripheral controllers can plug in anywhere 1
they fit. But the CPU always terminates one end of the UNIBUS and nor-
mally plugs into the top slot.

OPTION DIAGRAM OF INCLUDED EXPANSION
NUMBER CPU ASSEMBLY EQUIPMENT CAPABILITY
11/04- AA 11/04 CPU 15U
(AB) 4K OR 8K MOS 2 SPC
SPACE FOR 1 SU
11/04- BA
(BB) TERMINATOR 5 e
BOOTSTRAP
MEMORY (4K OR 8K)
CPU
TERMINATOR
11/04-AC
(AD) 11/04 CPU 7 SPC
4K OR 8K MOS
SPACE FOR 7 SPC
(OR 2 SPC & 5 HEX)
11/04-BC
(BD) BOOTSTRAP
MEMORY(4K OR 8K)
CPU

Figure 6-1 PDP-11/04 CPU Diagrams

6.2 PDP-11/04 OPTIONS

Programmer’s Console
The PDP-11/04 programmer’s console provides all of the functions pres-
ently offered with the PDP-11/05. The programmer’s console interfaces
to the UNIBUS via a quad SPC module. The programmer’s console con-
tains a seven segment LED display as well as a 19-key pad for generating
the console commands. :

Battery Back-Up ‘
The battery back-up option will provide a refresh current to 32K word:
of memory for up to 2 hours. The battery backup unit is physically
mounted outside of the processor box to facilitate battery maintenanci

6-2

6.3 SPECIFICATIONS

Components Parts
A basic PDP-11/04 includes:

a) central processor

b) 4K words of MOS memory

c) 514" CPU mounting box with slides

d) power supply

e) hardware bootstrap loader

f) ROM hardware diagnostic

g) operator’s panel

h) jacks for external battery backup

i) expansion space for additional memory or peripheral controllers
j) ASCII console program

Computer PDP-11/04
Memory

Min size: 4K words
Max size: 28K

Type: MOS

Access time: 500 nsec, typ
Cycle time: 725 nsec, typ

Central Processor

Instructions: basic set
Programming modes: 1

No. of general registers: 8

Auto hardware interrupts: yes

Auto software interrupts: no
Power fail/auto restart: yes

Mechanical & Environmental

Size (HxWxD): 514" x 19" x 25"

Weight: 45 |bs.

Input power: 115 VAC +10%, 47-63 Hz, or
230 VAC +109%,, 47-63 Hz
350W

Operating temperature: 10°C to 50°C

Relative humidity: 209% to 959%,, non-condensing

Optional Equipment
Real-time clock
Programmer’s console
1/O serial interface
Battery backup

6-3

6.4 OPERATOR’S CONSOLE OPERATION
A minimal function operator’'s console is offered as the standard front

panel on the PDP-11/04. The following switches and indicators are
provided:

Power control switch
Bootstrap loader switch
Halt/continue switch
DC-On indicator

RUN indicator
BATTERY LO indicator

The Continue switch is a new feature on operators’ consoles. It enables

continuation after a programmed or inadvertent halt, without having to
re-boot.

6-4

CHAPTER 7

PDP-11/05 & 11/10

7.1 DESCRIPTION

The PDP-11/05 and PDP-11/10 are small PDP-11 computers that use
core memory in 4K to 28K word configurations. Front panel height is
either 514" or 1014, for the PDP-11/05 and 1014” for the PDP-11/10.
The computers are available in 3 basic configurations, see Figure 7-1.

7.2 INTERNAL CPU EQUIPMENT

SCL, Serial Communication Line Interface

The SCL interface is contained on one of the CPU modules. The inter-
face is program compatible with the DL11-A, DEC’s standard serial in-
terface option, and can handle speeds up to 2,400 baud. Specifically it
can control:

DECwriter, LA36, up to 30 characters/sec
Alpha-numeric Terminal, VT50, up to 240 characters/sec
Teletype, up to 10 characters/sec

The SCL interface is not connected to the UNIBUS; it is connected to the
CPU by an internal bus. This means that there can be no NPR transfers
on the SCL.

LTC, Line Time Clock

The clock is contained on one of the CPU modules. It is program com-
patible with the KW11-L, DEC's standard line clock option. The clock
senses the 50 or 60 Hz line frequency for internal timing.

Power Supply

The power supply can be operated from either 115 VAC or 230 VAC by a
simple change of the power control (within the power supply assembly).
The power supply has enough capacity to handle the CPU, 8K of memory,
plus additional memory and optional equipment that can mount within
the CPU assembly unit.

7-1

7.3 SPECIFICATIONS

Computer

Main Market

Memory
Min size:
Max size:
Type:
Parity:

Central Processor:
Instructions:
Programming modes:

No. of general registers:
Auto hardware interrupts:
Auto software interrupts:
Power fail/auto restart:

Mechanical & Environmental
Front panel height:

Weight:

Input power:

Operating temperature:
Relative humidity:

Equipment

1/0 serial interface:
Console terminal:
Line frequency clock:

Hardware bootstrap:
Programmer’s console:
Extended arithmetic:

Floating point:
Stack limit address:
Memory management:

Cabinet:

PDP-11/05 PDP-11/10

(when different)
OEM End User

4K words 8K
28K

core

no

basic set
1

8

yes

no

yes

54" or 104" 105"
50 Ibs or 110 Ibs 110 Ibs
115 VAC +109%,, 47-63 Hz, or
230 VAC *+109%, 47-63 Hz
500W

10°C to 50°C

209%, to 95%, non-condensing

yes
optional
yes

optional
yes
optional

software only
400 (fixed)
not available

optional

7-2

OPTION
NUMBER

11/05- KA
(KB)

11/05-LA
(LB)

11705 -NC
(ND)

11710 -NC
(ND)

11710 - SC
(sD)

11/10-SC
(SD)

Figure 7-1

DIAGRAM OF INCLUDED EXPANSION
CPU ASSEMBLY EQUIPMENT CAPABILITY
11/05 CPU 4 SPC
4K OR 8K CORE
4SPC
MEMORY (4K OR 8K)
CPU
11705 CPU 3su
8K CORE
SPACE FOR 3 SU
8K MEMORY
(SPACE FOR ANOTHER 8K}
CPU
11/05 CPU 3 SU
16K CORE 3 SPC
SPACE FOR 3 SU
3 SPC
CPU & 16K MEMORY

PDP-11/05 & 11/10 CPU Diagrams

7-4

7.4 PDP-11/05 & 11/10 CONSOLE OPERATION

7.4.1 Console Elements
The PDP-11/05 and 11/10 Operator’s Console provides the following
facilities:

Power Switch (with a key lock)

ADDRESS/DATA display (16 bits)

-
Switch Register (16 switches)
RUN status light

Control Switches
LOAD ADRS (Load Address)
EXAM (Examine)
CONT (Continue)
ENABLE/HALT
START
DEP (Deposit)

7.4.2 Console Switches

POWER [OFF Power to the processor is off.
POWER Power to the processor is on and all con-
sole Switches function normally.
PANEL LOCK Power to the processor is on, but the
L Control Switches are disabled. The Switch
Register is still functional.
Switch Register Used to manually load data or an address
Caslin="1) into the processor.
(Down = 0)

Control Switches

LOAD ADRS Transfers contents of the Switch Register
(depress to activate) to the processor.

The entered data is displayed in the
ADDRESS/DATA lights, and provides an
address for EXAM, DEP, and START.

7-5

EXAM

CONT
(depress and release
to activate)

ENABLE/HALT {ENABLE

HALT

START
(depress and release
to activate)

Causes the contents of the selected
location to be displayed in the ADDRESS/
DATA lights. While the EXAM switch is
depressed, the address to be examined
is displayed. The data itself is displayed
when the switch is released.

If the EXAM switch is depressed again,
the contents of the next sequential word
location are displayed. (Bus Address is
incremented automatically). If an odd ad-
dress is specified, the next lower even
address word will be displayed (except
for the general registers, RO to R7). If a
non-existent memory address is specified,
no UNIBUS operation will be performed,
and the processor will have to be ini-
tialized by setting the ENABLE/HALT
switch to HALT and then depressing the
START switch.

If the CPU is in the RUN state, the
EXAM switch has ‘no effect.

Causes the processor to continue oper-
ation from the point at which it had
stopped. The switch has no effect when
the CPU is in the RUN state. If the
program had stopped, this switch pro-
vides a restart without a System Reset.

Allows the CPU to perform normal oper-
ations under program control.

Causes the CPU to stop after the cur-
rent instruction. All interrupts and traps
will be executed prior to halting. Depres-
sing and then releasing the CONT switch
will now cause execution of a single
instruction.

If the program had stopped, depressing
the START switch causes a System Reset
signal to occur and loads the Program
Counter with the address contained in
the switches when LOAD ADRS was last
depressed. The program will then con-
tinue only if the ENABLE/HALT switch is
in ENABLE.

WARNING:

If the CPU is in the RUN state and the
POWER switch is not in PANEL LOCK,
the START switch will interrupt the pro-
gram. The program may even have to be
reloaded.

7-6

DEP

7.4.3 Indicators
RUN

ADDRESS/DATA

Deposits contents of the Switch Register
into the selected location. While the DEP
switch is raised, the address to be loaded
is displayed. When the switch is released,
the data deposited is displayed.

If the DEP switch is raised again, the
Switch Register contents (which were
probably modified) are loaded into the
next word location. (Bus Address is in-
cremented automatically). If an odd ad-
dress is specified, the next lower even
address word will be used (except for
the general registers, RO to R7). If a
non-existent memory address is specified,
no UNIBUS operation will be completed
and the processor will have to be ini-
tialized by setting the ENABLE/HALT
switch to HALT and then depressing the
START switch.

Lights when the processor is executing
instructions. It is off when the processor
is halted. It is on during a WAIT instruc-
tion and UNIBUS cycles.

Displays either addresses or data, as spe-
cified in Table 7-1.

7-7

Table 7-1

Information Displayed in ADDRESS/DATA Lights

Condition

ADDRESS/DATA Display

POWER On

Load Address

Examine

Deposit

Ty,

RUN Light On

Program Halt

Program
Execution

ENABLE/HALT in
HALT

ENABLE/HALT in
ENABLE

LOAD ADRS switch
is depressed

EXAM switch is
depressed

EXAM switch is
released

DEP switch is raised

DEP switch is
released

ENABLE/HALT in
HALT

HALT instruction
executed

Double Bus Error
(two successive
attempts to access
non-existent memory
or improper odd
byte address)

START switch is
depressed

CONT switch is
depressed

Contents of location 24.

Undefined. Depends on con-
tents of memory.

Contents of Switch Register.

Address of location that is to
be examined.

Contents of selected address.

Address of location that is to
be loaded.

Contents of Switch Register
(which is the data deposited).
Undefined.

Address of instruction to be
executed when CONT switch
is activated.

(same as above)

Contents of Program Counter
(R7) at time when double bus
error occurred.

Address of last Load address.

Address of instruction to be
executed.

7-8

CHAPTER 8

PDP-11/35 & 11/40

8.1 DESCRIPTION

The PDP-11/35 and PDP-11/40 computer systems can contain up to
124K words of mernory. The PDP-11/35 is housed in a 10%"” or 21" high
unit; the PDP-11/40 is in a 21” high unit. The computers in 21" units
include a cabinet.

The PDP-11/35 and 11/40 are the systems-level computers that allow
increased memory expansion, memory relocation and protection, faster
processing speeds, and an array of special hardware options for more
powerful operations.

8.2 PDP-11/35 & 11/40 OPTIONS
The central processor is prewired to accept the following options:

Extended Instruction Set, KE11-E
Floating Point, KE11-F

Memory Management, KT11-D
Programmable Stack Limit, KJ11-A
Real Time Clock, KW11-L

1/O Terminal Control, DL11 or LC11

Extended Instruction Set & Floating Point Options

The Extended Instruction Set (EIS) option provides the capability of per-
forming hardware fixed point arithmetic and allows direct implementa-
tion of multiply, divide, and multiple shifting. A double-precision 32-bit
word can be handled.

The Floating Point Unit uses the EIS as a prerequisite. This option en-
ables the execution of 4 special instructions for floating point addition,
subtraction, multiplication, and division. The EIS and Floating Point
hardware provide significant time and coding improvement over com-
parable software routines.

The Floating Point Unit functions as an integral part of the PDP-11 pro-
cessor, not as a bus device.

8-1

Memory Management Option
Memory Management is an advanced memory extension, relocation, and
protection feature which will:

Extend memory space from 28K to 124K words

Allow efficient segmentation of core for multi-user environments
Provide effective protection of memory segments in multi-user en-
vironments

With this option the machine operates in two modes; Kernel and User.
When the machine is in Kernel mode a program has complete control
of the machine; when in User mode the processor is inhibited from exe-
cuting certain instructions and can be denied direct access to the periph-
erals on the system. This hardware feature can be used to provide
complete executive protection in a multi-programming environment. A
software operating system can insure that no user (who is operating in
User mode) can cause a failure (crash) of the entire system. Full con-
trol of the entire system is retained at the console or by an operator
who is in Kernel mode.

Bits 12 through 15 of the Processor Status word, see Figure 8-1, are
used with the Memory Management option. Mode information includes
the present mode, either Kernel or User (bits 15,14) and the mode the
machine was in prior to the last interrupt or trap (bits 13,12).

Stack Limit Option

This option allows program control of the lower limit for permissible
stack addresses. The normal boundary without this option is (400),.
If the program attempts to exceed this limit for stack addresses, an indi-
cation is given to the program by means of a trap.

The Stack Limit option is included with the Memory Management option.

PREVIOUS MODE*®

PRIORITY
CONDITION CODES

CURRENT MODE * J | T

* MODE: 00 = KERNEL } USED ON PDP-11/35 OR PDP-11/40 WiITH
11 : USER THE MEMORY MANAGEMENT OPTION

Figure 8-1 Processor Status Word

8-2

8.3 SPECIFICATIONS

Computer PDP-11/35 PDP-11/40 (when different)
Main Market OEM End User
Memory

Min size: 8K words 16K

Max size: 124K

Type: core]

Parity: optional standard

Central Processor

Instructions: basic set 4 XOR, SOB, MARK, SXT, RTT
Programming modes: 1 std, 2 opt

No. of general registers: 8

Auto hardware interrupts: yes

Auto software interrupts: no

Power fail/auto restart: yes

Mechanical & Environmental

Front panel height: @l e ar 2] 4 214

Weight: 115 VAC + 109, 47-63 Hz, or

Input power: 230 VAC + 109, 47-63 Hz

700W

Operating temperature: 5°C to 50°C

Relative humidity: 209% to 959, non-condensing
Equipment

1/0 serial interface: optional standard

Console terminal: optional standard

Line frequency clock: optional

Hardware bootstrap: optional

Programmer’s console: standard

Extended arithmetic: optional

Floating point: optional

Stack limit address: 400 or programmable (option)

Memory management: option MFPI, MTPI

Cabinet: optional standard

with 104" units

83

OPTION DIAGRAM OF INCLUDED EXPANSION

NUMBER CPU ASSEMBLY EQUIPMENT CAPABILITY
11/35 CPU 15U
R SPACE FOR 1 SU 8K CORE 1 3PC
JB
o (SPACE FOR ANOTHER
16K)
8K MEMORY
1. SPC
CPU
11735 CPU 1SU
o as-sc SPACE FOR 1 SU 16 K CORE 1 5pC
(sD)

(SPACE FOR ANOTHER
16K)

16K MEMORY
2 sPC
cPy

11/40 CPU 55U
11/40- B - 16K PARITY CORE

TERMINAL DLI1-A

TERM. CONT.

SPACE FOR 5 SU TERM, CC

(SPACE FC])bRKANOTHER
16K MEMORY
DL11-A |

CPU

Figure 8-2 PDP-11/35 & 11/40 CPU
Diagrams

8.4 ARITHMETIC OPTIONS (FOR THE 11/35 & 11/40)

8.4.1 GENERAL

Two options which mount in the 11/35 or 11/40 Central Processor as-
sembly unit are described. The Extended Instruction Set (EIS) option
allows extended manipulation of fixed point numbers. The Floating Point
option (which requires the EIS option) enables direct operations on sin-
gle precision 32-bit words.

The options are contained on individual modules that plug into dedi-
cated, prewired slots.

KE11-E EIS option
KE11-F Floating Point option

The basic processor timing is not degraded, and NPR latency is not
affected by the use of these options.

8.4.2 EIS OPTION

The Extended Instruction Set option adds the following instruction
capability:

Mnemonic Instruction Op Code
MUL multiply 070RSS
DIV divide 071RSS
ASH shift arithmetically 072RSS
ASHC arithmetic shift combined 073RSS

The EIS instructions are directly compatible with the larger 11 com-
puters.

The number formats are:

15 14 (]
16-bit single word: Ls] : nowsen 1 #
15 14 0

T
| S HIGH NUMBER F‘AﬁT _]
1 1 1

32-bit double word:

15 (o]
L LOW NJMBER PART]
L 1 1 1 1
S is the sign bit. S = 0 for positive quantities
S =1 for negative quantities; number is in 2’s

complement notation

Interrupts are serviced at the end of an EIS instruction.

8-5

MUL

multiply 070RSS
(e QTR R O !]
F l 1 1 i l g 1 g i k 1 : 5 1 > ik S l) 1 2 1 3
15 9 8 6 5 [4)
Operation: Rvl< R x(src)

R,
Condition Codes: N: set if product is <O; cleared otherwise
Z: set if product is O; cleared otherwise
V: cleared
C: set if the result is less than-2'* or greater than or equal to
2v-1.

Description: The contents of the destination register and source taken as
two's complement integers are multiplied and stored in the

‘ destination register and the succeeding register (if R is even).

If R is odd only the low order product is stored. Assembler

! syntax is : MUL S,R.

(Note that the actual destination is R, Rvl which reduces to

just R when R is odd.)

Example: 16-bit product (R is odd)
CcLC :Clear carry condition code
MOV #400,R1
MUL #10,R1
BCS ERROR :Carry will be set if

;product is less than
:=2" or greater than or equal to 2"
:no significance lost

Before After

(R1) = 000400 (R1) = 004000

Assembler format for all EIS instructions is:
OPR src, R

8-6

DIV

divide O071RSS

feed
FI'.‘:'lo.oxi rlrlr slslslsl 3
15 9 8 6 5 (¢]

Operation: R, Rvl< R, Rvl /(src)

Condition Codes: N: set if quotient <O; cleared otherwise
Z: set if quotient =0; cleared otherwise
V: set if source =0 or if the absolute value of the register is
larger than the absolute value of the source. (In this case the
instruction is aborted because the quotient would exceed 15
bits.)
C: set if divide O attempted; cleared otherwise

Description: The 32-bit two's complement integer in R andRvl is divided
by the source operand. The quotient is left in R; the remain-
der in Rvl. Division will be performed so that the remainder
is of the same sign as the dividend. R must be even.

Example: CLR RO
MOV # 20001,R1
DIV#2,RO

Before After

(RO) = 000000 (RO)=010000 Quotient
(R1) =020001 (R1) =000001 Remainder

87

ASH

shift arithmetically 072RSS
T
Ol et e 2 B
fop B d T T PR R T
15 9 8 65 0
Operation: R< R Shifted arithmetically NN places to right or left

Where NN = low order 6 bits of source
Condition Codes: N: set if result <O; cleared otherwise
Z: set if result =0; cleared otherwise
V: set if sign of register changed during shift; cleared other-
wise
C: loaded from last bit shifted out of register

Description: The contents of the register are shifted right or left the num-
ber of times specified by the shift count. The shift count is
taken as the low order 6 bits of the source operand. This
number ranges from -32 to + 31. Negative is a a right shift
and positive is a left shift.

6 LSB of source : Action in general register
011111 Shift left 31 places
000001 shift left 1 place
111111 shift right 1 place
100000 shift right 32 places
Example: ASH RO, R3
Before After
(R3)=001234 (R3)=012340
(RO)=000003 (RO)=000003

8-8

ASHC

arithmetic shift combined 073RSS
[[0} 1 1 1 0 1 1 G X 5 r [s s s s S S
| e |sezd)] L L ! |]]
15 O =8 6225 (o]

Operation:

Condition Codes:

Description:

R, Rvl<R, Rvl The double word is shifted NN places to the
right or left, where NN = low order six bits of source

N: set if result <O; cleared otherwise

Z: set if result =0; cleared otherwise

V: set if sign bit changes during the shift; cleared otherwise
C: loaded with high order bit when left Shift ; loaded with low
order bit when right shift (loaded with the last bit shifted out
of the 32-bit operand)

The contents of the register and the register ORed with one
are treated as one 32 bit word, R + 1 (bits 0-15) and R (bits
16-31) are shifted right or left the number of times specified
by the shift count. The shift count is taken as the low order 6
bits of the source operand. This number ranges from -32 to
+31. Negative is a right shift and positive is a deft shift.
When the register chosen is an odd number the register
and the register OR’ed with one are the same. In this case the
right shift becomes a rotate (for up to a shift of 16). The 16
bit word is rotated right the number of bits specified by the
shift count.

T
1 1 | ety | 1 Ji | 1 1 1 1 A—I

J16

T
i i
1 L | 1 1 | L 1 1 L L | 1 fi
9]

T
I
o
1 1 | 1 1 | 1 L | I I | I e

8-9

8.4.2 FLOATING POINT OPTION

The Floating Point instructions used with this option are unique to the
PDP-11/35 & 40. However, the OP Codes used do not conflict with any
other instructions.

Mnenomic Instruction Op Code
FADD floating add 07500R
FSUB floating subtract 07501R
FMUL floating multiply 07502R
FDIV floating divide 07503R
The number format is:
15 il 6 0
[T[EXPOI\{ENT | ! FIRACTION (HIGHIPART) J
HIGH ARGUMENT
15 0
[: i FRACTION YiLow PART)] I

LOW ARGUMENT

S = sign of fraction; O for positive, 1 for negative

Exponent = 8 bits for the exponent, in excess (200). notation

Fraction = 23 bits plus 1 hidden bit (all numbers are assumed to be
normalized)

The number format is essentially a sign and magnitude representation.
The format is identical with the 11/45 for single precision numbers.

Fraction

The binary radix point is to the left (in front of bit 6 of the High Argu-
ment), so that the value of the fraction is always less than 1 in magni-
tude. Normalization would always cause the first bit after the radix point
to be a 1, such that the fractional value would be between 14, and 1.
Therefore, this bit can be understood and not be represented directly,
to achieve an extra 1 bit of resolution.

The first bit to the right of the radix point (hidden bit) is always a 1. The
next bit for the fraction is taken from bit 6 of the High Argument.
The result of a Floating Point operation is always rounded away from
zero, increasing the absolute value of the number.

Exponent

The 8-bit Exponent field (bits 14 to 7) allow exponent values between
—128 and +127. Since an excess (200), or (128),, number system is
used, the correspondence between actual values and coded representa-
tion is as follows:

Actual Value Representation
Decimal Octal Binary
+127 377 11 111 111
+1 201 10 000 001
0 200 10 000 000
—1 177 01 111 111
—128 000 00 000 000

8-10

If the actual value of the exponent is equal to —128, meaning a total
value (including the fraction) of less than 2-3, the floating point number
will be assumed to be O, regardless of the sign or fraction bits. The hard-
ware will generate a clean O (a 32-bit word of all zeros).

Example of a Number
+(12)10 = +(1100)2
= +(2% 0 X (.11), [16 X (V5 + Y4) = 12]

S Exponent Fraction

-

representation: 0 10 000 100 /[1000000 0000000000000000
hidden bitis a 1

radix point is understood

Registers

There are no pre-assigned registers for the Floating Point option. A gen-
eral purpose register is used as a pointer to specify a stack address.
The contents of the register are used to locate the operands and answer
for the Floating Point operations as follows:

(R) = High B argument address
(R)+42 = Low B argument address
(R)+4 = High A argument address
(R)+6 = Low A argument address

After the Floating Point operation, the answer is stored on the stack as
follows:

(R)+4 = address for High part of answer
(R)+-6 = address for Low part of answer

where (R) is the original contents of the general register used.

After execution of the instruction, the general register will point to the
High answer, at (R)}-4.

Condition Codes

Condition codes are set or cleared as shown in the Instruction Descrip-
tions, in the next part of this section. If a trap occurs as a function of
a Floating Instruction, the condition codes are re-interpreted as follows:

V =1, if an error occurs
N = 1, if underflow or divide-by-zero
C =1, if divide by zero

Z =10
Vv NG Z
Overflow i 0 0 0
Underflow 1 1 0 (0}
Divide by O 1 1 1 0

Iraps occur through the vector at location 244. A Floating Point instruc-
tion will be aborted if a BR request is issued before the instruction is
near completion. The Program Counter will point to the aborted Floating
instruction so that the Interrupt will look transparent.

Assembler format is: OPR R

INSTRUCTIONS
floating add 07500R
Bl' 1 |l10110I0 0|000[r rﬂ
15 2 o
Operation: [(R)+4, (R)+6]<[(R)+4, (R)+6]+[(R),(R)+2], if
result > 2-%; else [(R)+4, (R)+-6]1<[(R)+4, (R)+6]
Condition Codes: N; set if result < 0; cleared otherwise :
: Z: set if result = 0; cleared otherwise
V: cleared
C: cleared
Description: Adds the A argument to the B argument and stores

the result in the A Argument position on the stack.
If result is less than 2-'%, the destination address
will contain the A argument. General register R is
used as the stack pointer for the operation.

