
ASSEMBLY
LANGUAGE

for the PDP-11
Charles Kapps

Robert L Stafford

ASSEMBLY
LANGUAGE

for the PDP-11
Charles Kapps

Robert L. Stafford
Temple University

A Joint Publication in Computer
and Management Information Systems

Prindle, Weber & Schmidt
CBI Publishing Company, Inc.

Boston, Massachusetts

P W S P U B L I S H E R S
Prindle, Weber & Schmidt • & • Willard Grant Press • N C • Duxbury Press • 4
Statler Office Building • 20 Providence Street • Boston. Massachusetts 02116

© Copyright 1981 by Prindle, Weber & Schmidt, 20 Providence St., Boston, MA
02116, and CBI Publishing Company, Inc., 51 Sleeper St., Boston, MA 02110.

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher.

Prindle, Weber & Schmidt is a division of Wadsworth, Inc.

Library of Congress Cataloging in Publication Data

Kapps, Charles
Assembly language for the PDP-11.

Includes index.
1. Assembler language (Computer program language)

2. PDP-11 (Computer)--Programming. I. Stafford,
Robert L., joint author. II. Title.
QA76.73.A8K36 001.64 '24 80-39985
ISBN 0-87150-304-2

I S B N 0 - 8 7 1 5 0 - 3 0 4 - 2

Printed in the United States of America.
10 9 8 7 6 5 — 86 85 84 83

Cover design and text art by Julie Gecha. Text design and production by Nancy
Blodget. Composed on a Compugraphic Edit writer in Times Roman by A & B Type
setters. Cover printed by New England Book Components, Inc. Text printed and bound
by Haddon Craftsmen.

We dedicate this book to:
Christianne

Judy
Marcia
Sarah

The Authors

Charles Kapps received his Ph .D . in Computer Science from the University of
Pennsylvania in 1970. He has published papers on programming languages
and automated theory of large-scale integrated circuits, and has co-authored
Introduction to the Theory of Computing, published by Charles Merrill. In
addition, he has worked on the Apollo Moonlander Project as a numerical
analyst under a contract to Raytheon. Most recently he has worked with In
tegrated Circuits Systems on the development of design processes for Very
Large-Scale Integrated Circuits. He is currently an Associate Professor of
Computer Science at Temple University.

Robert L. Stafford received his Ph .D . in Industrial Administration from Yale
University in 1969. He has done research in the area of picture processing and
has taught at the Pennsylvania State University and the University of
Pittsburgh. His current position is Associate Professor of Computer Science at
Temple University.

The Computer and Management Information
Systems Series

• Barry Bateman and Gerald Pi t t s / JCL in a System 370 Environment

• Charles Kapps and Robert L. Stafford/
Assembly Language for the PDP-11

• Jud Ostle/Systems Analysis and Design

jjjjjjj SERIES
FOREWORD

This book is part of the Computer and Management Information Systems
Series from Prindle, Weber & Schmidt and CBI Publishing Company, Inc. As
publishers we recognize the impact that computer technology has on the
academic community, the business world, and the computer industry itself.
Recent rapid advancements in hardware and software have created a need to
communicate new developments to the varied audiences who teach, im
plement, and initiate these new technologies. We have designed this series of
books as a timely, educational vehicle for the interchange of these ideas.

Traditional college textbooks that emphasize the theoretical aspects of
computer science are frequently used by industry professionals and business
executives. Conversely, books that reflect a more practical, "state-of-the-art"
presentation are used by colleges and universities as texts. By merging the
resources and efforts of our two companies, we have made a commitment to
facilitate an interchange among the audiences mentioned above. We believe
this multi-market potential for books in Computer and Management Infor
mation Systems is crucial to the exciting developments in computer-related
fields.

It has long been our publishing philosophy that the needs of an audience
are best served by concentrating on those areas of study where the publishers'
editorial, marketing, and production specialists have their greatest expertise.
Our companies are uniquely suited to implement this philosophy. CBI is a

well-known and established publisher of professional and reference books;
Prindle, Weber & Schmidt publishes exclusively in the computer and
mathematical sciences for the academic community. Together, we focus our
full editorial and marketing efforts on publishing books which can be utilized
by academics, business executives, and industry professionals. We welcome
your comments on this text, and any inquiries into our joint publishing venture
in Computer and Management Information Systems.

PREFACE

This book is designed for a one-semester course in assembly and machine
language programming for the PDP-11 family of computers. It is assumed
that people using this book will have some familiarity with computer program
ming, most likely in a higher level language such as FORTRAN or BASIC.
However, minimal assumptions have been made in this regard, and the basics
of machine organization are covered very thoroughly. Our motivational
philosophy is to knit theory and practice firmly together. Every effort has been
made to develop a conceptual understanding of the PDP-11 architecture while
leading the student to early hands-on experience on the machine. This ap
proach should also be ideal for individuals who wish to use the text as a self-
study guide for learning the assembly and machine language of the PDP-11
family.

The PDP-11 was chosen not only because of its popularity, but also
because we believe that the architecture is ideal for learning. The organiza
tional consistency makes the PDP-11 an extremely easy computer to program
in machine or assembly language. The richness of the machine language makes
it easy to use the assembly language for complicated problems. This richness
also makes the PDP-11 ideal as a stepping-off point for learning the architec
ture of other machines. By focusing on a single computer family, we are able
to include advanced topics such as floating point operations, hardware level
input and output, interfacing to a high level language, and operating system

functions. These topics extend the scope of the book into the larger field of
computer science.

Our major goal is to make the book both accessible and relevant for the
reader and the instructor. For example, the PDP-11 programming card is
printed on the inside front cover for easy reference. In the early chapters,
methods are shown which enable students to run simple programs on the com
puter. Later, the reader is shown how to perform input and output both with a
bare machine and by using the RT-11 operating system. Appendices show how
to run PDP-11 machine language programs using ODT, and assembly
language programs using RT-11 both on line and with batch. Basic use of the
PDP-11 on-line editor is also explained. Although the appendices are centered
around use of the RT-11 operating system, most of the examples in the text are
not tied to any operating system, and therefore this book is appropriate for use
with any PDP-11 system.

The organization of the chapters is as follows: Chapters 1 and 2 contain
background information for persons who may have had limited experience
with computers. Chapters 3, 4, and 5 introduce the basic concepts of machine
language and assembly language on the PDP-11 . By the end of Chapter 5 the
use of processor registers and simple subroutines has been covered so that the
students can start running fairly complex programs using input/output
routines shown in the appendix. Chapters 6, 7, and 8 present intermediate
material that focuses on the manipulation of data. This includes more
sophisticated operations with numbers, the processing of alphabetic informa
tion, and arrays. Chapters 9-12 present the advanced topics of subroutines
and global symbols, macros and conditional assembly, hardware level in
pu t /ou tpu t , and floating point operations. These chapters can be covered in
any order or omitted. Chapter 13 ties together the advanced topics to form an
introduction to operating systems and systems programming.

Chapters 1-7 are intended for use in the order presented. The order of the
remaining chapters can be varied according to the following graph of chapter
dependencies.

We extend sincere appreciation to our students who provided us with
many suggestions during the preparation of this material. James Gips of
Boston College also class-tested the manuscript and provided many valuable
comments. George Gorsline of Virginia Polytechnic Institute and State
University deserves special mention for his advice and detailed insights at
several stages during the development of the manuscript. We benefited from
the comments of the following people who reviewed all or parts of the
manuscript: Clifford Anderson, California State University, Los Angeles;
Donald Cooley, Utah State University; Paul Jalics, Cleveland State Univer
sity; William Lau, California State University, Fullerton; and Michael Lutz,
Rochester Institute of Technology.

We would also like to acknowledge the following people who helped us in
preparing the manuscript: Patricia DeSpirito, Maryaurelia Lemmon, and Judy
Lennon.