A<A+B

floating subtract 07501R
[0[! 1 1]1 0|l°r0 0100 |[v rﬂ
15 2 o

Operation: [(R)+4, (R)+6]<[(R)+4, (R)+6]—[(R), (R)+2], if

result = 2-1%; else [(R)+-4, (R)+6] <[(R)+4, (R)+6]
Condition Codes: N: set if result < O; cleared otherwise

Z: set if result = O; cleared otherwise

V: cleared

C: cleared
Description: Subtracts the B Argument from the A Argument and

stores the result in the A Argument position on the
stack. If result is less than 2-'8, the destination ad-
dress will contain the A Argument.

A<A—B

8-12

FMUL

floating multiply 07502R
IO 1 1 1 1 (o] 1 (o] l0 o (0] 1 (o] [r r]
1 1 1 " N 1
15 3 2 o

Operation: [(R)+4, (R)+6]<[(R)+4, (R)+6]1X[(R), (R)42], if

result = 2-'%; else [(R)+4, (R)+-6] <[(R)+4, (R)+6]
Condition Codes: N: set if result < O; cleared otherwise

Z: set if result = 0; cleared otherwise

V: cleared

C: cleared
Description: Multiplies the A Argument by the B Argument and

stores the result in the A Argument position on the
stack. If result is less than 2-%, the destination ad-
dress will contain the A argument.

FDIV M
floating divide 07503R
[0‘1 1 |l| oalojo Ol01 ‘I' r]
15 3 2 o]

Operation: [(R)+4, (R)+6]<[(R)+4, (R)+6]/[(R), (R)+2], if

result = 2-'; else [(R)+4, (R)+6]<[(R)+4, (R)+6].
Condition Codes: N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: cleared

C: cleared
Description: Divides the A Argument by the B Argument and

stores the result in the A Argument position on the
stack. If the divisor (B Argument) is equal to zero,
the stack is left untouched. If result is less than
2-18 the destination address will contain the A
argument.

A<A/B

8-13

e

wmAds FI0SNDD

Has ana

@/ 1Tele'e

8-14

8.5 PDP-11/35 & 11/40 CONSOLE OPERATION

8.5.1 Console Elements
The PDP-11/35 & 40 Operator’s Console provides the following facilities:
Power Switch (with a key lock)
ADDRESS Register display (18 bits)
DATA Register display (16 bits)
Switch Register (18 switches)

Status Lights
RUN
PROCESSOR
BUS
CONSOLE
USER
VIRTUAL

Control Switches
LOAD ADRS (Load Address)
EXAM (Examine)
CONT (Continue)
ENABLE/HALT
START
DEP (Deposit)

8.5.2 Status Indicators

RUN Lights when the processor clock is run-
ning. It is off when the processor is wait-
ing for an asynchronous peripheral data
response, or during a RESET instruction.
It is on during a-WAIT or HALT instruction.

PROCESSOR Lights when the processor has control of
the bus.

BUS Lights when the UNIBUS is being used.

CONSOLE Lights when in console mode (manual op-

eration). Machine is stopped and is not
executing the stored program.

USER Lights when the CPU is executing program
instructions in User mode.

VIRTUAL Lights when the ADDRESS Register display
shows the 16-bit Virtual Address.

8-15

8.5.3 Console Switches
POWER OFF
ON

LOCK

Switch Register
(Up=1)
(Down = 0)

Control Switches

LOAD ADRS
(depress to activate)

EXAM
(depress to activate)

CONT
(depress to activate)

ENABLE/HALT | ENABLE

HALT

Power to the processor is off.

Power to the processor is on and all con-
sole switches function normally.

Power to the processor is on, but the Con-
trol Switches are disabled. The Switch
Register is still functional.

Used to manually load data or an address
into the processor.

Transfers contents of the Switch Register
to the Bus Address register.

The resulting Bus Address is displayed in
the ADDRESS Register, and provides an
address for EXAM, DEP, and START. The
LOAD Address is not modified during pro-
gram execution. To restart a program at
the previous Start Location, the START
switch is activated.

Causes the contents of the location speci-
fied by the Bus Address to be displayed in
the DATA Register. If the EXAM switch is
depressed again, the contents of the next
sequential word location are displayed.
(Bus Address is incremented automati-
cally). If an odd address is specified, the
next lower even address word will be dis-
played. If a non-existent memory address
is specified, no UNIBUS operation will be
completed, and contents of the ‘Switch
Register address (777 570) will be dis-
played in the DATA register.

Causes the processor to continue opera-
tion from the point at which it had stopped.
The switch has no effect when the CPU
is in the RUN state. If the program had
stopped, this switch provides a restart
without a System Reset.

Allows the CPU to perform normal opera-
tions under program control.

Causes the CPU to stop. Depressing the
CONT switch will now cause execution of
a single instruction.

8-16

START
(depress to activate)

DEP
(raise to activate)

8.5.4 Displays
ADDRESS Register

DATA Register

If the CPU is in the RUN state, the START
switch causes only system reset.

If the program had stopped, depressing
the START switch causes a System Reset
signal to occur; the program will then
continue only if the ENABLE/HALT switch
is in ENABLE.

Deposits contents of the Switch Register
into the location specified by the Bus Ad-
dress. If the DEP switch is raised again,
the Switch Register contents (which were
probably modified) are located into the
next word location. (Bus Address is incre-
mented automatically). If an odd address
is specified, the next lower even address
word will be used. If a non-existent mem-
ory address is specified, no UNIBUS oper-
ation will be completed, and contents of
the Switch Register address (777 570)
will be displayed in the DATA register.

Displays the address of data just exam-
ined or deposited. During a programmed
HALT or WAIT instruction, the display
shows the next instruction address.

Displays data just examined or deposited.
During HALT, general register RO contents
are displayed. During Single Instruction
operation, the Processor Status word (PS)
is displayed.

8-17

0
o
00

CHAPTER 9

MEMORY MANAGEMENT (FOR THE 11/30 & 11/40)

9.1 GENERAL
9.1.1 Options

This chapter describes the Memory Management option, which mounts
in the 11/35 or 11/40 Central Processor assembly unit. The option pro-
vides the hardware facilities necessary for complete memory manage-
ment and protection. It is designed to be a memory management facility
for systems where the memory size is greater than 28K words and for
multi-user, multi-programming systems where protection and relocation
facilities are necessary.

The Stack Limit option, which is included with the Memory Manage-
ment option, is described at the end of the chapter. The Stack Limit
option allows dynamic adjustment of the lower limit of permissible stack
addresses.

The options are contained on individual modules that plug into dedi-
cated prewired slots.

KT11-D Memory Management option
KJ11-A Stack Limit option

9.1.2 Programming

The Memory Management hardware has been optimized towards a multi-
programming environment and the processor can operate in two modes,
Kernel and User. When in Kernel mode, the program has complete
control and can execute all instructions. Monitors and supervisory pro-
grams would be written in this mode.

When in User Code, the program is prevented from executing certain
instructions that could:

a) cause the modification of the Kernel program.
b) halt the computer.
€) use memory space assigned to the Kernel program.

In a multi-programming environment several user programs would be
resident in memory at any given time. The task of the supervisory pro-
gram would be: control the execution of the various user programs,
manage the allocation of memory and peripheral device resources, and
safeguard the integrity of the system as a whole by careful control of
each user program.

9-1

B

to be ‘“‘re-linked’’; it always appears to be at the same virtual location in
memory.

The virtual address space is divided into eight separate 4K-word pages.
Each page is relocated separately. This is a useful feature in multi-
programmed timesharing systems. It permits a new large program to be
loaded into discontinuous blocks of physical memory.

A page may be as small as 32 words, so that short procedures or data
areas need occupy only as much memory as required. This is a useful
feature in real-time control systems that contain many separate small
tasks. It is also a useful feature for stack and buffer control.

A basic function is to perform memory relocation and provide extended
memory addressing capability for systems with more than 28K of phys-
ical memory. Two sets of page address registers are used to relocate
virtual addresses to physical addresses in memory. These sets are used
as hardware relocation registers that permit several user's programs,
each starting at virtual address O, to reside simultaneously in physical
memory.

9.2.2 Program Relocation

The page address registers are used to determine the starting address
of each relocated program in physical memory. Figure 9-2 shows a sim-
plified example of the relocation concept.

Program A starting address O is relocated by a constant to provide
physical address 6400,.

KD11 PROCESSOR KT11-D OPTION
RELOCATION
VIRTUAL CONSTANT
ADDRESS oA
(VA) = 0 0400
B = 100000
PHYSICAL MEMORY
PROGRAM B
100000
PHYSICAL ADDRESS PROGRAM A
006400
000000

Figure 9-2 Simplified Memory Relocation Example

9-4

i

If the next processor virtual address is 2, the relocation constant will then
cause physical address 6402, which is the second item of Program A, to
be accessed. When Program B is running, the relocation constant is
changed to 100000,. Then, Program B virtual addresses starting at 0, are
relocated to access physical addresses starting at 100000,. Using the ac-
tive page address registers to provide relocation eliminates the need to ‘‘re-
link’” a program each time it is loaded into a different physical memory
location. The program always appears to start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks.
Each block is 32 words in length. Thus, the maximum length of a page
is 4096 (128 x 32) words. Using all of the eight available active page
registers in a set, a maximum program length of 32,768 words can be
accommodated. Each of the eight pages can be relocated anywhere in
the physical memory, as long as each relocated page begins on a
boundary that is a multiple of 32 words. However, for pages that are
smaller then 4K words, only the memory actually allocated to the page
may be accessed.

The relocation example shown in Figure 9-3 illustrates several points
about memory relocation.

a) Although the program appears to be in contiguous address space to
the processor, the 32K-word virtual address space is actually scat-
tered through several separate areas of physical memory. As long
as the total available physical memory space is adequate, a pro-
gram can be loaded. The physical memory space need not be con-
tiguous.

b) Pages may be relocated to higher or lower physical addresses, with
respect to their virtual address ranges. In the example Figure 6-3,
page 1 is relocated to a higher range of physical addresses, page 4
is relocated to a lower range, and page 3 is not relocated at all
(even though its relocation constant is non-zero).

c) All of the pages shown in the example start on 32-word boundaries.

d) Each page is relocated independently. There is no reason why two or
more pages could not be relocated to the same physical memory
space. Using more than one page address register in the set to
access the same space would be one way of providing different
memory access rights to the same data, depending upon which part
of a program was referencing that data.

Memory Units

Block: 32 words

Page: 1 to 128 blocks (32 to 4,096 words)
No. of pages: 8 per mode

Size of relocatable 27,768 words, max (8 x 4,096)
memory:

95

PROCESSOR MEM. MGT.

VIRTUAL ADDRESS PAGE| RELOCATION PHYSICAL MEMORY
RANGES NO. CONSTANT SPACE

160000-177776 7 150000 340000- 357776
140000- 157776 6 000000 330000- 347776
120000 - 137776 & 100000 310000- 327776
100000~ 117776 4 020000 220000- 237776
060000- 077776 3 060000 \ 140000 - 157776
040000-057776 . 2 250000 / 120000- 137776

020000-037776 1 320000 / 040000- 057776
000000-017776 0 400000

Figure 9-3 Relocation of a 32K Word Program into
124K Word Physical Memory

9.3 PROTECTION

A timesharing system performs multiprogramming; it allows several
programs to reside in memory simultaneously, and to operate sequen-
tially. Access to these programs, and the memory space they occupy,
must be strictly defined and controlled. Several types of memory pro-
tection must be afforded a timesharing system. For example:

a) User programs must not be allowed to expand beyond allocated
space, unless authorized by the system.

b) User must be prevented from modifying common subroutines and
algorithms that are resident for all users.

c) Users must be prevented from gaining control of or modifying the
operating system software.

The Memory Management option provides the hardware facilities to im-
plement all of the above types of memory protection.

9.3.1 Inaccessible Memory

Each page has a 2-bit access control key associated with it. The key is
assigned under program control. When the key is set to O, the page is
defined as non-resident. Any attempt by a user program to access a
non-resident page is prevented by an immediate abort. Using this fea-
ture to provide memory protection, only those pages asociated with the
current program are set to legal access keys. The access control keys
of all other program pages are set to O, which prevents illegal memory
references.

9.3.2 Read-Only Memory

The access control key for a page can be set to 2, which allows read
(fetch) memory references to the page, but immediately aborts any at-
tempt to write into that page. This read-only type of memory protection

9-6

can be afforded to pages that contain common data, subroutines, or
shared algorithms. This type of memory protection allows the access
rights to a given information module to be user-dependent. That is, the
access right to a given information module may be varied for different
users by altering the access control key.

A page address register in each of the sets (Kernel and User modes)
may be set up to reference the same physical page in memory and
each may be keyed for different access rights. For example, the User
access control key might be 2 (read-only access), and the Kernel access
control key might be 6 (allowing complete read/write access).

9.3.3 Multiple Address Space

There are two complete separate PAR/PDR sets provided: one set for
Kernel mode and one set for User mode. This affords the timesharing
system with another type of memory protection capability. The mode of
operation is specified by the Processor Status Word current mode field,
or previous mode field, as determined by the current instruction.

Assuming the current mode PS bits are valid, the active page register
sets are enabled as follows:

PS(bits15, 14) PAR/PDR Set Enabled
00 Kernel mode
(1)(1) } lllegal (all references aborted on access)
11 User mode

Thus, a User mode program is relocated by its own PAR/PDR set, as are
Kernel programs. This makes it impossible for a program running in
one mode to accidentally reference space allocated to another mode
when the active page registers are set correctly. For example, a user can-
not transfer to Kernel space. The Kernel mode address space may be re-
served for resident system monitor functions, such as the basic Input/
Output Control routines, memory management trap handlers, and time-
sharing scheduling modules. By dividing the types of timesharing system
programs functionally between the Kernel and User modes, a minimum
amount of space control housekeeping is required as the timeshared
operating system sequences from one user program to the next. For
example, only the User PAR/PDR set needs to be undated as each new
user program is serviced. The two PAR/PDR sets implemented in the
Memory Management Unit option are shown in Figure 9-1.

9.4 ACTIVE PAGE REGISTERS

The Memory Management Unit provides two sets of eight Active Page
Registers (APR). Each APR consists of a Page Address Register (PAR)
and a Page Descriptor Register (PDR). These registers are always used
as a pair and contain all the information required to locate and describe
the current active pages for each mode of operation. One PAR/PDR set
is used in Kernel mode and the other is used in User mode. The cur-
rent mode bits (or in some cases, the previous mode bits) of the Proces-
sor Status Word determine which set will be referenced for each
memory access. A program operating in one mode cannot use the PAR/
PDR sets of the other mode to access memory. Thus, the two sets are

9-7

a key feature in providing a fully protected environment for a time-
shared multi-programming system.

A specific processor 1/O address is assigned to each PAR and PDR of
each set. Table 9:1 is a complete list of address assignment.

NOTE
UNIBUS devices cannot access PARs or PDRs

In a fully-protected multi-programming environment, the implication is
that only a program operating in the Kernel mode would be allowed to
write into the PAR and PDR locations for the purpose of mapping user’s
programs. However, there are no restraints imposed by the logic that
will prevent User mode programs from writing into these registers. The
option of implementing such a feature in the operating system, and thus
explicitly protecting these locations from user’s programs, is available
to the system software designer.

Table 9-1 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers
No. PAR PDR No. PAR PDR
0 772340 772300 0 777640 777600
1 772342 772302 I 777642 777602
2 772344 772304 2 777644 777604
3 772346 772306 3 777646 777606
4 772350 772310 4 777650 777610
5 772352 772312 5 777652 777612
6 772354 772314 6 777654 777614
7 772356 772316 7 777656 777616

6.4.1 Page Address Registers (PAR)

The Page Address Register (PAR), shown in Figure 9-4, contains the
12-bit Page Address Field (PAF) that specifies the base address of the
page.

15 Bateq 0
V777 N
f L .

Figure 9-4 Page Address Register

Bits 15-12 are unused and reserved for possible future use.

The Page Address Register may be alternatively thought of as a relo-
cation constant, or as a base register containing a base address. Either
interpretation indicates the basic function of the Page Address Register
(PAR) in the relocation scheme.

9.4.2 Page Descriptor Registers (PDR)
The Page Descriptor Register (PDR), shown in Figure 9-5, contains in-
formation relative to page expansion, page length, and access control.

9-8

ik 2 Bid i mne siseaidad ol s U eeh
TR e S

Figure 9-5 Page Descriptor Register

Access Control Field (ACF)

This 2-bit field, bits 2 and 1, of the PDR describes the access rights to
this particular page. The access codes or ‘‘keys’ specify the manner
in which a page may be accessed and whether or not a given access
should result in an abort of the current operation. A memory reference
that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non-resident pages, page
length errors, or access violations, such as attempting to write into a
read-only page. Traps are used as an aid in gathering memory manage-
ment information.

In the context of access control, the term ‘“‘write’”’ is used to indicate
the action of any instruction which modifies the contents of any ad-
dressable word. A “‘write” is synonymous with what is usually called a
“store” or “modify’”’ in many computer systems. Table 9-2 lists the ACF
keys and their functions. The ACF is written into the PDR under pro-
gram control.

Table 9-2 Access Control Field Keys

AFC Key Description Function

00 0 Non-resident Abort any attempt to access this
non-resident page

01 2 Resident read-only Abort any attempt to write into
this page.

10 4 (unused) Abort all Accesses.

11 6 Resident read/ write Read or Write allowed. No trap

or abort occurs.

Expansion Direction (ED)

The ED bit located in PDR bit position 3 indicates the authorized direc-
tion in which the page can expand. A logic O in this bit (ED = 0) indi-
cates the page can expand upward from relative zero. A logic 1 in this
bit (ED = 1) indicates the page can expand downward toward relative
zero. The ED bit is written into the PDR under program control. When
the expansion direction is upward (ED = 0), the page length is increased
by adding blocks with higher relative addresses. Upward expansion is
usually specified for program or data pages to add more program or
table space. An example of page expansion upward is shown in Figure 9-6.

When the expansion direction is downward (ED = 1), the page length is
increased by adding blocks with lower relative addresses. Downward
expansion is specified for stack pages so that more stack space can be
added. An example of page expansion downward is shown in Figure 9-7.

9-9

PAR PDR
IOOO 001 111 000} IO 0101001 0000 O 110 q

ORI “T b o
PAF =0170

PLF = 51g =410 =NUMBER OF BLOCKS
ED =0 =UPWARD EXPANSION
ACF = 6 = READ / WRITE

NOTE: i
To specify a block length of 42 for an upward expandable page, write A
highest authorized block no. directly into high byte of PDR. Bit 15 is)
not used because the highest allowable block number is 177,.]

-
BLOCK 1774]
At ANY BLOCK NUMBER
ADDRESS RANGE y s GREATER THAN 41,0(515)
OF POTENTIAL PAGE (VA<12:06> 51g)
EXPANSION BY WILL CAUSE A PAGE
CHANGING THE PLF LENGTH ABORT. g
7 |
BLOCK 524
) ‘
024176
BLOCK 51g
024100
AUTHORIZE PAGE 017276 1
LENGTH = 42; BLOCKS BLOCK 2 1
OR O THRU 51g = 017200 t
524 BLOCKS d
017176 b
BLOCK 1
017100 b
017076 s
BLOCK 0
017000
~——BASE ADDRESS OF PAGE

Figure 9-6 Example of an Upward Expandable Page

9-10

Written Into (W)

The W bit located in PDR bit position 6 indicates whether the page has
been written into since it was loaded into memory. W =1 is affirma-
tive. The W bit is automatically cleared when the PAR or PDR of that
page is written into. It can only be set by the control logic.

In disk swapping and memory overlay applications, the W bit (bit 6) can
be used to determine which pages in memory have been modified by a
user. Those that have been written into must be saved in their current
form. Those that have not been written into (W = 0), need not be saved
and can be overlayed with new pages, if necessary.

Page Length Field (PLF)

The 7-bit PLF located in PDR (bits 14-8) specifies the authorized length
of the page, in 32-word blocks. The PLF holds block numbers from 0 to
177,; thus allowing any page length from 1 to 128, blocks. The PLF
is written in the PDR under program control.

PLF for an Upward Expandable Page

When the page expands upward, the PLF must be set to one less than
the intended number of blocks authorized for that page. For example,
if 52, (42,,) blocks are authorized, the PLF is set to 51, (41,,) (Figure
9-6). The KT11-D hardware compares the virtual address block number,
VA (bits 12-6) with the PLF to determine if the virtual address is within
the authorized page length.

When the virtual address block number is less than or equal to the PLF,
the virtual address is within the authorized page length. If the virtual ad-
dress is greater than the PLF, a page length fault (address too high)
is detected by the hardware and an abort occurs. In this case, the vir-
tual address space legal to the program is non-contiguous because the
three most significant bits of the virtual address are used to select the
PAR/PDR set.

PLF for a Downward Expandable Page

The capability of providing downward expansion for a page is intended
specifically for those pages that are to be used as stacks. In the PDP-11,
a stack starts at the highest location reserved for it and expands down-
ward toward the lowest address as items are added to the stack.

When the page is to be downward expandable, the PLF must be set to
authorize a page length, in blocks, that starts at the highest address of
the page. That is always Block 177,. Refer to Figure 9-7, which shows
an example of a downward expandable page. A page length of 42,
blocks is arbitrarily chosen so that the example can be compared with
the upward expandable example shown in Figure 9-6.

NOTE
The same PAF is used in both examples. This is
done to emphasize that the PAF, as the base
address, always determines the lowest address
of the page, whether it is upward or downward
expandable.

9-11

r-————ACTIVE PAGE REGISTER CONTENTS‘———Dl
PAR PDR

000 001 111 OOOI LO!OIOIIO 0000 1 llOl

e S, e i [T)
PAF = 0170 -—————‘ J
PLF =1264 =8610

ED=1= DOWNWARD EXPANSION

To specify page length for a downward expandable page, write comple-
ment of blocks required into high byte of PDR.

In this example, a 42-block page is required.
PLF is derived as follows:

42, = 52, two’'s complement = 126,.

036776
BLOCK 177y
036700

036676
BLOCK 1765
036600

AUTHORIZED PAGE 036576
LENGTH = 42)5 BLOCKS BLOCK 1758
036500

0311676
BLOCK 126g
0.

311600

mocx 125, ,/ Z

7' ////////
BLOCK 1245
’///

A BLOCK NUMBER
REFERENCE LESS

THAN 1268
(VA<12:06>LESS THAN 1265)
WILL CAUSE A PAGE
LENGTH ABORT.

B

ADDRESS RANGE
OF POTENTIAL PAGE
EXPANSION BY
CHANGING THE PLF

// ‘
BLOCK 10
25 i
«///';’///’
/BLOCK //
Y,

~

BASE ADDRESS OF PAGE

Figure 9-7 Example of a Downward Expandable Page

The calculations for complementing the number of blocks required to
obtain the PLF is as follows:

MAXIMUM BLOCK NO. MINUS REQUIRED LENGTH EQUALS PLF
i L 52, = 125,
107 L Yo - 85,,

9.5 VIRTUAL & PHYSICAL ADDRESSES
The Memory Management Unit is located between the Central Processor

Unit and the UNIBUS address lines. Once installed, the Processor ceases

to supply address information to the Unibus. Instead, addresses are
sent to the Memory Management Unit where they are either transferred
without change or relocated by various constants computed within the
Memory Management Unit.

9.5.1 Construction of a Physical Address

The basic information needed for the construction of a Physical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
6-8, and the appropriate APR set.

I APF] OF]
1 1 n n 1

ACTIVE PAGE FIELD DISPLACEMENT FIELD

Figure 9-8 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Active Page Registers (APRO-APR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to
4K words (2'3 = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 9-9.

12 6 5 0
T
BN DIB]
h "

BLOCK NUMBER DISPLACEMENT IN BLOCKS

Figure 9-9. Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block (DIB). This 6-bit field contains the dis-
placement within the block referred to by the Block Number.

9-13

The remainder of the information needed to construct the Physical Ad-
dress comes from-the 12-bit Page Address Field (PAF) (part of the Active
Page Register) and specifies the starting address of the memory which
that APR describes. The PAF is actually a block number in the physical
memory, e.g. PAF = 3 indicates a starting address of 96, (3 X 32 = 96)
words in physical memory.

The formation of a physical address takes 150 ns.

The formation of the Physical Address is illustrated in Figure 9-10.

APF l BLOCK NO I D18 IX%S
L i
0
PAGE ADDRESS FIELD J :EC‘EII\SEP;\GG
s n
lv—“' :
7 ‘ 6 5 [
[PHYSICAL BLOCK NO. } ______ { o18 1'3'34??%
L s n

L
(DISPLACEMENT IN BLOCKS)

Figure 9-10 Construction of a Physical Address

The logical sequence involved in constructing a Physical Address is as
follows:

1. Select a set of Active Page Registers depending on current mode.

2. The Active Page Field of the Virtual Address is used to select an
Active Page Register (APRO-APR7).

3. The Page Address Field of the selected Active Page Register con-
tains the starting address of the currently active page as a block
number in physical memory.

4, The Block Number from the Virtual Address is added to the block
number from the Page Address Field to yield the number of the
block in physical memory which will contain the Physical Address
being constructed.

5. The Displacement in Block from the Displacement Field of the Virtual
Address is joined to the Physical Block Number to yield a true 18-bit
Physical Address.

9.5.2 Determining the Program Physical Address

A 16-bit virtual address can specify up to 32K words, in the range from
0 to 177776, (word boundaries are even octal numbers). The three
most significant virtual address bits designate the PAR/PDR set to be
referenced during page address relocation. Table 9-3 lists the virtual
address ranges that specify each of the PAR/PDR sets.

9-14

Table 9-3 Relating Virtual Address to PAR/PDR Set

Virtual Address Range PAR/PDR Set

000000-17776
020000-37776
040000-57776
060000-77776
100000-117776
120000-137776
140000-157776
160000-177776

NOOALWNRO

NOTE

Any use of page lengths less than 4K words

causes holes to be left in the virtual address

‘space.
9.6 STATUS REGISTERS
Aborts generated by the hardware are vectored through Kernel virtual
location 250. Status Registers #0 and #2 (#1 is used by the PDP-
11/45) are used to determine why the abort occurred. Note that an
abort to a location which is itself an invalid address will cause another
abort. Thus the Kernel program must insure that Kernel Virtual Address
10 is mapped into a valid address, otherwise a loop will occur which
will require console intervention.
9.6.1 Status Register 0 (SRO)
SRO contains abort error flags, memory management enable, plus other
essential information required by an operating system to recover from
an abort or service a memory management trap. The SRO format is
shown in Figure 9-11. Its address is 777 572.

1 7 6 5 4 3 ! 0

15 14 B2 9 8

NN /// R/ iaaR
ABOR!—NON-RESIDENT——*‘T 1 I
ABORT-PAGE LENGTH ERROR
ABORT-READ ONLY

ACCESS VIOLATION
MAINTENANCE MODE
MODE

PAGE NUMBER
ENABLE MANAGEMENT

Figure 9-11 Format of Status Register #0 (SRO)

Bits 15-13 are the abort flags. They may be considered to be in a
“priority queue” in that ‘‘flags to the right’ are less significant and
should be ignored. For example, a “non-resident’”’ abort service routine
would ignore page length and access control flags. A ‘‘page length"
abort service routine would ignore an access control fault.
NOTE

Bit 15, 14, or 13, when set (abort conditions)

cause the logic to freeze the contents of SRO

bits 1 to 6 and status register SR2. This is done

to facilitate recovery from the abort.

9-15

i

Bits 15-13 are enabled when an address is being relocated. This im-
plies that either SRO, bit O is equal to 1 (KT11-D operating) or that
SRO, bit 8, is equal to 1 and the memory reference is the final one of
a destination calculation (maintenance/destination mode).

Note that SRO bits O and 8 can be set under program control to pro-
vide meaningful memory management control information. However,
information written into all other bits is not meaningful. Only that in-
formation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
memory management unit. Setting bits 15-13 under program control
will not cause traps to occur. These bits, however, must be reset to O
after an abort or trap has occurred in order to resume monitoring
memory management.

Abort-Nonresident

Bit 15 is the ‘““Abort-Nonresident” bit. It is set by attempting to access
a page with an access control field (ACF) key equal to O or 4 and
setting PS (bits 15, 14) to an illegal mode.

Abort—Page Length

Bit 14 is the “Abort-Page Length’ bit. It is set by attempting to access
a location in a page with a block number (virtual address bits 12-6) that
is outside the area authorized by the Page Length Field (PFL) of the
PDR for that page.

Abort-Read Only
Bit 13 is the “Abort-Read Only’’ bit. It is set by attempting to write in a
“Read-Only”’ page having an access key of 2.

NOTE
There are no restrictions that any abort bits
could not be set simultaneously by the same
access attempt.

Maintenance/ Destination Mode

Bit 8 specifies maintenance use of the Memory Management Unit. It is
used for diagnostic purposes. For the instructions used in the initial
diagnostic program, bit 8 is set so that only the final destination refer-
ence is relocated. It is useful to prove the capability of relocating
addresses.

Mode of Operation

Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with
the page causing the abort. (Kernel = 00, User — 11). These bits are
controlled by the logic that decodes current and previous mode bits of
the PS.

Page Number

Bits 3-1 contain the page number of reference. Pages, like blocks, are
numbered from O upwards. The page number bit is used by the error
recovery routine to identify the page being accessed if an abort occurs.

Enable KT11-D
Bit O is the ““Enable KT11-D"' bit. When it is set to 1, all addresses are

9-16

relocated and protected by the memory management unit. When bit O
is set to 0, the memory management unit is disabled and addresses are
neither relocated nor protected.

9.6.2 Status Register 2 (SR2)

SR2 is loaded with the 16-bit Virtual Address (VA) at the beginning of
each instruction fetch but is not updated if the instruction fetch fails.
SR2 is read only; a write attempt will not modify its contents. SR2 is
the Virtual Address Program Counter. Upon an abort, the result of SRO
bits 15, 14, or 13 being set, will freeze SR2 until the SRO abort flags are
cleared. The address of SR2 is 777 576.

15 0

= ADDRESS
[16-BIT VIRTUAL ADDRESS ‘I 777576

Figure 9-12 Format of Status Register 2(SR2)

9.7 INSTRUCTIONS

Memory Management provides the ability to communicate between two
spaces, as determined by the current and previous modes of the Pro-
cessor Status word (PS).

Mnemonic Instruction Op Code

MEPI move from previous instruction space 0065SS
MTPI move to previous instruction space 0066DD

These instructions are directly compatible with the larger 11 computers.

MFPI

move from previous instruction space 0065SS
15 6 5 0
l 0 i (] 0 0 . 1 : 1 : 0 i 1 (o] 1 s : s ; s i s 1 s TI
Operation: (temp) «(src)
1 (SP) «(temp)

Condition Codes: N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pushes a word onto the current stack
from an address in previous space, Processor Status
(bits 13, 12). The source address is computed using
the current registers and memory map.

— 1D
Example: MFPI @ (R2) I;goo > g(7)526

The execution of this instruction causes the contents of (relative)
37526 of the previous address space to be pushed onto the current
stack as determined by the PS (bits 15, 14).

9-18

MTPI

move to previous instruction space 0066DD
' 15)) 0
[0 ; 0 0 . 0 ; 1 o 1 ; 0 : 1 4 1) 0 d 3 d ; d ; d i d TI
Operation: (temp) «<(SP)
(dst) «(temp)

Condition Codes: N: set if the sourse <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared
C: unaffected

Description: This instruction pops a word off the current stack i
determined by PS (bits 15, 14) and stores that word 1;
into an address in previous space PS (bits 13, 12). |
The destination address is computed using the cur-
rent registers and memory map. An example is as
follows:

R2 = 1000
Example: MTPl @ (R2) 1000 = 37526

The execution of this instruction causes the top word of the current
stack to get stored into the (relative) 37526 of the previous address |
space. |

9-19

MTPI AND MFPI, MODE 0, REGISTER 6 ARE UNIQUE IN THAT THESE
INSTRUCTIONS ENABLE COMMUNICATIONS TO AND FROM THE PRE-
VIOUS USER STACK.

; MFPI, MODE 0, NOT REGISTER 6

MOV #KM+PUM, PSW ; KMODE, PREV USER

MOV #-—1, —2(6) ; MOVE —1 on kernel stack —2
CLR %0

INC @ # SRO ; ENABLE KT

MFPI ¢40 ; —(KSP) <-RO CONTENTS

The —1 in the kernel stack is now replaced by the contents of RO which
is 0.

; MFPI, MODE 0, REGISTER 6
MOV #UM<-PUM, PSW

CLR %6 ; SET R16=0

MOV #KM1PUM, PSW ; K MODE, PREV USER
MOV #_1, _2 (6)

INC @#SRO ; ENABLE KT

MFPI %6 ; —(KSP)<R16 CONTENTS

The —1 in the kernel stack is now replaced by the contents of R16
(user stack pointer which is 0).

To obtain info from the user stack if the status is set to kernel mode,
prev user, two steps are needed.

MFPI o,6 ; get contents of R16—user pointer
MFPI = @(6)+ ; get user pointer from kernel stack
; use address obtained to get data
; from user mode using the prev
; mode

The desired data from the user stack is now in the kernel stack and has
replaced the user stack address.

9-20

; MTPI, MODE 0O , NOT REGISTER 6

MOV #KM+PUM, PSW ; KERNEL MODE, PREV USES
MOV #TAGX, (6) ; PUT NEW PC ON STACK
INC @#SRO ; ENABLE KT
MTPI o7 ; %7 < (6)+
HLT : ERROR

TA6X:CLR @ #SRO ; DISABLE KT

The new PC is popped off the current stack and since this is mode O and
not register 6 the destination is register 7.

; MTPI, MODE 0, REGISTER 6

MOV #UM--PUM, PSW ; user mode, Prev User

CLR 946 ; set user SP—=0 (R16)

MOV #KM-+PUM, PSW ; Kernel mode, prev user
MOV #-1, —(6) ; MOVE —1 into K stack (R6)
INC @ # SRO ; Enable KT

MTPI %6 ; %16 <(6)4

The O in R16 is now replaced with —1 from the contents of the kernel
stack.

To place info on the user stack if the status is set to kernel mode, prev
user mode, 3 separate steps are needed.

MFPI 94,6 ; Get content of R16=user pointer

MOV #DATA, —(6) ; but data on current stack

MTPI @(6)+ ; @(6)-+ [final address relocated] «
(R6)+

The data desired is obtained from the kernel stack then the destination
address is obtained from the kernel stack and relocated through the pre-
vious mode.

9-21

Mode Description

In Kernel mode the operating program has unrestricted use of the
machine. The program can map users’ programs anywhere in core and
thus explicitly protect key areas (including the device registers and the
Processor Status word) from the User operating environment.

In User mode a program is inhibited from executing a HALT instruction
and the processor will trap through location 10 if an attempt is made
to execute this instruction. A RESET instruction results in execution of
a NOP (no-operation) instruction.

There are two stacks called the Kernel Stack and the User Stack, used
by the central processor when operating in either the Kernel or User
mode, respectively.

Stack Limit violations are disabled in User mode. Stack protection is
provided by memory protect features.

Interrupt Conditions

The Memory Management Unit relocates all addresses. Thus, when Man-
agement is enabled, all trap, abort, and interrupt vectors are considered
to be in Kernel mode Virtual Address Space. When a vectored transfer
occurs, control is transferred according to a new Program Counter (PC)
‘and Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Active Page Register Set.

When a trap, abort, or interrupt occurs the ‘“push’ of the old PC, old PS
is to the User/Kernel R6 stack specified by CPU mode bits 15, 14 of the
new PS in the vector (00 = Kernel, 11 = User). The CPU mode bits
also determine the new APR set. In this manner it is possible for a
Kernel mode program to have complete control over service assignments
for all interrupt conditions, since the interrupt vector is located in Kernel
space. The Kernel program may assign the service of some of these con-
ditions to a User mode program by simply setting the CPU ntode bits
of the new PS in the vector to return control to the appropriate mode.

User Processor Status (PS) operates as follows:

User Traps, Explicit
PS Bits User RTI, RTT Interrupts PS Access
Cond. Codes (3-0) loaded from loaded from =
stack vector
Trap (4) loaded from loaded from cannot be
stack vector changed
Priority (7-5) cannot be loaded from o
changed vector
Previous (13-12) cannot be copied from 2
changed PS (15, 14)
Current (15-14) cannot be loaded from &
changed vector

* Explicit operations can be made if the Processor Status is mapped in
User space.

9-22

9.8 STACK LIMIT OPTION

This option allows program control of the lower limit for permissible
stack addresses. This limit may be varied in increments of (400), bytes
or (200), words, up to a maximum address of 177 400 (almost the top
of a 32K memory).

The normal boundary for stack addresses is 400. The Stack Limit option
allows this lower limit to be raised, providing more address space for
interrupt vectors or other data that should not be destroyed by the
program.

There is a Stack Limit Register, with the following format:

15

[. .)

The Stack Limit Register can be addressed as a word at location 777774,
or as a byte at location 777775. The register is accessible to the proces-
sor and console, but not to any bus device.

I'he 8 bits, 15 through 8, contain the stack limit information. These bits
are cleared by System Reset, Console Start, or the RESET instruction.
The lower 8 bits are not used. Bit 8 corresponds to a value of (400),
or (256),,.

Stack Limit Violations

When instructions cause a stack address to exceed (go slower than) a
limit set by the programmable Stack Limit Register, a Stack Violation
occurs. There is a Yellow Zone (grace area) of 16 words below the Stack
Limit which provides a warning to the program so that corrective steps
can be taken. Operations that cause a Yellow Zone Violation are com-
pleted, then a bus error trap is effected. The error trap, which itself uses
the stack, executes without causing an additional violation, unless the
stack has entered the Red Zone.

A Red Zone Violation is a Fatal Stack Error. (Odd stack or non-existent
stack are the other Fatal Stack Errors.) When detected, the operation
causing the error is aborted, the stack is repositioned to address 4, and
a bus error occurs. The old PC and PS are pushed into location O and 2,
and the new PC and PS are taken from locations 4 and 6.

Stack Limit Addresses

The contents of the Stack Limit Register (SL) are compared to the stack
address to determine if a violation has occurred. The least significant
bit of the register (bit 8) has a value of (400),. The determination of
the violation zones is as follows:

Yellow Zone = (SL) + (340 through 377), execute, then trap

Red Zone < (SL) + (337), abort, then trap to lo-
cation 4

If the Stack Limit Register contents were zero:
Yellow Zone = 340 through 377
Red Zone = 000 through 337

9-23

L e S R < -~ r e e ¥ -~ o

9-24

10.1

The Central Processing Unit has a cycle time of 300 nsec and performs
all arithmetic and logical operations required in the system. A Floating
Point Processor (described in Chapter 12) mounts integrally into the
Central Processor as does a Memory Management Unit which provides a
full memory management facility through relocation and protection (des-
cribed in Chapter 11). See Figure 10-1.

The PDP-11/45 hardware has been optimized towards a multi-program-
ming environment and the processor therefore operates in three ‘modes
(Kernel, Supervisor, and User) and has two sets of General Registers.

DESCRIPTION
The PDP-11/45 is a medium scale general purpose computer designed
around the basic architecture of all PDP-11 family machines.

CHAPTER 10

PDP-11/45

S R R BT D o o Tl o vy el g Y. g e, S - o 0 {0 SV -
] 1
A 1
UNIBUS >
T T
| 1
| |
i UNIBUS 1
| PRIORITY | MEMORY | | DISK
| ARBITRATION |
UNIT I
! I
lise sy e el I
1 1FoaTinG | ARITHMETIC (-~ MEVORY | !
| ! POINT -+ MANAGEMENT ! !
JPROCESSOR] LOGICAL F VAN
[S UNIT L x:[l_’l"T i I
1 S e |
. i .
! |
UNIBUS T >
T 22 il T
]
! SOLID i
| STATE i
| MEMORY :
1
L PDP-11/45 CENTRAL PROCESSOR 4

Figure 10-1 PDP-11/45 System Block Diagram

10-1

The central processor performs all arithmetic and logical operations re-
quired in the system. It also acts as the arbitration unit for UNIBUS
control by regulating bus requests and transferring control of the bus to
the requesting device with the highest priority.

The central processor contains arithmetic and control logic for a wide
range of operations. These include high-speed fixed point arithmetic with
hardware multiply and divide, extensive test and branch operations, and
other control operations. It also provides room for the addition of the
high-speed Floating Point Processor, and Memory Management Unit.

The machine operates in three modes: Kernel, Supervisor, and User.
When the machine is in Kernel mode a program has complete control of
the machine; when the machine is in any other mode the processor is
inhibited from executing certain instructions and can be denied direct
access to the perpiherals on the system. This hardware feature can be
used to provide complete executive protection in a multi-programming
environment.

The central processor contains 16 general registers which can be used
as accumulators, index registers, or as stack pointers. Stacks are ex-
tremely useful for nesting programs, creating re-entrant coding, and as
temporary storage where a Last-In First-Out structure is desirable. A spe-
cial instruction “MARK’” is provided to further facilitate re-entrant pro-
gramming. One of the general registers is used as the PDP-11/45’s pro-
gram counter. Three others are used as Processor Stack Pointers, one
for each operational mode.

The CPU is directly connected to the high-speed memories as well as to
the general purpose registers and the UNIBUS and UNIBUS Priority Ar-
bitration Unit.

Figure 10-2 illustrates the data paths in the CPU.

CENTRAL PROCESSOR ORGANIZATION

$ >

UNIBUS
PRIORITY PROCESSOR STATUS WORD CORE | % ** S
ARBITRATION
UNIT

MEMORY ARITHMETIC
AND
MANAGEMENT o

b PROCESSOR

e

16
GENERAL
REGISTERS

‘soLiD SOLID FLOATING
STATE STATE POINT
MEMORY MEMORY PROCESSOR

Figure 10-2 Central Processor Data Paths
10-2

The CPU performs all of the computer’s computation and logic opera-
tions in a parallel binary mode through step by step execution of indi-
vidual instructions. The instructions are stored in either core or solid
state memory.

General Registers
The general registers (see Figure 10-3) can be used for a variety of
purposes; the uses varying with requirements.

GENERAL RO RO GENERAL
REGISTER REGISTER
SET 1 R1 R SET @

R2 R2

R3 R3

R4 R4

RS R5

SUPERVISOR KERNEL USER
STACK POINTER STACK POINTER STACK POINTER

Cowr P

PROGRAM
COUNTER

Figure 10-3 The General Registers

R7 is used as the machine’s program counter (PC) and contains the ad-
dress of the next instruction to be executed. It is a general register
normally used only for addressing purposes and not as an accumulator
for arithmetic operations.

The R6 register is normally used as the Processor Stack Pointer indicat-
ing the last entry in the appropriate stack (a common temporary storage
area with ‘“Last-In First-Out” characteristics). (For information on the
pfogramming uses of stacks, please refer to Chapter 5.) The three stacks
are called the Kernel Stack, the Supervisor Stack, and the User Stack.
When the Central Processor is operating in Kernel mode it uses the
Kernel Stack, in Supervisor mode, the Supervisor Stack, and in User
mode, the User Stack. When an interrupt or trap occurs, the PDP-11/45
automatically saves its current status on the Processor Stack selected
by the service routine. This stack-based architecture facilitates reentrant
programming.

The remaining 12 registers are divided into two sets of unrestricted regis-

ters, RO-R5. The current register set in operation is determined by the
Processor Status Word.

10-3

The two sets of registers can be used to increase the speed of real-time
data handling or facilitate multi-programming. The six registers in General
Register Set O could each be used as an accumulator and/or index
register for a real-time task or device, or as general registers for a Kernel =
or Supervisor mode program. General Register Set 1 could be used by
the remaining programs or User mode programs. The Supervisor can?‘
therefore protect its general registers and stack from User programs, or
other parts of the Supervisor. ;

Processor Status Word

15 14 13 12 11 10 8 7 5 4 3 2 1 0

L [’ I NOT USED [PRIORITY] 17 l N [Z I \%] C]
CURRENTMODE‘
PREVIOUS MODE *

GENERAL REGISTER
SET(0,1)
* MODE: 00=KERNEL(USED ONLY WITH MEMORY MANAGEMENT)
01=SUPERVISOR
11=USER

Figure 10-4 Processor Status Word

The Processor Status Word, located at location 777776, contains infor-
mation on the current status of the PDP-11/45. See Figure 10-4. This
information includes the register set currently in use; current processor
priority; current and previous operational modes; the condition codes
describing the results of the last instruction; and an indicator for detect-
ing the execution of an instruction to be trapped during program debug-
ging.

Modes
Mode information includes the present mode, either User, Supervisor, or {
Kernel (bits 15, 14); the mode the machine was in prior to the last in-
terrupt or trap (bits 13, 12); and which register set (General Register Set 4
0 or 1) is currently being used (bit 11).

The three modes permit a fully protected environment for a multi-pro-
gramming system by providing the user with three distinct sets of
Processor Stacks and Memory Management Registers for memory map-
ping. In all modes except Kernel a program is inhibited from executing
a ““HALT" instruction and the processor will trap through location 4 if
an attempt is made to execute this instruction. Furthermore, the proces=
sor will ignore the “RESET”” and ‘‘SPL"” instructions. In Kernel mode, :‘.
processor will execute all instructions. ¢

A program operating in Kernel mode can map users’ programs anywhere
in core and thus explicitly protect key areas (including the devices regis:
ters and the Processor Status Word) from the User operating environ:
ment.

10-4

Processor Priority

The Central Processor operates at any of eight levels of priority, 0-7.
When the CPU is operating at level 7 an external device cannot interrupt
it with a request for service. The Central Processor might be operating at
a lower priority than the priority of the external device’s request in order
for the interruption to take effect. The current priority is maintained in
the processor status word (bits 5-7). The 8 processor levels provide an
effective interrupt mask, which can be dynamically altered through use
of the Set Priority Level (SPL) instruction which is described in Chapter
4 and which can only be used by the Kernel. This instruction allows a
Kernel mode program to alter the Central Processor’s priority without
affecting the rest of the Processor Status Word.

Stack Limit Register

All PDP-11's have a Stack Overflow Boundary at location 400. The Kernel
Stack Boundary, in the PDP-11/45 is a variable boundary set through
the Stack Limit Register found in location 777775.

Once the Kernel stack exceeds its boundary, the Processor will complete
the current instruction and then trap to location 4 (Yellow or Warning
Stack Violation). If, for some reason, the program persists beyond the
16-word limit, the processor will abort the offending instruction, set the
stack pointer (R6) to 4 and trap to location 4 (Red or Fatal Stack Viola-
tion). A description of these traps is contained in Appendix A.

Floating Point Processor

The PDP-11/45 Floating Point Processor fits integrally into the Central
Processor. It provides a supplemental instruction set for performing
single and double precision floating point arithmetic operations and float-
ing-integer conversions in parallel with the CPU. It is described in
Chapter 12.

10.2 MEMORY

Memory is the primary storage medium for instructions and data. Three
types are available for the PDP-11/45:

SOLID STATE:

Bipolar Memory with a cycle time of 300 nsec.

MOS Memory with a cycle time of 495 nsec.

CORE:

Magnetic Core Memory with a cycle time of 980 ns, access at 360
ns (450 ns at the UNIBUS).

Any system can be expanded from the basic 8K or 16K words to 124K
words in increments of 8K words. The system can be configured with
various mixtures of the three types of memory, with a maximum limit of
32K words of Solid State Memory.

10-5

Solid State Memory

The Central Processor communicates directly with the MOS and Bipolar

memories through a very high speed data path which is internal to the
PDP-11/45 processor system. The CPU can control up to two independ- -
ent Solid State Memory controllers, each of which can have from one to

four 4K word increments of MOS memory (16K words) per controller,
or one 4K word increment of Bipolar memory per controller. Each con-

troller can handle MOS or Bipolar memory but not a mixture of the two.

The user can therefore have a total of 32K of MOS, or 8K of Bipolar,

or 16K of MOS and 4K of Bipolar.

Each controller has dual ports and provides one interface to the CPU
and another to a second UNIBUS. See Figure 10-5.

i il

G 8K CORE | |8k core | | 8K core
MEMORY MEMORY MEMORY

UNIBUS 2 >

SOLID SOLID
STATE STATE
CONTROL CONTROL

I I ;
e i o 1

SSM= SOLID STATE MEMORY MATRIX (4K MOS OR 1K BIPOLAR)

Figure 10-5 Memory Configuration

There are two UNIBUSes on the PDP-11/45 but in a single process:
environment the second UNIBUS is generally connected into the fi

and becomes part of it. The existence of a second UNIBUS becomes si
nificant where a high speed device would like to directly access the sol
state memory. A device using the second UNIBUS must include a U

BUS Priority Arbitration Unit, and the bus thus lends itself to multi-p
cessor environments. See Figure 10-6. ¥

10-6

e =

PDP-11/45] CORE CORE

< UNIBUS 2 >
STATE E
MEMORY ARl

Figure 10-6 Multiprocessor Use of the Second UNIBUS

The UNIBUS and data path to the Solid State Memory are independent.
While the Central Processor is operating on data in one Solid State Mem-
ory controller through the direct data path, any device could be using the
UNIBUS to transfer information to core, to another device, or to the
other Solid State Memory Controlier. This autonomy significantly in-
creases the throughput of the system.

Memory Retention
MOS memory bits have a capacitance which is charged to denote a 1
and uncharged to denote a 0. The entire MOS memory must be refreshed
periodically, or the data will be lost. On the PDP-11/45, 1/32nd of the
memory is refreshed every 60 microseconds. This process consumes
only one solid state memory cycle.

The power required to refresh MOS memory is significantly less than that
required for operation of the memory. Bipolar memory, on the other
hand, does not require a refresh cycle but does require the same power
to retain information as to operate.

Core Memory
The Central Processor communicates with core memory through the
UNIBUS.

Each memory bank operates independently from other banks through its
own controller which interfaces directly to the UNIBUS. Core memory
can be continuously attached to the UNIBUS until the system contains
a total of 124K (126,976 words) of memory.

An external device may use the UNIBUS to read or write core memory
completely independent of, and simultaneously with the Central Pro-
cessor's access of solid state memory. Furthermore, core memory and
solid state memory may be used by the processor interchangeably.

10-7

10.3 PROCESSOR TRAPS

There are a series of errors and programming conditions which will cause
the Central Processor to trap to a set of fixed locations. These include
Power Failure, Odd Addressing Errors, Stack Errors, Timeout Errors,
Memory Parity Errors, Memory Management Violations, Floating Point
Processor Exception Traps, Use of Reserved Instructions, Use of the T
bit in the Processor Status Word, and use of the IOT, EMT, and TRAP
instructions.

Stack Errors, Memory Parity Errors, and the T bit Trap have already
been discussed in this chapter. Memory Management Violations and
Floating Point Exception Traps are described in Chapters 6 and 7
respectively. The 10T, EMT, and TRAP instructions are described in
Chapter 4.

Power Failure

Whenever AC power drops below 95 volts for 110v power (190 volts for
220v) or outside a limit of 47 to 63 Hz, as measured by DC power, the
power fail sequence is initiated. The Central Processor automatically
traps to location 24 and the power fail program has 2 msec. to save all
volatile information (data in registers), and to condition peripherals for
power fail.