Special thanks are due to our production editor, Nancy Blodget.

Charles Kapps
Robert L. Stafford

TABLE
OF
CONTENTS

C H . 1 I N T R O D U C T I O N

1.1 History 1
1.2 Developments in Computer Software 4
1.3 The PDP-11 Family of Computers 7

C H . 2 N U M B E R S , C O U N T I N G , A N D L O G I C IN A
C O M P U T E R

2.1 Number Systems 15
2.2 The Decimal and Octal Number Systems 17
2.3 Binary Numbers 20
2.4 Octal Encoding 23
2.5 Two's Complement Arithmetic 26
2.6 Boolean Logic 28
2.7 Hexadecimal Encodings 30
2.8 Other Encodings 30

C H . 3 M A C H I N E L A N G U A G E P R O G R A M M I N G

3.1 Digital Computers 33
3.2 Memory Representation on the PDP-11 Computer 34
3.3 Processor Use of Memory 39
3.4 Machine Language Programs 42

3.5 The Use of a Memory Cell 44
3.6 Writing Machine Language Programs 52
3.7 Memory Structure of Other Computers 56

C H . 4 A S S E M B L Y L A N G U A G E P R O G R A M M I N G
4.1 Introduction 63
4.2 Developing an Assembly Language Program 64
4.3 The Assembly Process 69
4.4 Examples of Errors in the Assembly Process 71
4.5 Programs in the Computer 78
4.6 Running a Sample Program 82

C H . 5 P R O G R A M C O N T R O L F E A T U R E S
5.1 Introduction 87
5.2 Looping 88
5.3 Single-Operand Instructions 91
5.4 Machine Language Coding of the Branch Instructions 95
5.5 Other Instructions 97
5.6 Machine Language Operation Codes 102
5.7 Processor Registers 105
5.8 Subroutines 111
5.9 Stopping Your Program if Using RT-11 115

C H . 6 P D P - 1 1 A R I T H M E T I C
6.1 Introduction 119
6.2 Signed and Unsigned Numbers 119
6.3 Multiplication and Division 129
6.4 Multiple-Precision Arithmetic 137

C H . 7 A R R A Y S
7.1 Introduction and Review 143
7.2 Indexing 146
7.3 Other Addressing Modes 151
7.4 Full Set of Addressing Modes 154
7.5 Multiply-Dimensioned Arrays 160

C H . 8 A L P H A B E T I C I N F O R M A T I O N — B Y T E
I N S T R U C T I O N S

8.1 Representing Alphabetic Information 165
8.2 Manipulating Characters 172
8.3 Simplified Input and Output 179
8.4 Bit Manipulation Instructions 183
8.5 Other Character Representations 190

C H . 9 S U B R O U T I N E S

9-1 Introduction 197
9.2 Calling a Subroutine 197
9.3 Independent Assembly—Global Symbols 206
9.4 Interfacing Assembly Language with FORTRAN 209
9.5 Recursive Subroutines 214

C H . 10 M A C R O S A N D C O N D I T I O N A L A S S E M B L Y

10.1 Repetitive Blocks of Code 219
10.2 Symbolic Expressions 223
10.3 Macros 229
10.4 Conditional Assembly 232
10.5 Nesting and Recursion 234

C H . 11 I N P U T A N D O U T P U T
11.1 Introduction 239
11.2 Device Polling 239
11.3 Other Input /Output Devices 247
11.4 Interrupts 252
11.5 Other Considerations 260

C H . 12 F L O A T I N G P O I N T N U M B E R S A N D E X T E N D E D
I N S T R U C T I O N S

12.1 Introduction 265
12.2 Fixed and Floating Point Numbers 265
12.3 Floating Point Operations 269
12-4 PDP-11 Floating Point Numbers 275
12.5 Extended Instruction Set Operations 281

C H . 13 A D V A N C E D A S S E M B L Y L A N G A U G E T O P I C S
13.1 Introduction 289
13.2 Program Format 290
13.3 Object Code 296
13.4 Load Files 302
13.5 