When power is restored the processor traps to location 24 and executes
the poweér up routine to restore the machine to its state prior to power
failure.

Odd Addressing Errors

This error occurs whenever a program attempts to execute a word in-
struction on an odd address (in the middle of a word boundary). The
instruction is aborted and-the CPU traps through location 4.

Time-out Errors

These errors occur when a Master Synchronization pulse is placed on the
UNIBUS and there is no slave pulse within 5 to 10 usec. This error usu-
ally occurs in attempts to address non-existent memory or peripherals.

The offending instruction is aborted and the processor traps through
location 4.

Reserved Instructions
There is a set of illegal and reserved instructions which cause the proces-
sor to trap through Location 10. The set is fully described in Appendix C.

Trap Handling

Appendix A includes a list of the reserved Trap Vector locations, and
System Error Definitions which cause processor traps. When a trap oc-
curs, the processor follows the same procedure for traps as it does for
interrupts (saving the PC and PS on the new Processor Stack etc....).

In cases where traps and interrupts occur concurrently, the processor
will service the conditions according to the priority sequence shown in
Table 10-1.

10-8

Console Flag

Odd Addressing Error
Fatal Stack Violations (Red)

Memory Management Violations

Timeout Errors

Parity Errors

Floating Point Processor Transfer Request
Memory Management Traps

Warning Stack Violation (Yellow)

Power Failure

Processor Priority level 7

Floating Point Exception Trap

PIR 7

BR 7

PIR 1

Processor O

Table 10-1 Processor Service Hierarchy

10-9

10.4 MULTIPROGRAMMING

The PDP-11/45's architecture with its three modes of operation, its
two sets of general registers, its Memory Management capability and its
Program Interrupt Request facility provides an ideal environment for
multi-programming systems. '

In any multi-programming system there must be some method of trans-
ferring information and control between programs operating in the same
or different modes. The PDP-11/45 provides the user with these com-
munication paths. ‘

Control Information

Control is passed inwards (User, Supervisor, Kernel) by all traps and
interrupts. All trap and interrupt vectors are located in Kernel virtual
space. Thus all traps and interrupts pass through Kernel space to pick
up their new PC and PS and determine the new mode of processing.

Control is passed outwards (Kernel, Supervisor, User) by the RTI and
RTT instructions (described in Chapter 4).

Data ¢
Data is transferred between modes by four instructions: Move From Pre-
vious Instruction space (MFPI), Move From Previous Data Space (MFPD), i
Move To Previous Instruction space (MTPI) and Move To Previous Data
space (MTPD). There are four instructions rather than two as Memory
Management distinguishes between instructions and data. The instruc- s
tions are fully described in Chapter 4. However, it should be noted that =

these instructions have been designed to allow data transfers to be

under the control of the innermost mode (Kernel, Supervisor, User)
program and not the outermost, thus providing protection of an inner
program from an outer.

Processor Status Word

The PDP 11/45 protects the PS from implicit references by Supervisor
and User programs which could result in damage to an inner level
program.

A program operating in Kernel mode can perform any manipulation of
the PS. Programs operating at outer levels (Supervisor and User) are
inhibited from changing bits 5-7 (the Processor’s Priority). They are
also restricted in their treatment of bits 15, 14 (Current Mode), bits 13,
12 (Previous Mode), and bit 11 Register Set); these bits may only be
set, they are only cleared by an interrupt or trap.

Thus, a programmer can pass control outwards through the RTI and
RTT instructions to set bits in the mode fields of his PS. To move in-
wards, however, bits must be cleared and he must, therefore, issue a
trap or interrupt.)

The Kernel can further protect the PS from explicit references (Move data ‘
to location 777776—the PS) through Memory Management. y

10-10

10.5 SPECIFICATIONS
Computer
Main Market

Memory
Min size:
Max size:
Type:
Parity:

Central Processor
Instructions:

Programming modes:

No. of general registers:

Auto hardware interrupts:
Auto software interrupts:
Power fail/auto restart:

Mechanical & Environmental
Front panel height:
Input power:

Operating temperature:
Relative humidity:

Equipment

1/0 serial interface:
Console terminal:
Line frequency clock:

Hardware bootstrap:
Programmer’s console:
Extended arithmetic:

Floating point:
Stack limit address:
Memory management:

Cabinet:

Additional Instructions

PDP-11/45

OEM & End User

16K

124K

bipolar, MOS, core
optional

basic set + XOR, SOB, MARK, SXT,
RTT, MUL, DIV, ASH, ASHC, SPL

3
16
yes
yes
yes

311[
230 VAC *=10%, 47 to 63 Hz

10°C to 50°C
20% to 959%,, non-condensing

standard
standard
optional

optional
standard
standard

optional
optional
optional

standard

The PDP-11/45 implements the following instructions:

MUL multiply
DIV divide

ASH shift arithmetically
ASHC arithmetic shift combined

These instructions, which are standard with the PDP-11/45 but optional

with the PDP-11/35 and 11/40, are described in chapter 8, pages 8-6

to 8-9 .

10-11

Notes
1. CPU Fastbus activity does not degrade data transfer speed of either

bus, except when both buses are simultaneously accessing the same
MS11 control board.

. If there are two MS11 controls in a CPU, transfers on one bus to one
control do not interact with transfers on the other bus to the other
control.

3. UNIBUS transfers to core memory do not interact with Fastbus trans-

fers to an MS11 control, i.e., the UNIBUS can have NPR transfers at
a rate greater than one million words per second to interleaved core
memory while simultaneously the CPU can be executing programs
out of solid state memory at a data transfer rate of either:

a) 2 million words per second for MOS memory

b) 3 million words per second for bipolar memory.

Thus the maximum 11/45 system data transfer speed is:

a) 3 million words per second for MOS memory or:

b) 4 million words per second for bipolar memory.

. The two MS11 solid state memory controls are connected to a single
Unibus (Unibus-B) that can be easily separated from the 11/45
CPU Unibus (Unibus-A) by removing a simple jumper module, thus
facilitating dual unibus systems. Unibus B does not have its own

Unibus arbitration control logic, thus a second CPU is required for
other than NPR transfers from a single device.

10-12

9|0su0) s.Jojesad(Q WoLISAS G-OT 924n3i4

ViV NN M3anS MISN SIISEW FShvd

10-13

H31s0d Avs

Bad/ads saav

CaNdSHOT 0 TINH3E

. = Utisons | Umeny

10.6 CONSOLE OPERATION

The PDP-11/45 System Operator’'s Console is designed for convenient
system control. A complete set of function switches and display indi-
cators provide comprehensive status monitoring and control facilities.

The System Operator’s Console is illustrated in Figure 10-5.

10.6.1 CONSOLE ELEMENTS

The PDP-11/45 System Operator's Console provides the following
facilities:

1) A System Key Switch (OFF/ON/LOCK)

2) A bank of 7 indicator lights, indicating the following Central Processor
states: RUN, PAUSE, MASTER(UNIBUS), USER, SUPERVISOR, KER-
NEL, DATA.

3) An 18-bit Address Register display
4) An Addressing Error indicator light (ADRS ERR)
5) A 16-bit Data Register display
6) An 18-bit Switch Register
7) Control knobs
a) Address Display Select
1. USER | VIRTUAL
. USER D VIRTUAL
. SUPERVISOR | VIRTUAL
. SUPERVISOR D VIRTUAL
. KERNEL I VIRTUAL
. KERNEL D VIRTUAL
. PROGRAM PHYSICAL
8. CONSOLE PHYSICAL
‘b) Data Display Select
1. DATA PATHS
2. BUS REGISTER {
3. FPP wADRS.CPU nADRS.
4. DISPLAY REGISTER

NOoO s WwN

10-14

8) Control Switches

a) LOAD ADRS (Load Address)

b) EXAM (Examine)
€) CONT (Continue)
d) ENABLE/HALT

€) S-INST/S-BUS CYCLE (Single Instruction/Single Bus Cycle)

f) START
8) DEPOSIT

h) REG EXAM (Register Examine)
i) REG DEPOSIT (Register Deposit)

10.6.2 SYSTEM POWER SWITCH

The System Power Switch controls Central Processor power as follows:

OFF

POWER

PANEL LOCK

Power off for CPU.
Solid-State Memory still receives power
in order to insure data retention.

Power ON for CPU—normal use all
console controls operable.

Power ON for CPU.
All console controls not operable ex-
cept switch register.

Note: Since the theory of operation of high speed solid state memory
involves the retention of a capacitive charge, it is essential that power
be continually supplied in order to insure full data retention during those
periods when the CPU power is OFF. When this facility is not required,
Memory Power may be discontinued by flipping the Master Power switch
in the rear of the CPU mounting cabinet to OFF.

10.6.3 CENTRAL PROCESSOR STATE INDICATORS
This bank of indicator lights shows the current major system state as

follows:

RUN

PAUSE

The CPU is execuling program instruc-
tions. If the instruction being executed
is a WAIT instruction, the RUN light
will be on. The CPU will proceed from
the WAIT on receipt of an external in-
terrupt, or on console intervention.

The CPU is inactive because:

1) The current instruction execution
has been completed as far as possible
without more data from the UNIBUS
and the CPU is waiting to regain con-

10-15

MASTER

USER

SUPERVISOR

KERNEL

DATA

trol of the UNIBUS (UNIBUS master-
ship) (see MASTER state.)

OR
2) The CPU has been HALTed from the
System Operator’s Console.

The CPU is in control of the UNIBUS
(UNIBUS Master). The CPU relin-
quishes control of the UNIBUS during
DMA and NPR data transfers.

The CPU is executing program instruc-
tions in USER mode. When the Mem-
ory Management Unit is enabled all
address references are in USER Virtual
Address Space

The CPU is executing program instruc-
tions in SUPERVISOR mode. When the
Memory Management Unit is enabled,
all address references are in SUPER-
VISOR Virtual Addressing space.

The CPU is executing program instruc- -
tions in KERNEL mode. When the Mem-
ory Management Unit is enabled, all
address references are in KERNEL Vir-
tual Addressing space.

If on, the last memory reference was
to D address space in the current CPU
mode. If a 0, the last memory refer-
ence was to | address space in the
current CPU mode.

10.6.4 ADDRESS DISPLAY REGISTER

The Address Display Register is primarily a software development and
maintenance aid. The contents of this 18-bit indicator are controlled by
the Address Select knob as follows:

VIRTUAL

PROGRAM PHYSICAL

The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled, otherwise
it indicates the true 16-bit Physical
Address. Bits 17 and 16 will be off un-
less the Memory Management Unit is
disabled AND the current address ref-
erences some UNIBUS device register
in the uppermost 4K of basic address
space (i.e. 28K-32K).

The Address Display Register indicates 4
the current address reference as a true
18-bit Physical Address.

10-16

CONSOLE PHYSICAL

1. Non-existent memory

Select knob as follows:

DATA PATHS

BUS REGISTER

FPP wADRS.CPU uADRS.

DISPLAY

10.6.7 SWITCH REGISTER

1) Control Switches

The Address Display Register indicates
the current address reference as a 16-
bit Virtual Address when the Memory
Management Unit is enabled otherwise
it indicates the true 16-bit Physical
Address.

Bits 17 and 16 indicate the contents
of corresponding bits of the Switch
Register as of the last LOAD ADRS
console operation.

10.6.5 ADDRESSING ERROR DISPLAY

This 1-bit display indicates the occurrence of any addressing errors.
The following address references are invalid:

2. Access Control violations

3. Unassigned memory pages
(See chapter 6: Memory Management)
10.6.6 DATA DISPLAY REGISTER

The Data Display Register is primarily a hardware maintenance facility.
The contents of this 16-bit indicator are controlled by the Data Display

The Data Display Register indicates the
current output of the PDP-11/45 Arith-
metic/ Logical Unit subsystem.

The Data Display Register indicates the
current output of the PDP-11/45 CPU
(UNIBUS |, Il and the EXPRESS BUS).

The Data Display Register indicates the
current ROM address, FPP control
micro-program (bits 15-8), and the
CPU control micro-program (bits 7-0).

The Data Display Register indicates the
current contents of the 16-bit write-
only ‘“‘Switch Register’” located at
Physical Address 777570. This register
is generally used to display diagnostic
information, although it can be used
for any meaningful purpose.

The functions of this 18-bit bank of switches are determined by:

2) Address Display Select knob

10-17

These functions will be described in the next section along with the
appropriate control switch.

Note that the current setting of the Switch Register may be read under
program control from a read-only register at Physical Address 777570.

10.6.8 CONTROL SWITCHES

LOAD ADRS (Load Address)

When the LOAD ADRS switch is depressed the contents of the Switch
Register are loaded into the CPU Bus Address Register and displayed
in the Address Display Register lights. If the Memory Management Unit
is disabled the address displayed is the true Physical Address.

If the Memory Management Unit is enabled the interpretation of the
address indicated by the Switch Register is determined by the Address
Display Select knob.

Note that the LOAD ADRS function does not distinguish between PRO-
GRAM PHYSICAL and CONSOLE PHYSICAL.

EXAM (Examine)
Depressing the EXAM switch causes the contents of the current location
specified in the CPU Bus Address Register to be displayed in the DATA
Display Register.

Depressing the EXAM switch again causes a EXAM-STEP operation to
occur. The result is the same as the EXAM except that the contents
of the CPU Bus Address Register are incremented by two before the
current location has been selected for display. An EXAM-STEP will not
cross a 32K memory block boundary.

An EXAM operation which causes an ADRS ERR (Addressing Error) must
be corrected by performing a new LOAD ADRS operation with a valid
address.

REG EXAM (Register Examine) :
Depressing the REG EXAM switch causes the contents of the General
Purpose Register specified by the low order five bits of the bus address y
register to be displayed in the Data Display Register.

The Switch Register is interpreted as follows:

Contents Register Displayed

0-5 General Registers 0-5 (set 0)
6 Kernel Mode Register 6

7 Program Counter

10,—15, General Register 0-5 (set 1)
16, Supervisor Mode Register 6
17, User Mode Register R6
CONT (Continue)

Depressing the CONT switch causes the CPU to resume executing in-

10-18 '

structions or bus cycles at the address specified in the Program
Counter (Register 7-(PC)). The CONT switch has no effect when the
CPU is in RUN state.

The function of the CONT switch is modified by the setting of the
ENABLE/HALT and S/INST-S/BUS cycles switches as follows:

ENABLE (up) CPU resumes normal operation under
program control.
HALT (down) A. S/INST (up)—CPU executes next

instruction then stops.

B. S/BUS cycle (down)—CPU executes
next address reference then stops.
ENABLE/HALT

The ENABLE/HALT switch is a two-position switch with the following
functions:

ENABLE (up) The CPU is able to perform normal
operations under program control.
HALT (down) The CPU is stopped and is only op-

erable by the console switches.

The setting of the ENABLE/HALT switch modifies the function of the
CONTINUE (8.8.4) and START (8.8.7) switches.

S/INST—S/BUS CYCLE (Single Instruction/Single Bus Cycle)

The S/INST-S/BUS CYCLE switch effects only the operation of the CON-
TINUE switch as described in section 8.8.4. This switch has no effect
on any switches when the ENABLE/HALT switch is set to ENABLE.

START

The functions of the START switch depend upon the setting of the
ENABLE/HALT switch as follows:

ENABLE Depressing the START switch causes
the CPU to start executing program in-
structions at the address specified by
the current contents of the CPU Bus
Address Register. The START switch
has no effect when the CPU is in RUN
state.

HALT Depressing the START switch causes a
console reset to occur.

DEP (Deposit)
Raising the DEP switch causes the current contents of the Switch Reg-

ister to be deposited into the address specified by the current contents
of the CPU Bus Address Register.

Raising the DEP switch again causes a DEP-STEP operation to occur.
The result is the same as the DEP except that the contents of the CPU
Bus Address Register are incremented by two before the current location

10-19

has been selected for the deposit operation. A DEP-STEP will not cross
a 32K memory block boundary.

A DEP operation which causes an ADRS ERR (addressing Error) is
aborted and must be corrected by performing a new LOAD ADRS opera-
tion with a valid address.

REG DEPOSIT (Register Deposit)

Raising the REG DEP causes the contents of the Switch Register to be
deposited into the General Purpose Register specified by the current
contents of the CPU Bus Address Register.

The CPU Bus Address Register should have been previously loaded by
a LOAD ADRS operation according to the Switch register settings de-
scribed in REG EXAM (8.8.3).

NOTE: The EXAM and DEP switches are coupled to enable an EXAM-
DEP-EXAM sequence to be carried out on a location, without having to
do a LOAD ADRS. The following sequence is possible:

EXAM

DEP ADDRESS A
EXAM

STEP EXAM

DEP ADDRESS A + 1
EXAM

ADDRESS SELECT

The ADDRESS SELECT knob is used for two functions. It provides an
interpretation for the ADDRESS DISPLAY REGISTER as explained in
section 8.4. It also determines for EXAM, STEP EXAM, DEP and STEP
DEP, what set of Page Address Registers, if any, will be used to relocate
the address loaded by the LD ADRS function.

KERNEL 1, KERNEL D, SUPER |, SUPER D, USER | and USER D posi-
tions cause the address loaded into the switch register to be relocated
if the Memory Management Option is installed and operating. Which
set of the 6 sets of Page Address Registers (PARs) is used is determined
by the ADDRESS SELECT switch. EXAMs, STEP EXAMs, DEPs and STEP
DEPs, under these conditions, are relocated to the physical address
specified by the appropriate PAR. If the action attempted from the
console is not allowed (for example—attempting to DEP into a READ |
ONLY page) the ADRS ERROR indicator will come on. A new LD ADRS
must be done to clear this condition. Note that, in the general case,
the physical location accessed is different from the virtual address
loaded into the switch register. The ADDRESS DISPLAY REGISTER will
always, in these 6 positions, show exactly what was loaded from the
switch register. These positions make it convenient to examine and
change programs which are subject to relocation, without requiring
any knowledge of where they have actually been relocated in physical
memory.

10-20

PROGRAM PHYSICAL. This position is provided to allow one, when
“single cycling” through a program, to monitor the physical addresses
being accessed by the program. It is. most useful when the accesses are
being relocated by the Memory Management Option. In this case the
Address shown in Address Display Register is different than that shown
in the other positions. This position should not be used to perform
EXAM, STEP-EXAM, DEP or STEP DEP functions.

CONSOLE PHYSICAL—This position is provided to allow EXAM, STEP
EXAM, DEP and STEP DEP Functions to physical memory locations
whether or not the Memory Management option is installed or operating.
In this position the ADDRESS DISPLAY register indicates the physical
address loaded from the switch register.

10-21

10-22

CHAPTER 11

PDP-11/45 MEMORY MANAGEMENT

The PDP-11/45 Memory Management Unit provides the hardware facili-
ties necessary for complete memory management and protection. It is
designed to be a memory management facility for systems where the
system memory size is greater than 28K words and for multi-user,
multi-programming systems where memory protection and relocation
facilities are necessary.

In order to most effectively utilize the power and efficiency of the
PDP-11/45 in medium and large scale systems it is necessary to run
several programs simultaneously. In such multi-programming environ-
ments several user programs would be resident in memory at any given
time. The task of the supervisory program would be: control the execu-
tion of the various user programs, manage the allocation of memory
and peripheral device resources, and safeguard the integrity of the sys-
tem as a whole by careful control of each user ‘program.

In a multi-programming system, the Memory Management Unit provides
the means for assigning memory pages to a user program and prevent-
ing that user from making any unauthorized access to these pages out-
side his assigned area. Thus, a user can effectively be prevented from
accidental or willful destruction of any other user program or the system
executive program.

- The basic characteristics of the PDP-11/45 Memory Management Unit
are:

® 16 User mode memory pages

® 16 Supervisor mode memory pages

® 16 Kernel mode memory pages

e 8 pages in each mode for instructions

e 8 pages in each mode for data

* page lengths from 32 to 4096 words

» each page provided with full protection and relocation
e transparent operation

* 6 modes of memory access control

* memory extension to 124K words (248K bytes)

11.1 PDP-11 FAMILY BASIC ADDRESSING LOGIC

The addresses generated by all PDP-11 Family Central Processor Units
(CPUs) are 18-bit direct byte addresses. Although the PDP-11 Family
word length and operational logic is all 16-bit length, the UNIBUS and
CPU addressing logic actually is 18-bit length. Thus, while the PDP-11
word can only contain address references up to 32K words (64K bytes)

11-1

the CPU and UNIBUS can reference addresses up to 128K words (256K
bytes). These extra two bits of addressing logic provide the basic
framework for expanded memory operation.

In addition to the word length constraint on basic memory addressing
space, the uppermost 4K words of address space is always reserved
for UNIBUS 1/O device registers. In a basic PDP-11/45 memory config-
uration (without the Memory Management Option) all address references
to the uppermost 4K words of 16 bit address space (170000-177777)
are converted to full 18-bit references with bits 17 and 16 always set to
1. Thus, a 16 bit reference to the 1/O device register at address 173224
is automatically internally converted to a full 18-bit reference to the reg-
ister at address 773224. Accordingly, the basic PDP-11/45 configuration
can directly address up to 28K words of true memory, and 4K words of
UNIBUS 1/0O device registers. Memory configurations beyond this require
the PDP-11/45 Memory Management Unit.

11.2 VIRTUAL ADDRESSING

When the PDP-11/45 Memory Management Unit is operating, the normal
16 bit direct byte address is no longer interpreted as a direct Physical
Address (PA) but as a Virtual Address (VA) containing information to be
used in constructing a new 18-bit physical address. The information
contained in the Virtual Address (VA) is combined with relocation infor-
mation contained in the Page Address Register (PAR) to yield an 18-bit
Physical Address (PA). Using the Memory Management Unit, memory
can be dynamically allocated in pages each composed of from 1 to 128
integral blocks of 32 words.

PHYSICAL
ADDRESS SPACE
128K
PAGE 5
VIRTUAL INSTRUCTION/DATA
ADDRESS SPACE
32K
el PATS et PAGE 6
—o PAR 6
—* PAR 5
) PAR 4 PAGE 7
PAR 3 \
PAR 2 PAGE 4
PAR 1
o PAR O 5
VIRTUAL ADDRESS PAGE PHYSICAL ADDRESS
(16 BITS) ADDRESS (18 BITS)
REGISTERS

PAR — Page Address Register

Figure 11-1 Virtual Address Mapping into Physical Address

The starting physical address for each page is an integral multiple of 32
words, and each page has a maximum size of 4096 words. Pages may be
located anywhere within the 128K Physical Address space. The deter-
mination of which set of 16 page registers is used to form a Physical

11-2

Address is made-by the current mode of operation of the CPU, i.e., Ker-
nel, Supervisor or User mode.

11.3 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT
CONTROL

The Memory Management Unit relocates all addresses. Thus, when it is
enabled, all trap, abort, and interrupt vectors are considered to be in
Kernel mode Virtual Address Space. When a vectored transfer occurs,
control is transferred according to a new Program Counter (PC) and
Processor Status Word (PS) contained in a two-word vector relocated
through the Kernel Page Address Register Set. Relocation of trap ad-
dresses means that the hardware is capable of recovering from a
failure in the first physical bank of memory.

When a trap, abort, or interrupt occurs the ‘‘push’” of the old PC, old
PS is to the User/Supervisor/Kernel R6 stack specified by CPU mode
bits 15,14 of the new PS in the vector (bits 15,14: 00 = Kernel, 01 =
Supervisor, 11 = User). The CPU mode bits also determine the new PAR
set. In this manner it is possible for a Kernel mode program to have
complete control over service assignments for all interrupt conditions,
since the interrupt vector is located in Kernel space. The Kernel program
may assign the service of some of these conditions to a Supervisor or
User mode program by simply setting the CPU mode bits of the new
PS in the vector to return control to the appropriate mode.

11.4 CONSTRUCTION OF A PHYSICAL ADDRESS

All addresses with memory relocation enabled either reference informa-
tion in instruction (I) Space or Data (D) Space. | Space is used for all
instruction fetches, index words, absolute addresses and immediate
operands, D Space is used for all other references. | Space and D Space
each have 8 PAR’s in each mode of CPU operation, Kernel, Supervisor,
and User. Using Status Register #3, the operating system may select
to disable D space and map all references (Instructions and Data)
through | space, or to use both | and D space.

The basic information needed for the construction of a Physical Address
(PA) comes from the Virtual Address (VA), which is illustrated in Figure
11-2, and the appropriate PAR set.

[= 1 -]

ACTIVE PAGE DISPLACEMENT FIELD
FIELD

_ Figure 11-2 Interpretation of a Virtual Address

The Virtual Address (VA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of
eight Page Address Registers (PARO-PAR7) will be used to form the
Physical Address (PA).

2. The Displacement Field (DF). This 13-bit field contains an address
relative to the beginning of a page. This permits page lengths up to

11-3

4K words (2,, = 8K bytes). The DF is further subdivided into two
fields as shown in Figure 11-3).

12 6 5 0

BN | DiB J

BLOCK NUMBER DISPLACEMENT IN BLOCK

Figure 11-3 Displacement Field of Virtual Address

The Displacement Field (DF) consists of:

1. The Block Number (BN). This 7-bit field is interpreted as the block
number within the current page.

2. The Displacement in Block (DIB). This 6-bit field contains the dis-
placement within the block referred to by the Block Number (BN).

The remainder of the information needed to construct the Physical Ad-

dress comes from the 12-bit Page Address Field (PAF) (part of the

Page Address Register (PAR)) and specifies the starting address of the

memory page which that PAR describes. The PAF is actually a block

number in the physical memory, e.g. PAF = 3 indicates a starting ad-
dress of 96 (3 x 32) words in physical memory.

The formation of a physical address (PA) takes 90 ns. Thus in situations
which do not require the facilities of the Memory Management Unit, it
should be disabled to permit time savings.

The formation of the Physical Address (PA) is illustrated in Figure 11-4.

The logical sequence involved in constructing a Physical Address (PA)
is as follows:

1. Select a set of Page Address Registers depending on the space
being referenced.

2. The Active Page Fieid (APF) of the Virtual Address is used to select
a Page Address Register (PARO-PAR7).

3. The Page Address Field (PAF) of the selected Page Address Register
(PAR) contains the starting address of the currently active page as a
block number in physical memory.

4. The Block Number (BN).from the Virtual Address (VA) is added
to the block number from the Page Address Field (PAF) to yield the
number of the block in physical memory (PBN-Physical Block Num-
ber) which will contain the Physical Address (PA) being constructed.

5. The Displacement in Block (DIB) from the Displacement Field (DF)
of the Virtual Address (VA) is joined to the Physical Block Number
(PBN) to yield a true 18-bit PDP-11/45 Physical Address (PA).

11-4

VA [APF I BN I DIB]

1 0

o //////// te

PARG 7/////// e
PART 7/////// PAF

B

[PHYSICAL ADDRESS

Figure 11-4 Construction of a Physical Address

11.5 MANAGEMENT REGISTERS

The PDP-11/45 Memory Management Unit implements three sets of 32
sixteen bit registers. One set of registers is used in Kernel mode, another
in Supervisor, and the other in User mode. The choice of which set is to
be used is determined by the current CPU mode contained in the Proces-
sor Status word. Each set is subdivided into two groups of 16 registers.
One group is used for references to Instruction (I) Space, and one to
Data (D) Space. The | Space group is used for all instruction fetches,
index words, absolute addresses and immediate operands. The D Space
group is used for all other references, providing it has not been disabled
by Status Register #3. Each group is further subdivided into two parts
of 8 registers. One pait is the Page Address Register (PAR) whose func-
tion has been described in previous paragraphs. The other part is the
Page Descriptor Register (PDR). PARs and PDRs are always selected in
pairs by the top three bits of the virtual address. A PAR/PDR pair con-
tain all the information needed to describe and locate a currently active
memory page.

The various Memory Management Registers are located in the upper-
most 4K of PDP-11 physical address space along with the UNIBUS 1/0O
device registers. For the actual addresses of these registers refer to
Memory Management Unit—Register Map, at the end of the chapter.

11-5

L :] PROCESSOR STATUS WORD i
15

KERNEL (00) SUPERVISOR (01) USER(11)
PAR PDR PAR PDR PAR PDR
I SPACE
PAR POR PAR PDR PAR PDR
D SPACE

Figure 11-5 Active Page Registers

11.5.1 Page Address Registers (PAR)

The Page Address Register (PAR) contains the Page Address Field (PAF),
a 12-bit field, which specifies the starting address of the page as a
block number in physical memory.

Figure 11-6 Page Address Register

Bits 15-12 of the PAR are unused and reserved for possible future use.

The Page Address Register (PAR) which contains the Page Address
Field (PAF) may be alternatively thought of as a relocation register con-
taining a relocation constant, or as a base register containing a base
address. Either interpretation indicates the basic importance of the Page
Address Register (PAR) as a relocation tool.

11.5.2 Page Descriptor Register
The Page Descriptor Register (PDR) contains information relative to
page expansion, page length, and access control.

11-6

N\

[2[v=] ~ |

Figure 11-7 Page Description Register

Access Control Field (ACF)

This three-bit field, occupying bits 2-0 of the Page Descriptor Register
(PDR) contains the access rights to this particular page. The access
codes or ‘‘keys’ specify the manner in which a page may be accessed
and whether or not a given access should result in a trap or an abort
of the current operation. A memory reference which causes an abort is
not completed while a reference causing a trap is completed. In fact,
when a memory reference causes a trap to occur, the trap does not
occur until the entire instruction has been completed. Aborts are used
to catch “missing page faults,” prevent illegal access, etc.; traps are
used as an aid in gathering memory management information.

In the context of access control the term ‘‘write’” is used to indicate
the action of any instruction which modifies the contents of any ad-
dressable word. ““Write’” is synonymous with what is usually called a
“store’’ or ‘modify”” in many computer systems.

The modes of access control are as follows:

000 non-resident abort all accesses

001 read-only abort on write attempt memory man-
agement trap on read

010 read-only abort on write attempt

011 unused abort all accesses—reserved for future
use

100 read/write memory management trap upon com-
pletion of a read or write

101 read/write memory management trap upon com-
pletion of a write

110 read/write " no system trap/abort action

111 unused abort all accesses—reserved for future

. use

It should be noted that the use of | Space provides the user with a
further form of protection, execute only.

Access Information Bits

A Bit (bit 7)—This bit is used by software to determine whether or not
any acccesses to this page met the trap condition specified by the
Access Control Field (ACF). (A = 1 is Affirmative) The A Bit is used in
the process of gathering memory management statistics.

11-7

W Bit (bit 6)—This bit indicates whether or not this page has been
modified (i.e. written into) since either the PAR or PDR was loaded.
(W = 1 is Affirmative) The W Bit is useful in applications which involve
disk swapping and memory overlays. It is used to determine which pages
have been modified and hence must be saved in their new form and
which pages have not been modified and can be simply overlaid.

Note that A and W bits are “reset’’ to ‘0"’ whenever either PAR or PDR
is modified (written into).

Expansion Direction (ED)

This one-bit field, located at bit 3 of the Page Descriptor Register (PDR),
specifies whether the page expands upward from relative zero (ED = 0)
or downwards toward relative zero (ED — 1). Relative zero, in this case,
is the PAF (Page Address Field). Expansion is done by changing the Page
Length Field. In expanding upwards, blocks with higher relative ad-
dresses are added; in expanding downwards, blocks with lower relative
addresses are added to the page. Upward expansion is usually used to
add more program space, while downward expansion is used to add
more stack space.

Page Length Field (PLF)

The seven-bit field, occupying bits 14-8 of the Page Descriptor Register
(PDR), specifies the number of blocks in the page. A page consists of at
least one and at most 128 blocks, and occupies contiguous core loca-
tions. if the page expands upwards, this field contains the length of the
page minus one (in blocks). If the page expands downwards, this field
contains 128 minus the length of the page (in blocks).

A Length Error occurs when the Block Number (BN) of the virtual ad-
dress (VA) is greater than the Page Length Fieid (PLF), if the page ex-
pands upwards, or if the page expands downwards, when the BN is less
than the PLF.

Reserved Bits
Bits 15, 4 and 5 are reserved for future use, and are always O.

11.6 FAULT RECOVERY REGISTERS

Aborts and traps generated by the Memory Management hardware are
vectored through Kernel virtual location 250, Status Registers #0, #1,
#2 and #3 are used in order to differentiate an abort from a trap, deter-
mine why the abort or trap occurred, and allow for easy program restart-
ing. Note that an abort or trap to a location which is itself an invalid
address will cause another abort or trap. Thus the Kernel program must
insure that Kernel Virtual Address 250 is mapped into a valid address,
otherwise a loop will occur which will require console intervention.

11.6.1 Status Register #0 (SRO) (status and error indicators)

SRO contains error flags, the page number whose reference caused the
abort, and various other status flags. The register is organized as shown
in Figure 11-8.

11-8

ot e e A A e S (e R M S i L PRl b 1 0

BB BIASRERE

- — y —

ABORT-NON RESIDENT—’
ABORT— PAGE

LENGTH ERROR

ABORT- READ ONLY

ACCESS VIOLATION
TRAP-MEMORY MANAGEMENT
NOT USED
NOT USED
ENABLE MEMORY MANAGEMENT TRAR
MAINTENANCE MODE
INSTRUCTION COMPLETED
PAGE MODE
PAGE ADDRESS SPACE I/D
PAGE NUMBER
ENABLE RELOCATION

Figure 11-8 Format of Status Register #0 (SRO)

Bits 15-12 are the error flags. They may be considered to be in a
‘“priority queue’’ in that ‘‘flags to the right’’ are less significant and
should be ignored. That is, a ‘‘non-resident’’ fault service routine would
ignore length, access control, and memory management flags. A ‘‘page
length’’ service routine would ignore access control and memory man-
agement faults, etc.

Bits 15-13 when set (error conditions) cause Memory Management to
freeze the contents of bits 1-7 and Status Registers #1 and #2. This
has been done to facilitate error recovery.

Bits 15-12 are enabled by a signal called ‘“RELOC.” “RELOC' is true
when an address is being relocated by the Memory Management unit.
This implies that either SRO, bit O is equal to 1 (relocation operating) or
that SRO, bit 8 (MAINTENANCE) is equal to 1 and the memory refer-
ence is the final one of a destination calculation (maintenance/destina-
tion mode).

Note that Status Register #0 (SRO) bits O, 8, and 9 can be set under
program control to provide meaningful control information. However,
information written into all other bits is not meaningful. Only that infor-
mation which is automatically written into these remaining bits as a
result of hardware actions is useful as a monitor of the status of the
Memory Management Unit. Setting bits 15-12 under program control will
not cause traps to occur; these bits however must be reset to O after an
abort or trap has occurred in order to resume status monitoring.

Abort—Non-Resident §

Bit 15 is the ‘‘Abort—Non-Resident” bit. It is set by attempting to
access a page with an Access Control Field (ACF) key equal to O, 3, or 7.
It is also set by attempting to use Memory Relocation with a processor
mode of 2.

11-9

e

Abort—Page Length

Bit 14 is the ‘‘Abort Page Length’ bit. It is set by attempting to access
a location in a page with a block number (Virtual Address bits, 12-6)
that is outside the area authorized by the Page Length Field (PLF) of the
Page Descriptor Register (PDR) for that page. Bits 14 and 15 may be
set simultaneously by the same access attempt.

Abort—Read Only
Bit 13 is the ‘“Abort—Read Only’’ bit. It is set by attempting to write
in a “Read-Only’’ page. ‘‘Read-Only’’ pages have access keys of 1 or 2.

Trap—Memory Management

Bit 12 is the ‘Trap—Memory Management’ bit. It is set by a read opera-
tion which references a page with an Access Control Field (ACF) of 1 or
4, or by a write operation to a page with an ACF key of 4 or b

Bits 11, 10
Bits 11 and 10 are spare locations and are always equal to 0. They are
unused and reserved for possible future expansion.

Enable Memory Management Traps

Bit 9 is the “Enable Memory Management Traps” bit. It can be set or
cleared by doing a direct write into SRO. If bit 9 is 0, no Memory Man-
agement traps will occur. The A and W bits will, however, continue to
log potential Memory Management Traps. When bit 9 is set to 1, the
next ‘‘potential”’ Memory Management trap will cause a trap, vectored
through Kernel Virtual Address 250.

Note that if an instruction which sets bit 9 to 0 (disable Memory Man-
agement Trap) causes a potential -Memory Managament trap in the
course of any of its memory references prior to the one actually chang-
ing SRO, then the trap will occur at the end of the instruction anyway.

Maintenance/Destination Mode

Bit 8 specifies Maintenance use of the Memory Management Unit. It is
provided for diagnostic purposes only and must not be used for other
purposes.

Instruction Completed

Bit 7 indicates that the current instruction has been completed. It will
be set to O during T bit, Parity, Odd Address, and Time Out traps and
interrupts. This provides error handling routines with a way of determin-
ing whether the last instruction will have to be repeated in the course of .
an error recovery attempt. Bit 7 is Read-Only (it cannot be written). It is
initialized to a 1. Note that EMT, TRAP, BPT, and IOT do not set bit 7.

Processor Mode
Bits 5, 6 indicate the CPU mode (User/Supervisor/Kernel) associated
with the page causing the abort. (Kernel = 00, Supervisor = 01, User
— 11). If an illegal mode (10) is specified, bit 15 will be set and an
abort will occur.

Page Address Space

Bit 4 indicates the type of address space (I or D) the Unit was in when
a fault occurred (0 = | Space, 1 = D Space). It is used in conjunction
with bits 3-1, Page Number.

11-10

Page Number

Bits 3-1 contain the page number of a reference causing a Memory
Management fault. Note that pages, like blocks, are numbered from
0 upwards.

Enable Relocation

Bit O is the “Enable Relocation” bit. When it is set to 1, all addresses
are relocated by the unit. When bit O is set to O the Memory Management
Unit is inoperative and addresses are not relocated or protected.

11.6.2 Status Register #1 (SR1)

SR1 records any autoincrement/decrement of the general purpose reg-
isters, including explicit references through the PC. SR1 is cleared at
the beginning of each instruction fetch. Whenever a general purpose
register is either autoincremented or autodecremented the register num-
ber and the amount (in 2s complement notation) by which the register
was modified, is written into SR1.

The information contained in SR1 is necessary to accomplish an effective
recovery from an error resulting in an abort. The low order byte is writ-
ten first and it is not possible for a PDP-11 instruction to autoincrement/
decrement more than two general purpose registers per instruction be-
fore an ‘‘abort-causing’’ reference. Register numbers are recorded
‘“MOD 8”; thus it is up to the software to determine which set of reg-
isters (User/Supervisor/ Kernel—General Set 0/General Set 1) was modi-
fied, by determining the CPU and Register modes as contained in the
PS at the time of the abort. The 6-bit displacement on R6(SP) that can
be caused by the MARK instruction cannot occur if the instruction
is aborted.

15 1210 8 il 3 2 0
AMOUNT CHANGED REGISTER ~ AMOUNT CHANGED REGISTER
(2's COMPLEMENT) NUMBER (2'S COMPLEMENT) NUMBER

Figure 11-9 Format of Status Register #1 (SR1)

11.6.3 Status Register #2

SR2 is loaded with the 16-bit Virtual Address (VA) at the beginning of
each instruction fetch, or with the address Trap Vector at the beginning
of an interrupt, “T" Bit trap, Parity, Odd Address, and Timeout traps.
Note that SR2 does not get the Trap Vector on EMT, TRAP, BPT and 10T
instructions. SR2 is Read-Only; it can not be written. SR2 is the Virtual
Address Program Counter.

11.6.4 Status Register #3

The Status Register #3 (SR3) enables or disables the use of the D
space PAR’s and PDR’s. When D space is disabled, all references use
the | space registers; when D space is enabled, both the | space and D
space registers are used. Bit O refers to the User’s Registers, Bit 1 to
the Supervisor’s, and Bit 2 to the Kernel’s. When the appropriate bits
are set D space is enabled; when clear, it is disabled. Bits 3-15 are
unused. On initialization this register is set to 0 and only | space is
In use.

11-11

°

KERNEL
SUPERVISOR
USER

Figure 11-10 Format of Status Register #3 (SR3)

11.6.5 Instruction Back-Up/Restart Recovery
The process of ‘‘backing-up’ and restarting a partially completed in-
struction involves:

1. Performing the appropriate memory management tasks to alleviate
the cause of the abort (e.g. loading a missing page, etc.)

2. Restoring the general purpose registers indicated in SR1 to their
original contents at the start of the instruction by subtracting the
“‘modify value'’ specified in SR1.

3. Restoring the PC to the ‘‘abort-time’’ PC by loading R7 with the con-
tents of SR2, which contains the value of the Virtual PG at the time
the “‘abort-generating’’ instruction was fetched.

Note that this back-up/restart procedure assumes that the general pur-
pose register used in the program segment will not be used by the
abort recovery routine. This is automatically the case if the recovery
program uses a different general register set.

11.6.6 Clearing Status Registers Following Trap/Abort

At the end of a fault service routine bits 15-12 of SRO must be cleared
(set to 0) to resume error checking. On the next memory reference fol-
lowing the clearing of these bits, the various Status Registers will re-
sume monitoring the status of the addressing operations (SR2), will
be loaded with the next instruction address, SSR1 will store register
change information and SRO will log Memory Management Status
information.

11.7 EXAMPLES
11.7.1 Normal Usage

The Memory Management Unit provides a very general purpose memory
management tool. It can be used in a manner as simple or complete as
desired. It can be anything from a simple memory expansion device to
a very complete memory management facility.

The variety of possible and meaningful ways to utilize the facilities of-
fered by the Memory Management Unit means that both single-user and
multi-programming systems have complete freedom to make whatever
memory management decisions best suit their individual needs. Although
a knowledge of what most types of computer systems seek to achieve
may indicate that certain methods of utilizing the Memory Management
Unit will be more common than others, there is no limit to the ways to
use these facilities.

11-12

In most normal applications, it is assumed that the control over the
actual memory page assignments and their protection resides in a super-
visory type program which would operate at the nucleus of a CPU's
executive (Kernel mode). It is further assumed that this Kernel mode
program would set access keys in such a way as to protect itself from
willful or accidental destruction by other Supervisor mode or User mode
programs. The facilities are also provided such that the nucleus can
dynamically assign memory pages of varying sizes in response to sys-
tem needs.

11.7.2 Typical Memory Page

When the Memory Management Unit is enabled, the Kernel mode pro-
gram, a Supervisor mode program and a User mode program each have
eight active pages described by the appropriate Page Address Registers
and Page Descriptor Registers for data, and eight, for instructions. Each
segment is made up of from 1 to 128 blocks and is pointed to by the
Page Address Field (PAF) of the corresponding Page Address Register
(PAR) is illustrated in Figure 11-11.

WW// Ay

S,
,///////////////////////////////
Wi
W,
7

VA IST7TT.

///////////////////////////////
7777777
waarry 00007

BLOCK 47g (39'0)

PA 316777

BLOCK 1

BLOCK @

A 312000

ware 7704 20 |
VA 140000 399 39
PORG 74 s 0|0/ 70| 1 |
PLF A W ED ACF
Figure 11-11 Typical Memory Page

The memory segment illustrated in Figure 6-11 has the following attri-
butes:

1. Page Length: 40 blocks.

2. Virtual Address Range: 140000—144777.

3. Physical Address Range: 312000—316777.
11-13

e R

These attributes were determined according to the following scheme:
1.

Note that the various attributes which describe this page can all be f
determined under software control. The parameters describing the page
are all loaded into the appropriate Page Address Register (PAR) and Page
Descriptor Register (PDR) under program control. In a normal applica:

No trapped access has been made to this page.
Nothing has been modified (i.e. written) in this page.
Read-Only Protection.

Upward Expansion.

Page Address Register (PAR6) and Page Descriptor Register (PDR6)
were selected by the Active Page Field (APF) of the Virtual Address
(VA). (Bits 15-13 of the VA = 6,.)

The initial address of the page was determined from the Page Ad-
dress Field (PAF) of APR6 (312000 = 3120, blocks x 40, (32,,)
words per block x 2 bytes per word).

Note that the PAR which contains the PAF constitutes what is often
referred to as a base register containing a base address or a reloca-
tion register containing relocation constant.

The page length (47, 4 1 = 40 , blocks) was determined from the
Page Length Field (PLF) contained in Page Descriptor Register PDR6.
Any attempts to reference beyond these 40 , blocks in this page ¢
will cause a ‘‘Page Length Error,”” which will result in an abort, vec-

tored through Kernel Virtual Address 250. 1

The Physical Addresses were constructed according to the scheme
illustrated in Figure 6-4.

The Access bit (A-bit) of PDR6 indicates that no trapped access has &
been made to this page (A bit = 0). When an illegal or trapped refer-
ence, (i.e. a violation of the Protection Mode specified by the Access
Control Field (ACF) for this page), or a trapped reference (i.e. Read
in this case), occurs, the A-bit will be set to a 1. 3

The Written bit (W-bit) indicates that no locations in this page have
been modified (i.e. written). If an attempt is made to modify any>
location in this particular page, an Access Control Violation Abort
will occur. If this page were involved in a disk swapping or memory
overlay scheme, the W-bit would be used to determine whether

it had been modified and thus required saving before overlay. d

This page is Read-Only protected; i.e. no locations in this page may =
be modified. In addition, a meémory management trap will occur upon
completion of a read access. The mode of protection was specified =
by the Access Control Field (ACF) of PDR6. 4

The direction of expansion is upward (ED = 0). If more blocks are
required in this segment, they will be added by assigning blocks
with higher relative addresses.

11-14

tion it is assumed that the particular page which itself contains these
registers would be assigned to the control of a supervisory type program
operating in Kernel mode.

11.7.3 Non-Consecutive Memory Pages

It should be noted at this point that aithough the correspondence be-
tween Virtual Addresses (VA) and PAR/PDR pairs is such that higher
VAs have higher PAR/PDR's, this does not mean that higher Virtual
Addresses (VA) necessarily correspond to higher Physical Addresses
(PA). It is quite simple to set up the Page Address Fields (PAF) of the
PAR’s in such a way that higher Virtual Address blocks may be located
in lower Physical Address blocks as illustrated in Figure 11-12.

VAO37777 PA 467777
VA 020000, PA 450000
VAOI7T777 PA 560777
VA PA 541000

Figure 11-12 Non-Consecutive Memory Pages

Note that although a single memory page must ccnsist of a block
of contiguous locations, memory pages as macro units do not have to
be located in consecutive Physical Address (PA) locations. It also should
be realized that the assignment of memory pages is not limited to con-
secutive non-overlapping Physical Address (PA) locations.

11.7.4 Stack Memory Pages

When constructing PDP-11/45 programs it is often desirable to isolate
all program variables from ‘‘pure code’ (i.e. program instructions) by
placing them on a register indexed stack. These variables can then be
“pushed”’ or ‘“‘popped” from the stack area as needed (see Chapter 3,
Addressing Modes). Since all PDP-11 Family stacks expand by adding

11-15

locations with lower addresses, when a memory page which contains
‘‘stacked’’ variables needs more room it must ‘‘expand down,” i.e.
add blocks with lower relative addresses to the current page. This mode
of expansion is specified by setting the Expansion Direction (ED) bit
of the appropriate Page Descriptor Register (PDR) to a 1. Figure 11-13. ©
illustrates a typical ‘“‘stack” memory page. This page will have the fol-
lowing parameters.

PAR6: PAF = 3120
PDR6: PLF = 175, or 125, (128, ,-3)

ED=1
A=0or1l
W=0orl

ACF = nnn (to be determined by programmer as the need dictates).

note: the A, W bits will normally be set by hardware.

VA 157777 PA 331777
BLOCK 1775 (1270)

BLOCK 176g (12640)
VA 157500 BLOCK 175g (12510) PA 331500

_
VA 140000 % 9727 PA 312000

rare R PAF
pore RN P [A WO A

Figure 11-13 Typical Stack Memory Page

In this case the stack begins 128 blocks above the relative origin of
this memory page and extends downward for a length of three blocks.
A “PAGE LENGTH ERROR’ abort vectored through Kernel Virtual Ad--
dress (VA) 250 will be generated by the hardware when an attempt is
made to reference any location below the assigned area, i.e. when the
Block Number (BN) from the Virtual Address (VA) is less than the Page
Length Field (PLF) of the appropriate Page Descriptor Register (PDR).

11-16

11.8 TRANSPARENCY

It should be clear at this point that in a multiprogramming application
it is possible for memory pages to be allocated in such a way that a
particular program seems to have a complete 32K basic PDP-11/45
memory configuration. Using Relocation, a Kernel Mode supervisory-type
program can easily perform all memory management tasks in a manner
entirely transparent to a Supervisor or User mode program. In effect, a
PDP-11/45 System can utilize its resources to provide maximum through-
put and response to a variety of users each of which seems to have a
powerful system “‘all to himself.”"

11.9 INSTRUCTIONS
Four additional instructions are used with the PDP-11/45 Memory Man-
agement unit.

MTPI move to previous instruction space
MTPD move to previous data space
MEPI move from previous instruction space

MFPD move from previous data space

11-17

MFPI

Move from Previous Instruction Space 0065SS
0 : |
Ol l0[01111lo.l1lol1[sleslslsls
15 6 5 0
Operation: (temp) < (src)
L(SP) «<(temp)
Condition Codes: N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

Description: This instruction is provided in order to allow inter-
address space communication when the PDP11/45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<15:14>. The address itself is then used in the
previous | space (as determined by PS<13:12> -
to get the source operand. This operand is then
pushed onto the current R6 stack.

11-18

MFPD

Move from Previous Data Space 1065SS

Operation:

Condition Codes:

Description:

(temp) «(src)
L(SP) <(temp)

N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

This instruction is provided in order to allow inter-
address space communication when the PDP-11/45
is using the Memory Management unit. The address
of the source operand is determined in the current
address space. That is, the address is determined
using the SP and memory pages determined by
PS<15:14>. The address itself is then used in the
previous D space (as determined by PS<13:12>
to get the source operand. This operand is then
pushed on to the current R6 stack.

11-19

MTPI

Move to Previous Instruction Space . 0066DD g
7 i R TR g TR 1
[e el e 1 o e Ml R [dldldldldld .
15 5 9] i
Operation: (temp) <(SP)?
(dst) «<(temp)
Condition Codes: N: set if the source <0; otherwise cleared
Z: set if the source =0; otherwise cleared
V: cleared

C: unaffected

Description: The address of the destination operand is deter-
mined in the current address space. MTPI then
pops a word off the current stack and stores that
word in the destination address in the previous ¢
mode’s | space (bits 13, 12 of PS). ’

MTPD
Move to Previous Data Space 1066DD
T
[1000110110ddddd
l I 1 l 1 1 l 1 1 1 1 I 1 1
15 6 5 0
Operation: (temp) <(SP)?
(dst) «<(temp)
Condition Codes: N: set if the source <0; otherwise cleared ;
Z: set if the source =0; otherwise cleared bt
V: cleared i
C: unaffected
Description: The address of the destination operand is deter-

mined in the current address space as in MTPL
MTPD then pops a word off the current stack and
stores that word in the destination address in the

previous mode's D space.
-

11-20

11.10 MEMORY MANAGEMENT UNIT—REGISTER MAP

REGISTER

Status Register #O(SRO)
Status Register #1(SR1)
Status Register #2(SR2)
Status Register # 3(SR3)

User | Space Descriptor Register (UISDRO)

User | Space Descriptor Register (UISDR7?)

User D Space Descriptor Register (UDSDRO)

User D Space Descriptor Register (UDSDR7?7)

User | Space Address Register (UISARO)

User | Space Address Register (UISAR7)

User D Space Address Register (UDSARO)

User D Space Address Register (UDSARY)

Supervisor | Space Descriptor Register (SISDRO)

Supervisor | Space Descriptor Register (SISDR7)

Supervisor D Space Descriptor Register (SDSDRO0)

-Supervisor D Space Descriptor Register (SDSDR7)

Supervisor | Space Address Register (SISARO)

.Supervisor I Space Address Register (SISAR7)
11-21

ADDRESS

777572
777574
777576
772516

777600

777616

777620

777636

777640

777656
777660

777676
772200

772216
772226

772236
772240

.772256

MUL AC3,ACO ;and multiply by constant in AC3

ADDD ACO,AC1 ;and add the result into AC1

SOB R5,ADDLP ;check to see whether done

STCDI AC1,@R4 :done, convert double to integer and store

In the above example the Floating Point Processor would execute the
next three instructions. After the ““ADDD’’ was fetched into the FPP, the
CPU would execute the ‘“SOB’” and then wait for the FPP to be ‘‘done”
with the “ADDD"’ before giving it the “LDD' or “STCDI” instruction.

As can be seen from this example, autoincrement and autodecrement
addressing automatically adds or subtracts the correct amount to the
contents of the register depending on the modes represented by the
instruction.

12.3 ARCHITECTURE

The Floating Point Processor contains scratch registers, a Floating Ex-
ception Address pointer (FEA), a Program Counter, a set of Status and
Error Registers, and six general purpose accumulators (ACO-AC5).

Each accumulator is interpreted to be 32 or 64 bits long depending on
the instruction and the status of the Floating Point Processor. For 32-bit
instructions only the left-most 32 bits are used, while the remaining 32
bits remain unaffected.

E 64 BIT il
| ACCUMULATOR |
| 32 BIT o |
ACCUMULATOR EXCEPTION
| — cooe . [STATUS] yyieys
REGISTER REGISTER
| aco |
I ACH |
CcPU
| ace I [centrac PROCESSOR
| ELOATINGHEOINS | _|PROCESSOR STATUS
AC3 ARITHMETIC ARITHMETIC
| aca CONVERSION [e cPU
| acs L || onT GENERAL
REGISTER
| SCRATCH |
PROGRAM POINTER
| TO LAST |- memoRY
| INSTRUCTION I
I CAUSING ERROR I
W< BLOATING, POINT FARCESSOR suld wd voeuds nadns i J

Figure 12-1 Floating Point Processor

The six Floating Point Accumulators are used in numeric calculations
and interaccumulator data transfers; the first four (ACO-AC3) are also
used for all data transfers between the FPP and the General Registers or
Memory.

12-2

12.4 FLOATING POINT DATA FORMATS

The FPP handles two types of floating point data: Single Precision or
Floating Mode (F) which is 32 bits long, and Double Precision (D) which
is 64 bits long. The exponent is stored in excess 128 (200,) notation.
Exponents from —128 to 4127 are therefore represented by the binary
equivalent of O to 255 (0-377,). Fractions are represented in sign-
magnitude notation with the binary radix point to the left. Numbers are
assumed to be normalized and, therefore, the most significant bit is not
stored because it is redundant. It is always a 1 except where the ex-
ponent is zero, then the complete number is declared to be 0.

F Formats:

H EXP FRA | —’I CTION —I
Ly N L L Fag e e el iy
0o

15 14 if56 15

D Formats:

lSI EXP I FR
REE i Gah L \ 120, .
15 14 6

S = Sign of Fraction
EXP = Exponent in excess 200, notation

FRACTION = 23 bits in F Format, 55 bits in D Format, + one hidden
bit (normalization). Binary Radix pdint to the left.

The results of a Floating Point operation may be either truncated or
rounded off. “‘Rounding” rounds away from zero and thus increases the
absolute value of the number.

The FPP provides for conversion of Floating Point to Integer Format and
vice-versa. The processor thus recognizes single precision integer () and
double precision integer long (L) numbers.

The numbers are stored in standard two’s complement form.

| Format:

s I NUMBER

.n‘.l

514 0

L Format:

IS[NUM | L BER —l
s re el S T N T e vae e S S ey
o

15 14 (0] 15

S = Sign of Number
NUMBER = 15 bits in | Format, 31 bits in L Format.

12-3

12.5 FLOATING POINT UNIT STATUS REGISTER

This register provides mode control for the floating point unit, as well as
the condition code and error recovery information from the execution
of the previous instruction.

Four bits control the modes of operation:

Single/ Double—Floating Point numbers can be either single or
double precision.

Long/Short—Integer numbers can be 16 bits or 32 bits long.

Truncate/Round—The result of Floating Point operation can be
either truncated or rounded off.

Normal/Maintenance—a special maintenance mode is available.
There are four condition codes:

Carry, overflow, zero, and negative; which are equivalent to the
CPU condition codes, and five error interrupts which can be dis-
abled individually or as a group.

FERIFID UNUSED ‘FIUVIFIU [FIV IFIC FD i (F] il FMMI FNI FZ[FVl FC

s ag 13 A2/ s A0 G B e Bk D s A s 20 3 8y e O
BIT NAME DESCRIPTION
15 Floating Error (FER) Floating Point Error flag. The re-

sult of the last operation resulted
in a Floating Point Exception and
the individual interrupt (FIUV,
FIU, FIV, FIC) was enabled.

14 Interrupt Disable (FID) All FPP interrupts disabled when
this bit is set.

13 Not Used
12 Not Used

11 Interrupt on Undefined Variable (FIUV)
When set and a —O is obtained
from memory, an interrupt will
occur. When clear, —0 can be
loaded and used in any arith-
metic operation.

10 Interrupt on Underflow (FIU) When set, Floating Underflow
will cause an interrupt. The re-
sult of the operation, causing
the interrupt, will be correct ex-
cept for the exponent which will
be off by +400,. If the bit is re-
set and the underflow occurs, the
result will be set to zero.

12-4

BIT NAME DESCRIPTION

9 Interrupt on Overflow (FIV) When set, Floating Overflows
will cause an interrupt. The re-
sult of the operation causing the
interrupt will be correct except
for the exponent which will be
off by 4+400,. If the bit is reset,
the result of the operation will
be the same as detailed above
but no interrupt will occur.

8 Interrupt on Integer Conversion Error (FIC) |
When set, and the STCFI (Store i
and Convert Floating to Integer)
instruction causes FC to be set,
an interrupt will occur. If the in-
terrupt occurs, the destination is
set to O and all other registers
are left untouched. If the bit is
reset, the result of the operation
will be the same as detailed
above, but no interrupt will occur.

7 Floating Double Precision Mode (FD)
Determines the precision that is
used for Floating Point calcula-
tions. When set, Double preci-
sion is -assumed; when reset
Floating precision is used.

6 Floating Long Integer Mode (FL)

Active in conversion between In-
teger and Floating Point format.
When set, the Integer format as-
sumed is Double Precision two’s
complement (i.e. 31 bits 4 sign).
When reset, the integer format
is assumed to be Single Preci-
sion two’s complement (i.e. 15
bits + sign).

5 Floating Truncate Mode (FT) When set, causes the result of
any arithmetic operation to be
truncated. When reset, the re-
sults are rounded.

4 Floating Maintenance Mode (FMM)
3 Floating Negative (FN) The result of the last operation I
was negative. |

2 Floating Zero (FZ) The result of the last operation
was zero. it
1 Floating Overflow (FV) The result of the last operation i

resulted in an arithmetic over- 0
flow. ‘1‘ ‘
\

i
12:5 |

BIT NAME DESCRIPTION

0 Floating Carry (FC) The result of the last operation
resulted in a carry of the most
significant bit. This can only oc-
cur in integer-Floating conver-
sions.

12.6 FEC REGISTER: ERROR DETECTION

One Interrupt vector is assigned to take care of all floating point excep-
tions (location 244). The eight possible errors causing the trap are
coded in a four bit register, the FPP's Exception Code, ‘““FEC,”’ Register.

The error assignments are as follows: “
0 Not used

2 Floating OP Code Error

4 Floating Divide by Zero

6 Floating Integer Conversion Error

8 Floating Overflow

10 Floating Underflow

12 Fioating Undefined Variable

14 Maintenance Trap

12.7 FLOATING POINT PROCESSOR INSTRUCTION ADDRESSING
Floating Point Processor instructions use the same type of addressing as
the Central Processor instructions. A source or destination operand is
specified by designating one of eight addressing modes and one of
eight central processor general registers to be used in the specified
mode. The modes of addressing are the same as those of the central
processor except for mode 0. In mode O the operand is located in the
designated Floating Point Processor Accumulator, rather than in a Cen-
tral processor general register. The modes of addressing:

0 = Direct Accumulator

1 = Deferred

2 = Auto-increment

3 = Auto-increment deferred
4 = Auto-decrement

5 = Auto-decrement deferred
6 = Indexed

7 = Indexed deferred

Autoincrement and autodecrement operate on increments and decre-
ments of 4 for F Format and 10, for D Format.

12-6

In mode O, the user can make use of all six FPP accumulators (ACO—
AC5) as his source or destination. In all other modes, which involve
transfer of data from memory or the general register, the user is re-
stricted to the first four FPP accumulators (ACO—AC3).

In immediate addressing (Mode 2, R7) only 16 bits are loaded or stored.

12.8 FLOATING POINT INSTRUCTIONS

Each instruction that references a floating point number can operate
on floating or double precision numbers depending on the state of the
FD mode bit. In a similar fashion, there is a mode bit FL that deter-
mines whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0)
is used in conversion between integer and floating point representation.
FSRC and FDST use floating point addressing modes, SRC and DST
use CPU addressing Modes.

Floating Point Instruction Format
Double Operand Addressing

[; oc I FOC [AC lFSRC,FDST.SRC,DST]
! i A l i i i 1 L

15 T2 i Bl 7o 6 TS (¢}

Single Operand Addressing

I oC l FOC l FSRC, FDST, SRC, DST]
l i 1 I 1 ‘ A 1 1 1 1 A
15 2 11 675 0

OC = Op Code = 17

FOC = Floating Op Code

AC = Accumulator

FSRC, FDST use FPP Address Modes
SRC, DST use CPU Address Modes

General Definitions:
XL = largest fraction that can be represented:

1-2-%, FD =0

1-2%;, FD =1
XLL = smallest number that is not identically zero 2-!28
XUL = largest number that can be represented: 2'27*XL

JL = largest integer that can be represented:

25-1 If FL=0 2-1IfFL=1

12-7

LDF
LDD
Load Floating/Double 172(AC + 4)FSRC
F l ‘ 1 1 1 1 0 L 1 1 ° l 1 I AIc] L 1 Fisc 1 L J
15 2 1 887 .6 5 ; 0
Operation: AC < (FSRC)
Condition Codes: FC<0
FV<0

FZ <1 if (AC)=0 else FZ<0
FN <1 if (AC)<O else FN<O

Description: Load Single or Double Precision Number into
Accumulator

12-9

STF
STD

Store Floating/Double 174ACFDST

[T e R L o) [AC I FDST I
1 L ? R i | : i L | L
6 5

15 2 1 8 7 0
Operation: FDST «(AC)
Condition Codes: FC<«FC
FV<FV
FZ<FZ
FN<FN

Store Single or Double Precision Number from

Description:
Accumulator

12-10

ADDF

ADDD
Add Floating/Double 172ACFSRC
R e Lot Sy ol el Tt v Rt]
15 2 1 G T 0
Operation: AC<(AC) + (FSRC) If [(AC) + (FSRC)]>XLL or
FIU = 1, else AC <0
Condition Codes: FC<0
FV<1 If (AC)>XUL else FV<0
FZ<1 If (AC)=0 else FZ<0
FN <1 If (AC)<O eise FN <0
Description: Add the contents of FSRC to the contents of ac-

cumulator. In Single or Double Precision result is
in accumulator unless Underflow occurs and the
interrupt is not enabled; in this case AC is set to O.

12-11

SUBF

SuUBD
Subtract Floating/Double 173ACFSRC
fi e iR R0 S AT A O AC FSRC
[l I! Il L L l l 1 l 1 1 I 1 IT
15 12 N BT 6 5 [5}
Operation: AC «(AC)—(FSRCY) If [(AC)—(FSRC)]—XLL or FIU =

1 else AC<0

Condition Codes: FC <0
FV<1 If (AC)>XUL else FV<O0
FZ<1 If (AC)=0 else FZ<0
FN<1 If (AC)<O else FN<0 4

Description: * Subtract the contents of FSRC from the accumu-
lator in Single or Double Precision. Result is in
accumulator unless Floating Underflow occurs and
the interrupt is not enabled; in this case AC is set
to O.

12-12

NEGF |
|

NEGD ‘;

Il

|

Negate Floating/ Double 1707FDST

Il

0111000111] FDST j i

| o L i | i 1 1 \ l N L il

15 b rentiian (% 6 5 0 “\
Operation: FDST «— (FDST) i
Condition Codes: FC<0' il
FV<0

Description:

FZ<1 If (FDST) = else FZ <0 i\
FN<1 If (FDST)<0 else FN <0
L)

I
Negate Floating or Double Precision number, store "
result in same location. (FDST)

12-13

MULF

MULD
Multiply Floating/Double 171ACFSRC
FSRC
Fi e e EEe e | e Ty
15 12 1 e AT St SR 0
Operation: AC «(AC)*(FSRC) If [(AC)*(FSRC)]>XLL or FIU=1,

else AC<0

Condition Codes: FC <0
FV<1 If AC>XUL else FV<0
FZ <1 If (AC) = 0 else FZ<0
FN <1 If (AC)<O0 else FN <0

Description: Multiply the contents of the selected accumulator
; by the contents of FSRC. Store result in accumul-
lator unless Floating Underflow occurs without the

interrupt enabled; in this case AC is set to O.

12-14

DIVF

DIVD
Divide Floating/Double 174(AC + 4)FSRC
i FSRC
R trnpriel s tacelis oy v o
15 12 11 Y Y 0
Operation: If (FSRC) =0
AC<«(AC)/(FSRC) If [(AC)/(FSRC)]>XLL or FIU=1,
else AC<0

If (FSRC) = O registers, including AC, untouched

Condition Codes: FC<0
- FV<1 If (AC)>XUL else FV<«0
FZ<1 If (AC)=0 else FZ<0
FN <1 If (AC)<0 else FN<0

Description: If the contents of FSRC are not equal to zero, divide
the accumulator by (FSRC). Store the result in the
accumulator unless Floating Underfiow occurs and
the interrupt is not enabled; in this case the AC is
set to 0. If attempt is made to divide by zero, ac-
cumulator is left unchanged and FEC Register is set
to 4.

12-15

CMPF

CMPD
Compare Floating/Double 173(AC + 4)FSRC
li‘||1|1|1 01111I1IA|CII |FSFC| I]
15 12 1 S R [5)
Operation: (FSRC) — (AC)
Condition Codes: FC<O0
FV<0
FZ<1 If (FSRC)—(AC) = O else FZ<0
FN <1 If (FSRC)—(AC)<0 else FN <0
Description: Compare the contents of FSRC with the accumu-

lator. Set the appropriate flloating point condition
codes; FSRC and the accumulator are left un-
changed.

12-16

MODF

MODD
Multiply and Integerize Floating/ Double 171(AC + 4)FSRC
FSRC
[P« onliei ot and [il o wpls s
15 2 11 8 7 6 5 0
Operation: AC v 1<Int[(AC)*(FSRC)] If [(AC)*(FSRC)]>XLL

Condition Codes:

Description:

or FIU =1, else ACv 1«0

AC <(AC)*(FSRC)—(AC v 1) If [(AC)*(FSRC)]>XLL
or FIU = 1, else AC<0

FC <0

FV<1 If (AC)>XUL else FV<0

FZ <1 If (AC)=0 else FZ<0

FN<1 If (AC)<O0 else FN <0

The product of (AC) and (FSRC) is produced to 48
bits in Floating Mode and 59 bits in Double Mode.
The integer part Int[(AC)*(FSRC)] of the product is
then found and stored in AC v 1. AC v 1 is the FPP
Accumulator OR’d with 1. The fractional part is
then obtained and stored in AC. Thus if even-
numbered Accumulators (O or 2) are used this
instruction uses two accumulators (0 and 1; 2 and
3); whereas if odd-numbered accumulators are used
only one Accumulator is used (1:3) and all that is
left is the fractional part of the operation. If under-
flow occurs and the interrupt is not enabled, AC
and AC v 1 are loaded with zero.

NOTE: Multiplication by 10 can be done with zero
error allowing decimal digits to be “‘stripped off”
with no-loss in precision.

12-17

LDCDF
LDCFD

Load and convert from Double to Floating
or from Floating to Double 177(AC 4 4)FSRC

[111111111|Acl FSRC |
lll lll i lllll

Operation:
Condition Codes:

Description:

AC «<C,,(FSRC) If [(FSRC)]>XLL or FIU =1, else
AC <0 Where C,, specifies conversion from floating
mode x to floating mode y, and x = F and y =D If
FD=0,orx=Dandy=FIfFD = 1.

FC<0 :
FV<l1 If (AC)>XUL else FV
FZ<1 If (AC)=0 else FZ <0
FN <1 If (AC)<O else FN <0

If the current mode is Floating Mode (FD — 0) the
source is assumed to be a double-precision number
and is converted to single precision. If the Floating
Truncate bit is set the number is truncated, other-
wise the number is rounded. If the current mode is
Double Mode (FD = 1) the source is assumed to
be a single-precision number and is loaded left
justified in the AC. The lower half of the AC is
cleared.

12-18

STCFD

STCDF
Store and convert from Floating to Double
or from Double to Floating 176ACFDST
1 S 1 AC FDST
L l 1 L ! L lo l o I 1 I 1 i f 1 A —,
15 12 1 o 8 7 6 5 0
Operation: FDST «C,,(AC) where C,, specifies conversion from

floating mode x to floating mode y and x = F and
y=DIfFD=0,orx=Dandy=FIf FD=1

Condition Codes: FC<0
FV&1 If (AC)>XUL else FV <0
FZ <1 If (AC)=0 else FZ<«0
FN<1 If (AC)<0 else FN <0

Description: If the current mode is Floating, the Accumulator
is stored left justified in FDST and the lower half
is cleared; otherwise in Double Precision, the con-
tents of the accumulator are converted to single
precision, truncated or rounded depending on the
state of FT and stored in FDST.

12-19

LDCIF

LDCID
LDCLF
LDCLD

Load and Convert Integer or Long Integer to
Floating or Double Precision 177ACSRC

Operation:

Condition Codes:

Description:

AC <C;.(SRC) where C; specifies conversion from
integer mode j to floating mode x and j =1 if FL
—Qor Lif FL=1and x=F if FD=0, or D if
FD = 1.

FC <0
FV <0
FZ<1 If (AC) =0 else FZ<0
FN <1 If (AC)<O else FN <0

Conversion is performed on the contents of SRC
from a 2's compliment Integer with precision j to a
floating point number of precision x. Note that j and
x are determined by the state of the mode bits FL
and FD: i.e. J =1lor L, and X=F or D.

When a 32 bit Integer is specified (L mode) and
(SRC) has an addressing mode of O, or immediate
addressing mode is specified, the 16 bits of the
source register are left justified and the remaining
16 bits loaded with zeros before conversion. In the
case of LDCLF the fraction is truncated and only
the highest 24 significant bits are used.

12-20

STCFI
STCFL
STCDI
STCDL
Store and Convert from Floating or Double to
Integer or Long Integer 175(AC + 4)DST
DST
Iilll‘l"llI 1101‘11]A.Clx Pl AN Ij
15 12 1N R e) 0
Operation: DST<C,(AC) If—JL—1<C(AC)<<JL, else DST<0
where C,; specifies conversion from floating mode x
to integer mode jand j = |l if FL = O or L if FL =

land x =Fif FD =0, or Dif FD =1

Condition Codes: C<FC<O0 If —JL—1<C,i(AC)<JL else FC<«1
V<FV<0
Z<FZ<1 If (DST) = 0 else FZ<0
N<FN<1 If (DST)<O eise FN< 0O

Description: Conversion is performed from a floating point
representation of the data in the accumulator to
an integer representation. When the conversion is
to a 32 bit word (L mode) and an address mode
of 0, or immediate addressing mode, is specified,
only the most significant 16 bits are stored in the
destination register. If the operation is out of the
integer range selected by FL, FC is set to 1 and
the contents of the DST are set to O.

Numbers to be converted are always truncated
(rather than rounded) before conversion. This

is true even when the truncate mode bit is cleared
in the Floating Point Status Register.

12-21

LDEXP

Load Exponent 176(AC + 4)SRC

R R R B

15 12 1" o 0
Operation: AC SIGN «<(AC SIGN)

AC EXP<(SRC) + 200

Condition Codes: FC <0
; FV<0
FZ<1 If (AC) = 0O else FZ<0
FN <1 If (AC)<O else FN <0

Description: Load Exponent Word from SCR into Accumulator.
Convert (SRC) from 2's complement to excess 200
notation.

12-22

- Condition Codes: C<FC<0

STEXP

Store Exponent 175ACDST
l 4 l ! I ! 1 ! l) L 0 i ! l 2 I Alc l 1 1 DSIT | 1 1
15 12 11 8 7 6 5 0
Operation: DST<«AC EXPONENT —200

V<FV<0
Z<FZ <1 if (DST)=0 else FZ<«0
N<FN <1 if (DST)<O else FN <0

Description: Store accumulator’s exponent in DST, convert it
from excess 200, notation to 2's complement.

12-23

CLRF

CLRD
Clear Floating/Double 1704FDST
i e SR [O Ot 0 iYL L O BR0) FDST
1 L \ 1 1 1 L 1 A) | ! L
15 12 1 5 5}
Operation: FDST <0
Condition Codes: FC <0
FV<0
FZ <1
FN<O
; Description: Set FDST to 0. Set FZ condition code.

12-24

ABSF

ABSD

Make Absolute Floating/Double 1706FDST

I AR b A | S P O MO Hs A e O FDST I
1 1 It 1 1 1 1 X 1 ! 1 1 "

15 12 1 6 5 0
Operation: FDST «—(FDST) If (FDST)<0 else FDST «(FDST)
Condition Codes: FC<0

FV <0
FZ<1 If (FDST) = O else FZ<0
FN <O
Description: . Set the contents of FDST to its absolute value.

12-25

TSTF

TSTD
Test Floating/Double 1705FDST
[1l1l111 ololol’lol'l 1 IFDISTI A]
15 12 1 6 5 [
Operation: FDST «(FDST)
Condition Codes: FC<O
FV<0
FZ <1 IF (FDST) = O else FZ<0
FN <1 IF (FDST)<4 else FN<0
Description: Set the Floating Point Processor’s Condition Codes

according to the contents of FDST.

12-26

SETF

Set Floating Mode 170001
'1','.'°.°.°|°.°1°I°.°.°|°.°.'1
15 ¢}
Operation: FD<0
Description: Set the FPP in Single Precision Mode
SETD
Set Floating Double Mode 170011
[‘l‘l'l‘ olololololololol1loloJ1J
15 0
Operation: FD<«1
Description: Set the FPP in Double Precision Mode

12-27

SETI

Set Integer Mode { 170002
r‘l‘111|1lojouololololololololilo—l
15 [9)
Operation: FL<O
Description: Set the FPP for Integer Data
SETL
-«
Set Long Integer Mode 170012
1 £0,
I1J111|' oloxololololonoj1lol 1 l
15 [P ART]
Operation: FL<1
Description: Set the FPP for Long Integer Data

12-28

Load FPPs Program Status

LDFPS

1701SRC
SRC
tl‘l1|110|010|0|011 1 1 | 1 1]
15 12 . 1 6 5 0
Operation: FPS «<(SRC)
Description: Load FPP’s Status from SRC.
STFPS
Store FPPs Program Status 1702DST
DST
1 l 1 1 1 L 1 o 1 o 1 o I O g 1 'l O 1 1 It 1
15 T2 5 0
Operation: DST «<(FPS)
Description:

Store FPP's Status in DST

12-29

STST

Store FPPs Status 1703DST
DST
F | ! 1 ! 1 ; 5 1 5 1 2 | 5 1) 1 !] 1 1 1 1 I
15 12 1 6 5 0
Operation: DST «(FEC)
DST 4 2<(FEA)
Description: Store the FEC and then the FPP's Exception Ad-

dress Pointer in DST and DST + 2

Note: If destination mode specifies a general reg-
ister or immediate addressing, only the FEC is

saved.
CFCC
Copy Floating Condition Codes 170000
AR S I) L Tole o R (ol o) ol (o) SO oA (o] i (o) A0 o)
1 1 L 1 1 1 1 ! 1 ! ! [l] |
15 2 1 6
Operation: C<FC
V<FV
Z<FZ
. N<FN
Description: Copy FPP Condition Codes into the CPU’s Condition
Codes.

12-30

APPENDIX A

UNIBUS ADDRESSES

A.1 INTERRUPT & TRAP VECTORS

000
004
010
014
020
024
030
034

040
044
050
054

060
064
070
074
100
104
110
114
120
124
130
134
140
144
150
154
160
164

170
174

200
204
210
214
220
224
230
234
240

(reserved)

CPU errors

Illegal & reserved instructions
BPT, breakpoint trap

I0T, input/output trap

Power Fail

EMT, emulator trap

TRAP instruction

System software
System software
System software
System software

Console Terminal, keyboard/reader
Console Terminal, printer/punch
PC11, paper tape reader

PC11, paper tape punch

KW11-L, line clock

KW11-P, programmable ciock

Memory system errors

XY Plotter

DR11-B DMA interface; (DA11-B)
ADO1, A/D subsystem

AFC11, analog subsystem

AA1l1, display

AAll, light pen

User reserved
User reserved

LP11/LS11, line printer

RS04/RF11, fixed head disk

RC11, disk

TC11, DECtape

RK11, disk

TU16/TM11, magnetic tape
CD11/CM11/CR11, card reader

UDCI11, digital control subsystem; ICS/ICR11
PIRQ, Program Interrupt Request (11/45)

A-1

244 Floating Point Error
250 Memory Management
254 RPO4/RP11 disk pack
260 TAll, cassette

264 RX11, floppy disk

270 User reserved
274 User reserved

300 (start of floating vectors)

A.2 FLOATING VECTORS

There is a floating vector convention used for communications (and
other) devices that interface with the PDP-11. These vector addresses
are assigned in order starting at 300 and proceeding upwards to 777.
The following Table shows the assigned sequence. It can be seen that
the first vector address, 300, is assigned to the first DC11 in the system.
If another DC11 is used, it would then be assigned vector address 310,
etc. When the vector addresses have been assigned for all the DC11's
(up to a maximum of 32), addresses are then assigned consecutively
to each unit of the next highest-ranked device (KL11 or DP11 or DM11,
etc.), then to the other devices in accordance with the priority ranking.

Priority Ranking for Floating Vectors
(starting at 300 and proceeding upwards)

Rank Device Vector Size Max No.
(in octal)
1 DC11 (10)s 32
2 KL11, DL11-A, DL11-B 10 16
3 DP11 10 32
4 DM11-A 10 16
5 DN11 4 16
6 DM11-BB (DH11-AD or DV11) =4 16
7 DR11-A 10* 32
8 DR11-C 10%* 32
9 PA611 Reader 4% 16
10 PA611 Punch 4% 16
11 DT11 10#* 8
12 DX11 10* 4
13 DL11-C, DL11-D, DL11-E 10 31
14 DJ11 10 16
15 DH11 10 16
16 GT40 10 1
17 LPS11 30% 1
18 DQ11 10 16
19 KW11-W 10 1
20 DU11 10 16
21 DUP11 10
22 DV11 10

*__The first vector for the first device of this type must always be on a (10),
boundary.

A-2

A.3 FLOATING ADDRESSES

There is a floating address convention used for communications (and
other) devices interfacing with the PDP-11. These addresses are as-
signed in order starting at 760 010 and proceeding upwards to 763 776.

Floating addresses are assigned in the following sequence:

Rank Device
i bl
2 DHIl
3 DQIl
4 U1l

A.4 DEVICE ADDRESSES

777 776 Processor Status word (PS)

777 774 Stack Limit (SL)

777 772 Program Interrupt Request (PIR)
777 770 Microprogram Break

777 766 CPU Error
777 764 System 1/D
777 762 Upper Size
777 760 Lower Size

777 756

777 754

777 752 Hit/Miss
777 750 Maintenance

777 746 Control

777 744 Memory System Error
777 742 High Error Address
777 740 Low Error Address

} System Size

777 717 User R6 (SP)
777 716 Supervisor R6 (SP)
277715) R5
777 714 R4
777 713 General registers, R3
777712 (Set1l R2
777 711 R1
777 710 RO
777 707 R7 (PC)
777 706 Kernel R6 (SP)
777 705) R5
777 704 R4
777 703 General registers, R3
777702 (Set0O R2
777 701 R1
777 700 | RO

A-3

777 676

}User Data PAR ,reg 0-7
777 660
777 656

}User Instruction PAR, reg 0-7
777 640
777 636

}User Data PDR, reg 0-7
777 620
777 616

}User Instruction PDR, reg 0-7
777 600
777 576 (MMR2)
777 574 Memory Mgt regs, (MMR1)
777 572 (MMRO)
777 570 Console Switch & Display Register
777 566 printer/punch data
777 564 Console Terminal, printer/punch status
777 562 keyboard/reader data
777 560 keyboard/reader status
777 556 punch data (PPB)
777 554 PC11/PR11, punch status (PPS)
777 552 reader data (PRB)
777 550 reader status (PRS)
777 546 KW11-L, clock status (LKS)
777 516 printer data
777 514 LP11/LS11/LV11, printer status
777 512
777 510
777 506
777 504
777 502 TAl1ll, cassette data (TADB)
777 500 cassette status (TACS)
777 476 look ahead (ADS)
777 474 maintenance (MA)
777 472 disk data (DBR)
777 470 RF11, adrs ext error (DAE)
777 466 disk address (DAR)
777 464 current mem adrs (CMA)
777 462 word count (WC)
777 460 disk status (DCS)
777 456 disk data (RCDB)
777 454 maintenance (RCMN)
777 452 current address (RCCA)
777 450 RC11, word count (RCWC)
777 446 disk status (RCCS)
777 444 error status (RCER)
777 442 disk address (RCDA)
777 440 look ahead (RCLA)

A-4

777 436
777 434
777 432
777 430
777 426
777 424
777 422
777 420

777 416
777 414
777 412
777 410
777 406
777 404
777 402
777 400

777 376

777 360

777 356
777 354
777 352
777 350
777 346
777 344
777 342
777 340

777 336

777 320

777 316
777 314
777 312
777 310
777 306
777 304
777 302
777 300

777 166
777 164
777 162
777 160

776 776
776774
776 772
776 770

776 766
776 764
776 762
776 760
776 756
776 754

DT11, bus switch #5

RK11,
} DC14-D

TC11,

disk data (RKDB)
maintenance

disk address (RKDA)
bus address (RKBA)
word count (RKWC)
disk status (RKCS)
errorr (RKER)

drive status (RKDS)

DECtape data (TCDT)
bus address (TCBA)
word count (TCWC)
command (TCCM)
DECtape status (TCST)

} KE11-A, EAE #2

arithmetic shift
logical shift
normalize

KE11-A, EAE #1, step count/status register

CR11/
CM11,

ADO1,

multiply

multiplier quotient

accumulator

divide

I data (CDDB)

data (CRB2) comp | cur adrs (CDBA)
data (CRB1) | cp1a, col count (CDCC)
status (CRS) | status (CDST)

A/D data (ADDB)
A/D status (ADCS)

register 4 (DAC4)
register 3 (DAC3)
register 2 (DAC2)

AAl1l #1, register 1 (DAC1)

D/A status (CSR)

A-5

776 752
776 750
776 746
776 744
776 742
776 740
776 736
776 734
776 732
776 730
776 726
776 724
776 722
776 720
776 716
776 714
776 712
776 710
776 706
776 704
776 702
776 700
776 676
776 500
776 476
776 400
776 276
776 200
776 176
775 610
775 576
775 400
775 376
775 200
775 176

775 000

ool e e T e e e e

RPO4,

KL11,

cont & status #3 I
(RPCS3)
bus adrs ext (RPBAE) ‘
ECC pattern (RPEC2)
ECC position (RPEC1) |
error #3 (RPER3)
error #2 (RPER2)
cur cylinder (RPCC)
desired cyl (RPDC) |
offset (RPOF)
serial number (RPSN) I
drive type (RPDT) l
maintenance (RPMR)
data buffer (RPDB) |
look ahead (RPLA)
attn summary (RPAS)
error #1 (RPER1)
drive status (RPDS)
cont & status #2
(RPCS2)
sector/track adrs
(RPDA)
UNIBUS address
(RPBA)
word count (RPWC)
cont & status #1
(RPCS1)

#16

DL11-A, -B,

AAll,

DX11

DL11-C, -D, -E,

DS11,

DN11,

DM11,

#1
#5
#2
#31

#4

#16

I| DV11, #1-4
#1 |

A-6

RP11,

silo memory (SILO)
cyl adrs (SUCA)
maint 3 (RPM3)
maint 2 (RPM2)
maint 1 (RPM1)
disk adrs (RPDA)
cyl adrs (RPCA)
bus adrs (RPBA)
word count (RPWC)
disk status (RPCS)
error (RPER)

disk status (RPDS)

774776

774 400
774 376

774 000
773 766

773 000
772776

772700
772-676

772 600

772576
772574
772572
772570

772 556

772 550

772 546
772 544
772 542
772 540

772 536
772 534
772532
772 530
772 526
772 524
772522
772 500

772516

772 476
772 474
772 472
772 470
772 466
772 464
772 462
772 460
772 456
772 454
772 452
772 450

#1
DP11,
#32

#32

#1

BM792, BM873 ROM
PDP-11/70 diagnostic bootstrap (half of it)

DC11,

PA611 typeset punch

PA611 typeset reader

ST Ve e e ey =)

maintenance (AFMR)
AFC11, MX channel/gain (AFCG)

flying cap data (AFBR)

flying cap status (AFCS)

} XY11 plotter

counter
KW11-P, count set
clock status

read lines (MTRD)
tape data (MTD)

TM11l, memory address (MTCMA)
byte record counter (MTBRC)
command (MTC)
tape status (MTS)

Memory Mgt reg (MMR3)

cont & status #3 (MTCS3)

bus adrs ext (MTBAE)

tape control (MTTC)

serial number (MTSN)

drive type (MTDT)

maintenance (MTMR)

data buffer (MTDB)

check character (MTCK)
TU1l6, attention summary (MTAS)

error (MTER)

drive status (MTDS)

cont & status #2 (MTCS2)

A-7

772 446
772 444
772 442
772 440

772 436

772430

772416
772 414
772412
772 410

772376

772 360
772 356
772 340
772 336
772 320
772 316
772 300
772 276
772 260
772 256
772 240
772 236
772 220
772 216
772 200
772 136

772 110
772 072

772070

772 066
772 064
772 062
772 060
772 056
772 054

}

)
}
)
)
)
}
}
}
)

frame count (MTFC)
UNIBUS address (MTBA)
word count (MTWC)

cont & status #1 (MTCS1)

DR11-B #2

data (DRDB)
DR11-B #1, status (DRST)

bus address (DRBA)

word count (DRWC)

Kernel Data PAR, reg O-7

Kernel Instruction PAR, reg 0-7

Kernel Data PDR, reg 0-7

Kernel Instruction PDR, reg 0-7

Supervisor Data PAR, reg 0-7

Supervisor Instruction PAR, reg 0-7

Supervisor Data Descriptor PDR, reg 0-7

Supervisor Instruction Descriptor PDR, reg 0-7

UNIBUS Memory Parity

cont & status #3 (RSCS3)
bus adrs ext (RSBAE)
drive type (RSDT)
maintenance (RSMR)

data buffer (RSDB)

look ahead (RSLA)
attention summary (RSAS)

RS04, error (RSER)

A-8

J
772 052 drive status (RSDS) ‘
772 050 control & status #2 (RSCS2) ‘
772 046 RS04, desired disk adrs (RSDA) i
772 044 UNIBUS address (RSBA) I
772042 word count (RSWC) I ‘
772 040 control & status #1 (RSCS1) It
772016 LA
} GT40 #2 il
772 010 ‘M‘ |
772 006 Y axis i ;‘
772 004 X axis i
772 002 GT40 #1 status i
772 000 program counter | |
771776 status (UDCS) | i
771774 UDC11, scan (UDSR) | ICS/ICR11 Ll
771772 | L
771770 | i
771776 N
} UDC functional 1/0 modules : : i
771 000 0
{1
770 776 #8 i
} KG11, i
770 700 #1
e
770 676 #16 ‘MJ |
} DM11-BB, i
770 500 #1 i;‘
770 436 DMA
770 434 |
770432 |
770 430
770 426
770 424
770 422 ext DAC
« 770 420 D/A YR
770416 D/A XR
770 414 D/A SR
770412 LPS11, D 1/0 output
770 410 D 1/0 input
770 406 CKBR
770 404 CKSR
770 402 ADBR
770 400 ADSR
770 366
} UNIBUS Map
770 200
A-9

767 776
} GT40 bootstrap

766 000

User &
765776 | ppp.11/70 diagnostic bootstrap e
765 000 J (half of it) i

763 776 (top of floating addresses)

760010 (start of floating addresses)

NOTE
All presently unused UNIBUS addresses are re-
served by Digital.

A-10

APPENDIX B
INSTRUCTION TIMING

B.1 PDP-11/04

INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In-
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time — Basic Time + SRC Time 4 DST Time
Double Operand instructions require all 3 of these Times, Single Oper-

and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary =10%.

BASIC TIMES
Double Operand Basic Time (u sec)
Instruction MOS Parity MOS
ADD, SUB, BIC, BIS 3.17 3033
CMP, BIT 2.91 3.07
MOV 2.91 3.07
Single Operand
CLR, COM, INC, DEC, NEG, ADC, SBS 2.65 2.81
ROR, ROL, ASR, ASL 291 3.07
TST 2.39 2.55
SWAB 2.91 3.07
All Branches (branch true) 2.65 2.81
All Branches (branch false) 1.87 2.03
Jump Instructions
JMP 0.91 0.88
JSR 3.27 3.27
Ceontrol, Trap, and Miscellaneous Instructions
RTS 4.11 4.43
RTI, RTT 5.31 5.79
.~ Set N,Z,V,C 2.39 2.55
Clear N,Z,V,C 2.39 2.55
HALT 1.46 1.62
WAIT 2.13 2.29
RESET 100 ms 100 ms
10T, EMT, TRAP, BPT 7.95 8.49

B-1

ADDRESSING TIMES
ADDRESSING FORMAT Time (usec)

SRC Time* DST Time**
Parity Parityt
Mode | Description Symbolic MOS | MOS | MOS | MOS
0 REGISTER R 0 0 (0} 0
1 REGISTER @Ror(R) | 0,94 1.10 1.48 1.67
DEFERRED
2 AUTO-INCREMENT (R)+ 1.20 1.36 | 1.76 1.95
3 AUTO-INCREMENT @(R)+ 266 298 | 3.20 3.55
DEFERRED
4 AUTO- —(R) 1.20 1.36 1.76 1.95
DECREMENT
5 AUTO- @—(R) 266 298 | 3.20 3.55
DECREMENT :
DEFERRED
6 INDEX X(R) 292 324 | 346 3.81
7 INDEX @X(R) 438 486 | 492 543
DEFERRED

* For Source time, add the following for odd byte addressing: 0.52
(usec)
*% For Destination time, modify as follows:
a) Add for odd byte addressing with a non-modifying instruction:
0.52 (usec) ;
b) Add for odd byte addressing with a modifying instruction modes
1-7: 1.04 (usec)
c) Subtract for all non-modifying instructions except Mode O:
MOS: 0.54 Parity MOS: 0.57 (usec)
d) Add for MOVE instructions Mode 1-7: 0.26 (usec)
e) Subtract for JMP and JSR instructions, modes 3, 5, 6, 7: 0.52
(usec)

B-2

B.2 PDP-11/05 & 11/10

INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself
and the modes of addressing used. In the most general case, the In-
struction Execution Time is the sum of a Basic Time, a Source Address
Time, and a Destination Address Time.

Instr Time = Basic Time + SRC Time 4 DST Time

Double Operand instructions require all 3 of these Times, Single Oper-
and instructions require a Basic Time and a DST Time, and with all
other instructions the Basic Time is the Instr Time.

All Timing information is in microseconds, unless otherwise noted. Times
are typical; processor timing can vary =10%.

SOURCE & DESTINATION ADDRESS TIMES

The SRC and DST Times apply directly to Word and Even Byte instruc-
tions. Odd Byte instructions take longer, see Notes following.

Mode SRC Time#* DST Time**
0 0.0 usec 0.0 usec
1 0.9 2.4
2 0.9 24
3 2.4 34
4 0.9 2.4
5 24 3.4
6 2.4 3.4
7 34 4.7
NOTES:

*—For SCR Time, add 1.3 usec for Odd Byte addressing.
**__For DST Time, and Odd Byte addressing:

. 1. add 1.3 usec for a non-modifying instruction (CMPB, BITB,
TSTB).

2. add 2.4 usec for a modifying instruction.

B-3

BASIC TIME

Double Operand
Instruction

Basic Time

ADD, SUB, BIC, BIS
CMP, BIT

MOV

3.7 usec
2.5

3.7

(3.1 usec if Word
instruction

and mode 0)

Instr Time = Basic Time 4
SRC Time 4 DST Time

Single Operand

Instruction Basic Time
CLR, COM, INC, DEC, Instr Time = Basic Time -+
NEG, ASR, ASL, ROR, } 3.4 usec DST Time
ROL, ADC, SBC
TST 2.2
SWAB 4.3

Branch Instructions

Instruction Instr Time (branch) - Instr Time (no branch)
(all branches) 2.5 usec 1.9 usec
Jump Instructions
Instruction Basic Time
JMP 1.0 usec Instr Time = Basic Time -+
JSR 3.8 DST Time

Control, Trap & Misc Instructions

Instruction Instr Time
RTS 3.8
RTI 4.4
SET N,Z,V,C 2.5
CLR N,Z,V,C 2.5
HALT 1.8
WAIT 1.8
RESET 100 msec
10T, EMT, TRAP, BPT 8.2 usec

LATENCY

NPR latency is 7 usec, max.

B-4

B.3 PDP-11/35 & 11/40

INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of

a Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. All Timing information is in microseconds, unless otherwise noted.
Times are typical; processor timing can vary & 10%.

1. BASIC INSTRUCTION SET TIMING

Double Operand
all instructions,
except MOV: Instr Time = SRC Time + DST Time 4 EF Time
MOV Instruction: Instr Time = SRC Time + EF Time
Single Operand
all instr, except MFPI, MTPI: Instr Time = DST Time - EF Time
MFPI, MTPI instructions: Instr Time = EF Time
Branch, Jump, Control, Trap, & Misc
all instructions: Instr Time = EF Time

NOTES:

1. The times specified generally apply to Word instructions. In most
cases Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All exceptions are noted.

2. Timing is given without regard for NRP or BR servicing. Memory
types MM11-S, MF11-L, and MM11-L are assumed with direct use of
the special processor MSYNA signal and with memory within the CPU
mounting assembly. Use of the regular Unibus BUS MSYN signal
means 0.08 usec must be added for each memory cycle.

3. If the Memory Management (KT11-D) option is installed, instruction
execution times increase by 0.15 usec for each memory cycle used.

B-5

SOURCE ADDRESS TIME

Instruction Source Mode SRC Time (A) Memory Cycles

0 0.00 usec 0

1 .78 1

2 .84 1
Double 3 1.74 2
Operand 4 .84 1

5 1.74 2

6 1.46 2

7 2.36 3

NOTE (A): For Source Modes 1 thru 7, add 0.34 usec for Odd Byte in-
structions.

DESTINATION ADDRESS TIME

Instruction Destination Mode DST Time (B) Memory Cycles
Single 0 0.00 usec 0
Operand, 1 .78 (.90) 1
and 2 .84 (.90) 1
Double 3 1.74 (1.80) 2
Operand 4 .84 (.90) 1
(except 5 1.74 (1.80) 2
MOV, JMP, JSR) 6 1.46 (1.74) 2

7 2.36 (2.64) 1

NOTE (B): For Destination Modes 1 thru 7, add 0.34 usec for Odd Byte
instructions. Use higher values in parentheses () for ADD,
SUB, CMP, BIT, BIC, or BIS and a Source Mode of 0.

EXECUTE, FETCH TIME
Double Operand

SRC Mode O SRC Mode 1 to 7|SRC Mode O to 7
Instruction DST Mode O DST Mode O DST Mode 1 to 7
(use with SRC EF Mem EF Mem EF Mem
Time & DST Time)] Time Cyc Time Cyc |[Time (C) Cyc i
ADD, CMP, 0.99 us 1 1.60 us 1 1.76 us 2
BIT, BIC, BIS
SUB .99 1 1.60 1 1.90 2 3
XOR .99 1 — — 1.76 2 :
NOTE (C): For Destination Modes 1 thru 7, add 0.48 usec for Odd Byte
instructions.
E
B-6 : i

EF Time

DST SRC EF Time (Odd or Memory
Instruction | Mode Mode (Word instr) Even Byte) Cycles
0 0.90 usec 1.80 usec 0
0 lto7 1.46 1.80 0
1 Oto7 242 2.56 2
2 Oto7 242 2.56 2
MOV 3 Oto7 3.18 3.32 3
4 Oto7 242 2.56 2
(use with 5 Oto7 3.18 3.32 3
e g 2.84 2.98 3
6 1to7 3.18 3.32 3
7 3.68 3.82 4
7 lto7 4.02 4.16 4
Single Operand
Instruction Destination Mode O | Destination Mode 1 to 7
:) Mem Mem
(use with DST Time) EF Time Cycles| EF Time (D) Cycles
CLR, COM, NEG, INC,
DEC, ADC, SBC, TST, 0.99 us 1 1.77 us 2
ROL, ASL, SWAB
ROR, ASR 1.25 (E) 1 2.06 2
SXT .90 1 1.77 2
NOTE (D): For Destination Modes 1 thru 7, add 0.48 usec for Odd Byte
instructions.
NOTE (E): For RORB and ASRB, add 0.14 usec for Even or Odd Byte
instructions.
Instruction Instr Time Mem Cycles Note
MFPI 3.74 us 2 These two instructions are im-
MTPI 3.68 2 plemented only if Memory
Management is installed.

Branch Instructions

Instr Time Instr Time
Instruction (Branch) (No Branch) Memory Cycles
BR, BNE, BEQ, BPL, BM|,
BVC, BVS, BCC, BCS,
BGE, BLT, BGT, BLE, 1.76 usec 1.40 usec 1
BHI, BLOS, BHIS, BLO
SOB 2.36 2.04 1

B-7

Jump Instructions

Instruction Destination Mode Instr Time Memory Cycles

1.80 usec
2.10
2.30
1.90
2.30
2.36
2.92

2.94
3.24
3.44
3.04
3.44
3.50
4.06

JMP

JSR

BWWNWNNIWNDNHENDEH

NOOPRWNRI|INOUASRWN H

Control, Trap, & Misc Instructions

Instruction Instr Time Mem Cyc Notes

RTS 2.42 usec 2

MARK 2.56 2

RTI, RTT 2.92 2

SET N,Z,V,C 1.72 1

CLR N,Z,V,C 2.02 1

HALT 242 1 Console loop for a switch

setting is 0.44 usec.

WAIT 2.24 1 WAIT loop for a BR is 1.12 usec.
RESET 80 msec 1

10T, EMT 5.80 usec 5

TRAP, BPT

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current in-
struction. For a typical instruction, with an instruction execution time of
4 usec, the average time to request acknowledgement would be 2 usec.

Interrupt service time, which is the time from BR acknowledgement to
the first subroutine instruction, is 5.42 usec, max.

NPR (DMA) latency, which is the time from request to bus mastership
for the first NPR device, is 3.50 usec, max.

B-8

II. EIS, KE11-E, INSTRUCTION TIMING
Instr Time = SRC Time + EF Time
Source Mode SRC Time

0 0.28 usec

il .78

2 .98

3 1.74

4 .98

5 1.74

6 1.74

7 2.64
Instruction EF Time : Notes
MUL 8.88 usec
DIV 11.30
ASH (right) 2.58 Add 0.30 usec per shift.
ASH (left) 2.78 Add 0.30 usec per shift.
ASHC (no shift) 2.78
ASHC (shift) 3.26 Add 0.30 usec per shift.
LATENCY

Interrupts are acknowledged at the end of the current instruction. In-
terrupt service time is 5.42 usec, max. NPR latency is 3.50 usec, max.

11l. FLOATING POINT, KE11-F, INSTRUCTION TIMING
Instr Time=Basic Time-Shift Time for binary pts-Shift Time for norm

Time per shift to Time per shift
Instr Basic Time line up binary points for normalization
(O to 23 shifts) (0 to 25 shifts)
FADD 18.78 usec 0.30 usec 0.34 usec
FSUB 19.08 .30 .34
FMUL 29.00 — .34
FDIV 46.72 — .34

Basic instruction times shown for FADD and FSUB assume exponents
are equal or differ by one.

LATENCY

If an interrupt request of higher priority than the operating program
occurs during a Floating Point instruction, the current instruction will be
aborted unless it is near completion. The maximum time from interrupt
request to acknowledgement during Floating Point instruction execution
is 20.08 usec. Interrupt service time is5.42 usec, max. NPR latency is
3.50 usec, max.

B-9

B.4 PDP-11/45
INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself,
the modes of addressing used, and the type of memory being referenced.
In the most general case, the Instruction Execution Time is the sum of a
Source Address Time, a Destination Address Time, and an Execute,
Fetch Time.

Instr Time — SRC Time - DST Time + EF Time

Some of the instructions require only some of these times, and are so
noted. Times are typical; processor timing, with core memory, may vary
+15% to —10%.

BASIC INSTRUCTION SET TIMING
Double Operand

all instructions,
except MOV: Instr Time = SRC Time 4+ DST Time
+ EF Time
MOV Instruction: Instr Time = SRC Time 4+ EF Time

Single Operand
all instructions: Instr Time = DST Time 4 EF Time or
Instr Time = SRC Time + EF Time

Branch, Jump, Control, Trap & Misc
all instructions: Instr Time = EF Time

USING THE CHART TIMES

To compute a particular instruction time, first find the instruction “EF”
Time. Select the proper EF Time for the SRC and DST modes. Observe
all “NOTES"” to the EF Time by adding the correct amount to basic EF
number.

Next, note whether the particular instruction requires the inclusion of
SRC and DST Times, if so, add the appropriate amounts to correct EF
number.

NOTES

1. The times specified generally apply to Word instructions. In most
cases Even Byte instructions have the same times, with some Odd
Byte instructions taking longer. All exceptions are noted.

2. Timing is given without regard for NRP or BR servicing. Core mem-
ory is assumed to be located within the CPU mounting assembly.

3. MOS memory cycle time is assumed to range —10 to +15 usec from
495 usec. Worst case of 510 usec is used in these calculations.

4. If the Memory Management option is installed and operating, instruc-
tion execution times increase by .09 psec for each memory cycle
used.

5. All times are in microseconds.

B-10

SOURCE ADDRESS TIME ‘
SRC Time ‘
Source 8K 16K Memory ‘ |
Instruction Mode Bipolar MOS Core Core Cycles i
(0} .00 .00 .00 .00 0 il
1 .30 .51 .83 .89 1 |
2 .30 .51 .83 .89 1 i
Double 3 .75 1.17 181 1.92 2 “
Operand 4 .45 .66 .98 1.04 1 \
5 .90 1.32 196 207 2
6 .60 1.02 173 1.86 2 il
7 1.05 168 271 2.89 3
DESTINATION ADDRESS TIME
DST Time (A)
DST 8K 16K Memory
Instruction Mode | Bipolar MOS Core Core Cycles
0 .00 .00 .00 .00 0
1 .30 .51 .83(B) .86(B) 1
Single Operand 2 .30 .51 .83(B) .86(B) 1
and Double Oper- 3 .75 1.17 1.81(B) 1.92(B) 2
and (except MOV, 4 45 .66 .98 1.04 1
MTP, JMP, JSR) 5 90 1.32 1.96 2.07 2
6 .60 1.02 1.73(B) 1.86(B) 2
7 1.05 1.68 2.71(B) 2.89(B) 3

NOTE (A): Add .15 pusec for odd byte instructions, except DST Mode 0.
NOTE (B): For 8K core, add .07 psec if SRC Mode = 1-7; for 16K core,
add .085 psec if SRC Mode = 1-7.

31 oesti G9* ppe ‘Y9I 104 /Y I0U

pue 81Aq p

*/Y jou 3kq ppo si 1Sd
po sI 1@ 4 d9st g0' PpPe ‘Y S 1SA H 2981 £2° ppe ‘Mg 104 :(3) ILON
£y s 1S@ ¥ 99s1 ¢ ppy (@) ILON

‘7Y si 1SA # 29s1 gZ' ppe ‘Y 9T 404 !/Y S| 1SA # d9sM €2 ppe N8 lod :(0) 310N

o O @
¢ | I8T 281 (LI'I GL et T o T L6 06" 1S (0}°9 dOX
@ @ W (@ 0 O @ W
I |6T'T €T'T 99 174 I [2T'T SO'T 99 oy’ T 2635 064 LG og’ 119 ‘dd
@ @ (@ (@ 0 O @ sig ‘oig
¢ | 18T 281 (LI'1 L’ ¢ |2T'T 60T 99 74 T L[6° 06 IS og” ‘ans ‘aay
2A9 | @10) 8109 SOW 4ejodig | 94D | 210Q 8107 SOW sejodig | 99 | 8109 210 SOW Jejodig | (dwil 1SA pue
WA | M9T M8 WaN||MI9T M8 WaN|IMOT M8 swl] JdS
_||| awll n_u||_ ~||l awll 13 ||._ _|| awilL u_m||_ yim asn)
£ 0} T @poN 1Sd 0 8polA 1sd 0 ®PON 1Sd
L 01 0 3PON JdS L-T 9PON DS 0 ®PON JdS
uoioNIIsu|

pueisadQ sjqnoq

JNIL HO13d ‘J1NJ3X3

B-12

14 21 €0t 6v'¢c 99’1 el 88°¢€ ve'e 0S'1 L0 L

€ GZ'e [e{0)R €81 ot 60°€ 06'¢ 891 G0'1 L0 9

€ 1€°€ €1°E 86°T Ge'1l 1€°€ €r'e 86°1 Ge'l L0]

Z 91°¢ €0'¢ ZE 06 8¢'¢C (o] ce'l 06° L0 14

& GZ'€ GO'€ £8'1 02’1 91°¢€ 86°C €8'1 02’1 L0 15 AOW

4 60°¢C G6'T LT'T QL €1e 00°¢ LT°T QL L0 “

c 60°¢C G6°'T L TST QL €1'e 00'¢ LT'T QL L0 it

T ve'T 8C'1 96 gL’ 611 €T'T 18 09’ /L 0

T AN S0'T 99° 4 L6’ 6 16 og’ 9-0 0
[5=]fe1,%) 810D 2109 SO 4ejodig | 840D 9109 SOW Jejodig | J93s138Yy apolN | (swil 0¥S
Kiowa M9T N8 MIT M8 1sda 1sd ynm esn) |

(£-1 = JA0W 2¥S) ‘ _ (0 = 3IAOW 2¥S) uoioniisy|
awil 43 awl] 43

(u09) puesadQ 3|gnoqg

B-13

‘LY S| 1S@ # d8st Og° ppy :(r) ILON

"Wiys Jad os8sv GT° ppy (1) ILON
*91Aq ppo i J9s1 G1° ppy :(H) ILON
*£4 S! 1SQ $ 29s1l 22° ppe ‘H9T 40} ‘£Y SI 1SA # 99s1 £2° ppe ‘Y8 404 (D) JLON
"9}Aq ppo j 2d8sr g1* ppy :(d4) ILON

()] (()) () ()]) () () ()
T 6v'T Eev'l IT1 06’ T vE'T 821 96° SL’ OHSY ‘HSY
H W) (®) () (p) ((p)
c 18T 281 (LI'T L’ T L6’ 06’ 1g (o} USV ‘HOY
() () (p] ((p)
T 6T'T €IT 99 St T L6 06° 16 (ol 1S1
) @
4 66'T O0I'c LV Go'1l 1 ve'T 821 96’ 74 93N
® () (r) (p)
4 I8'T @281 (LI'1 GL I L6 06" | IS o€’ 1XS
‘A¥YMS “1SY “10¥ ‘0€S
‘oav ‘03a ‘ONI ‘W02 Y10
S9|9A) 2109 @810) SOW Jejodig s9|9A) | @109 @109 SOW Jejodig (swirl 1S yum asn)
Kowsly Aowap uononIIsu|

EWE_._. 43 |||._

£ 0} T 3AONW 1sd

EME_F 43 ||I||_

0 = 3dOW l1sd

pueiadgp 9j3uis

B-14

Single Operand (Cont.)

Instruction 8K 16K Memory
(Use with SRC Times) Bipolar MOS Core Core Cycles
MUL 3.30 3.51 383 3.89 1
DIV
by zero .90 1.11 143 149 1
shortest 7.05 7.26 758 7.64 1
longest 8.55 876 9.08 9.14 1
8K 16K Memory
Instruction Bipolar MOS Core Core Cycles
MFPI 1.05 147 218 231 2 use
with
MFPD 1.05 147 218 231 2 SRC
times
Instruction Time
DST 8K 16K Memory
Instruction | Mode Bipolar MOS Core Core Cycles
MTPI (o} .90 1.32 2.03 2.16 2
MTPD 1 1.20 1.83 2.93 3.13 3
2 1.20 1.83 2.93 3.13 3
3 1.65 2.49 4.03 4.28 4
4 1.35 1.98 3.01 3.19 3
5 1.80 2.64 4.11 4.35 4
6 1.65 2.49 4.03 4.28 4
7 2.10 3.15 5.01 5.32 5
Branch Instructions
Instr Time Instr Time
(Branch) (No Branch)
8K 16K 8K 16K [Memory
Instruction Bipolar MOS Core Core | Bipolar MOS Core Core| Cycles
BR, BNE, BEQ, .60 .98 1.13 1.18| .30 49 .90 .98
BPL, BMI, BVC,
BVS, BCC, BCS,
BGE, BLT, BGT,
BLE, BHI, BLOS,
BHIS, BLO
SOB .60 .98 1.131.18| .75 1.65 1.28 1.32 1

Jump Instructions

Instr Time
DST 8K 16KI Memory
Instruction Mode Bipolar MOS Core Core Cycles
1 .90 1.11 1.43 1.49 1
2 .90 1.11 1.43 1.49 1
3 1.20 1.62 2.26 2.37 2
JMP 4 .90 1.11 1.43 1.49 1
5 1.35 1.77 2.41 2.52 2
6 1.05 1.47 2.18 2.31 2
7 1.50 2.13 3.16 3.34 3
1 1.50 1192 2.63 2.76 2
2 1.50 1.92 2.63 2.76 2
3 1.80 243 3.46 3.64 3
JSR 4 1.50 1.92 2.63 2.76 2
5 1.95 2.58 3.61 3.79 3
6 1.65 2.28 3.38 3.58 3
7 2.10 2.94 4.36 4.61 4
Control, Trap & Miscellaneous Instructions
Instr Time
8K 16K| Memory
Instruction Bipolar MOS Core Core Cycles
RTS 1.05 1.47 2.11 2.22
MARK .90 1.32 2.03 2.16
RTI, RTT 1.50 2.13 3.16 3.34
SETN, Z,V,C
CLR, N, Z, V, C .60 .80 1.13 1.28
HALT 1.05 1.26 1.58 1.64
WAIT 3 .45 .45 .45 .45
WAIT Loop
fora BR is
.3 usec.
RESET 10ms 10ms 10ms 10ms il
10T, EMT, 2.40 3.45 5.08 5.27 5
TRAP, BRT
SPL .60 .81 L35 1.19 1
INTERRUPT 2.25 3.72 4.95 5.07 4
First Device

LATENCY

Interrupts (BR requests) are acknowledged at the end of the current
instruction. For a typical instruction execution time of 3 usec, the aver-
age time to request acknowledgement would be one-half this or 1.5 usec.
The worst case (longest) instruction time (Negative Divide with SRC
Mode 7) and hence, the longest request acknowledgement would be
12.62 usec max with 16K core (11.79 usec with 8K core, 11.22 usec
with MOS and 9.00 psec with Bipolar).

The Interrupt service time, which is the time from BR request acknowl-
edgement to the fetch of the first subroutine instruction, is 5.44 usec
max with 16K core, 4.95 usec with 8K core, 3.13 usec with MOS and
2.25 usec with Bipolar.

Hence, the total worst case time from BR request to begin the fetch of
the first service routine instruction is:

Bipolar MOS 8K Core 16K Core
Normal 11.25 14.15 16.74 18.41

Memory Management
Operating 11.70 14.60 17.19 18.96

The total average time for BR request to begin the fetch of the first ser-
vice routine instruction is:

Bipolar MOS 8K Core 16K Core

Normal 3.95 5.33 8.45 9.30
Memory Management
Operating 4.40 5.78 8.90 9.75

NPR Latency is 3.5 usec worst case.

B-17

FLOATING POINT INSTRUCTION TIMING

Floating point times are calculated in a similar manner to the CPU In-
struction times. The times involved are preexecution Interaction time,
source or destination time, execution time, CPU displacement time, and
the time taken to fetch the next Instruction.

With the floating point Instructions the CPU and the FPP operate in
parallel and. hence, the Instruction time includes a CPU time and a
parallel FPP time. These times do not coincide, each unit is free to con-
tinue at a different time with its next operation.

Instruction Time (CPU) = pre-interaction + source + disengage +
fetch of the next instruction.

Instruction Time (FPP) — pre-interaction + source - execution.

Pre-execution Interaction time: This involves the passing of informa-
tion between the CPU and the FPP. The total time is 600 ns. The float-
ing point unit Interacts only during the last 150 ns.

Therefore, the CPU becomes active at the time 0, and remains so until
time 600 ns, while the FPP becomes active at time 450 and remains
active until the time 600 ns. The FPP could have been active from a
previous task during the initial 450 ns.

Source or Destination Times

These times are the same whether the calculation is for source or
destination. The times given are for the address calculation. To this must
be added memory access time to actually fetch the operands:
Integer—1 word; Long integer and Floating—2 words;

Double Precision—4 words

Therefore: SOURCE/DST = Calculation Time + MEMORY ACCESS TIME.

Calculation Time
30 ns Bipolar 495 ns MOS 900 ns Core 980 ns Core
(MS11-C) (MS11-B) (MM11-L) (MM11-U)

Reg mode O 1120 1120 1120 1120

Floating

mode O 1120 1120 1120 1120
1 1260 1260 1260 1260
2 1260 1260 1260 1260
3 1650 1800 2140 2200
4 1260 1260 1260 1260
5 1800 1960 2310 2370
6 1650 1800 2140 2200
7 2080 2400 3180 3350

MEMORY ACCESS TIME: to be added to all modes except O.

ADD: 1820 ns for 16K core OR
ADD: 1670 ns for 8K core OR
ADD: 1150 ns for MOS OR
ADD: 990 ns for BIPOLAR
for every memory Access required to fetch the data.

B-18

%
:

Floating Point Execution
Floating Point Instructions

Mnemonic Instruction Time (us)

Floating AC—Floating Source Group: OPR FSRC, AC

MIN MAX

LDF Load floating 1.5 1.5
LDD Load floating double 1.7 157
ADDF Add floating 2.4 5.5
ADDD Add floating double 2.6 7.9
SUBF Subtract floating 24 5.5
SUBD Subtract floating double 2.6 7.9
MULF Multiply floating 4.7 7.1
MULD Multiply floating double 6.6 12.8
DIVF Divide floating 5.4 84
DIVD Divide Floating double 7.5 13.
MODF Multiply and Integerize floating 53 7.9
MODD Multiply and Integerize floating double 7.8 20.2
LDCDF Load and convert from double to floating 1.7 24
LDCFD Load and convert from floating to double 1.7 2.4
STF Store floating .88 .88
STD Store floating double .88 .88
Floating AC—Floating Destination Group: OPR AC, FDST
CMPF Compare floating 2.6 3.2
CMPD Compare double 2.8 35
STCFD Store and convert from floating to double 1.7
STCDF Store and convert from double to floating 1.7 3.0
Floating AC—Source Group: OPR SRC, AC
LDCIF Load and convert from integer to floating 3.6 4.6
LDCID Load and convert from integer to double 3.8 4.8
LDCLF Load and convert from long integer to

floating 3.8 5.7
LDCLD Load and convert from long integer to

double 4.1 5.9
LDEXP Load Exponent 1.5

Mnemonic Instruction Time (us)

MIN MAX
Floating AC—Destination Group: OPR AC, DST
STCFI Store and convert from floating to integer 34 4.4
STCFL Store and convert from floating to long
integer 4.2 5.2
STCDI Store and convert from double to integer 4.2 5.2
STCDL Store and convert from double to long
integer 4.2 5.2
STEXP Store exponent 24
Floating Destination Group: OPR FDST
CLRF Clear floating 1.1
CLRD Clear double 1.3
NEGF Negate floating 1.7
NEGD Negate double 1.7
ABSF Make absolute floating 1.7
ABSD Make absolute double 1.7
TSTF Test floating 1.5
TSTD Test double 15
Operate Group: OPR SRC
LDFS Load floating program status OPR DST .88
STFPS Store floating program status .88
STST Store floating status (exception & code
and program counter) 1.3
Copy Condition codes 1.1
SETF Set floating mode 1.1
SETI Set integer mode 1.1
SETD Set double mode 1.1
SETL Set long integer mode 1.1

B-20

Disengage and Fetch Next Instruction

This is the time required by the CPU to disengage from the FPP and
fetch the next instruction. If the instruction is a Floating Point instruc-
tion then the CPU restarts the cycle described in this section (B.2), other-
wise, it returns to the CPU cycle described in section B.1.

CPU time only:
1140 ns 16K Core
1040 ns 8K Core
630 ns MOS

450 ns Bipolar
Example

ADDF A(R), ACO

:a floating point add instruction in indexed

source mode (6), and in single (32 bit

precision).
Pre-Interaction Time:
CPU 600 us FPP 150 us
Source: 300 us 495 us 900 us 980 us
Bipolar MOS Core Core
(MS11-C) (MS11-B) (MM11-L) (MM11-U)
Calculation Time: 1650 1800 2140 2200
Memory Access 1980 2300 3340 3640
(2 words)
3630 4100 5480 5840
Execution Average 3950 3950 3950 3950
Disengage 450 630 1040 1140
Fetch Next
CPU Instruction Time: Starting at T = 0
Bipolar 600 + 3630 + 450 — 4680
MOS 600 + 4100 + 630 = 5330
8K Core 600 + 5480 + 1040 = 7120
16K Core 600 4 5840 4 1140 = 7580

FPP Instruction Time: Starting at T =

450

Bipolar 150 + 3630 + 3950 = 7730
MOS 150 + 4100 + 3950 = 8200
8K Core 150 + 5480 + 3950 = 9580
16K Core 150 - 5840 + 3950 — 9940

B-21

| 1y

B.5 TYPICAL INSTRUCTION TIMES

s

INSTRUCTION TIMES in Microseconds (us)?

CPU TYPE 11/35-11/40 11/45-11/50 ‘
Memory Type Core Core MOS |Bipolar t
Memory Speed .980 us .980 us |.425 us |.300 us

Floating Point

Instructions

Instr. PDP-11
Type Mnemonic!
Compare
Reg. to Reg. (32) CMPF 0,1 4.62 4.62 4.62
Mem. to Reg. (32) CMPF (3),2 840 7.06 6.74.
Compare
Reg. to Reg. (64) CMPD 2,0 4.87 4.87 4.87
Mem. to Reg. (64) CMPD (1),3 12.29 9.61 8.97
Load (32 Bit) LDF (R5),0 n/al 7.00 5.66 5.34
Load (64 Bit) LDD (R3),1 10.84 8.16 7.52
Store (32) STF 2,(RO) n/a’ 6,38 504 4.72
Store (64) STD 3,(R2) 10.02 7.34 6.70
Add (32)
Reg. to Reg. ADDF 1,0 5.67 5.67 5.67
Mem. to Reg. ADDF (R2),2 9.45 8.11 7.79
Mem. to Mem.? ADDF (R1) 26.80°
Add (64)
Reg. to Reg. ADDD 2,0 6.97 6.97 6.97
Mem. to Reg. ADDD (R1),2 1439 11.71 11.07
Subt. (32)
Reg. to Reg. SUBF 3,2 n/a 5.67 5.67 5.67
Mem. to Reg. SUBF (5),1 9.45 8.11 7.79
Mem. to Mem. ADDF (RO) 27.13
Subt. (64)
Reg. to Reg. SUBD 0,1 6.97 6.97 6.97
Mem. to Reg. SUBD (4),3 14.39 11.71 11.07
Mult. (32)
Reg. to Reg. MULF 2,0 n/a 7.62 7.62 7.62
Mem. to Reg. MULF (0),3 11.40 10.06 9.74
Mem. to Mem. MULF (R2) 33.423

1 Random register assignments are shown to illustrate PDP-11 flexibility.
2 Average times are shown.

3AlIl 11/40 Floating Point operations are Memory to Memory.

B-22

INSTRUCTION TIMES in Microseconds (us) (Cont.)

CPU TYPE 11/35-11/40 11/45-11/50
Memory Type Core Core MOS | Bipolar]
Memory Speed .980 us .980 us |.425 us|.300 us
Floating Point
Instructions
Instr. PDP-11
Type Mnemonic!
Mult. (64)
Reg. to Reg. MULD 0,3 1142 1142 11.42
Mem. to Reg. MULD (5),2 18.84 16.16 15.52
Divide (32)
Reg. to Reg. DIVF 6,0 n/a 8.62 8.62 8.62
Mem. to Reg. DIVF (6),1 1240 11.06 10.74
Mem. to Mem. DIVF (R5) 51.143
Divide (64)
Reg. to Reg. DIVD 4,1 23.02 23.02 23.02
Mem. to Reg. DIVD (2),5
Load MOV (RO),R1 2.32 2.01 1.17 .75
Store MOV R1, 2.58 2.13 1.17 .75
(R2)
Add (R-R) ADD R3,R4 1.07 .97 .51 .30
Add (mem-R) ADD (R5),R0O 2.54 1.8 1.0 A
Subtract (R-R) SUB R1,R2 1.07 .97 51 .30
Subt. (mem-R) SUB (RO),R3 2.54 1.8 1.0 .75
Multiply MUL R3,RO 9.16 3.89 3.51 3.30
(R-R) !
Multiply MUL (R3),R0 9.66 4.8 4.2 3.6
(mem-R)
Divide (R-R) DIV RO,R3 11.58 8.39 8.01 7.8
Divide DIV (R1),R5 12.08 9.37 8.50 8.10
(mem-R)
Compare (R-R) COM R2,R1 1.07 .97 .51 .30
Compare COM (RO),R6 2.54 1.8 1.0 .75
(mem-R)
Branch BEQ 2.36 1.18 .98 .60
1 Random register assignments are shown to illustrate PDP-11 flexibility.
2 Average times are shown.
3AIll 11/40 Floating Point operations are Memory to Memory.
B-23

B-24

APPENDIX C
INSTRUCTION INDEX

BALE b p e 4-70
NGy e 48

o A s e 4-64
IMIBE o el 4-52
a5 i AR o e 4-54
T R e 4-57
MERD 00w Bl 11-19
MEBI Y e 9-18, 11-18
MOV(E). -0 o el 4-23
e A R B 11:20
MIBli . o 919, 11-20
Mgl S0 gl 8-6

NEGE) ..o 4-10
NOP oo gl e 473

BiRiB)" 4-6

e e 4-24

ol 47

COND SODES ... 4.73

PRSI T 4-9 TRAP .- et SR g 468

: 411

4-71
4-31

C-1

FPP INSTRUCTIONS

4

NOTES

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard,
Massachusetts 01754, Telephone: (617) 897-5111

SALES AND SERVICE OFFICES

UNITED STATES—ALABAMA, Huntsville ¢ ARIZONA, Phoenix and Tucson e
CALIFORNIA, El Segundo, Los Angeles, Oakland, Ridgecrest, San Diego, San
Francisco (Mountain View), Santa Ana, Santa Clara, Stanford, Sunnyvale and Woodland
Hills « COLORADO, Englewood » CONNECTICUT, Fairfield and Meriden ¢ DISTRICT
OF COLUMBIA, Washington (Lanham, MD) e FLORIDA, Ft. Lauderdale and Orlando e
GEORGIA, Atlanta « HAWAII, Honolulu e ILLINOIS, Chicago (Rolling Meadows) e
INDIANA, Indianapolis * IOWA, Bettendorf ¢ KENTUCKY, Louisville ® LOUISIANA,
New Orleans (Metairie) ¢ MARYLAND, Odenton ¢« MASSACHUSETTS, Marlborough,
Waltham and Westfield ¢ MICHIGAN, Detroit (Farmington Hills) ¢« MINNESOTA,
Minneapolis « MISSOURI, Kansas City (Independence) and St. Louis ¢ NEW
HAMPSHIRE, Manchester ¢« NEW JERSEY, Cherry Hill, Fairfield, Metuchen and
Princeton « NEW MEXICO, Albuquerque ¢ NEW YORK, Albany, Buffalo (Cheek-
towaga), Long Island (Huntington Station), Manhattan, Rochester and Syracuse o
NORTH CAROLINA, Durham/Chapel Hill ¢« OHIO, Cleveland (Euclid), Columbus and
Dayton « OKLAHOMA, Tulsa « OREGON, Eugene and Portland « PENNSYLVANIA,
Allentown, Philadeiphia (Bluebell) and Pittsburgh ¢« SOUTH CAROLINA, Columbia e
TENNESSEE, Knoxville and Nashville ¢ TEXAS, Austin, Dallas and Houston ¢ UTAH,
Salt Lake City » VIRGINIA, Richmond « WASHINGTON, Bellevue « WISCONSIN,
Milwaukee (Brookfield) e

INTERNATIONAL—ARGENTINA, Buenos Aires « AUSTRALIA, Adelaide, Brisbane,
Canberra, Melbourne, Perth and Sydney ¢ AUSTRIA, Vienna ¢« BELGIUM, Brussels e
BOLIVIA, La Paz « BRAZIL, Rio de Janeiro and Sao Paulo « CANADA, Calgary,
Edmonton, Halifax, London, Montreal, Ottawa, Toronto, Vancouver and Winnipeg e
CHILE, Santiago « DENMARK, Copenhagen » FINLAND, Helsinki ¢« FRANCE,
Gronoble and Paris « GERMANY, Berlin, Cologne, Frankfurt, Hamburg, Hannover,

Munich and Stuttgart « HONG KONG ¢ INDIA, Bombay ¢ INDONESIA, Djakarta e
INELAND, Dublin e ITALY, Milan and Turin ¢ JAPAN, Osaka and Tokyo ¢ MALAYSIA,
Kinla Lumpur » MEXICO, Mexico City # NETHERLANDS, Utrecht ¢ NEW ZEALAND,
Auckland = NORWAY, Oslo « PUERTO RICO, Santurce ¢ SINGAPORE » SWEDEN,
Quthanbivurg and Stockholm o SWITZERLAND, Geneva and Zurich ¢ UNITED
WINEGDOM . Birmingham, Bristol, Edinburgh, Leeds, London, Manchester and Reading

8 VENEZULLA Carncns

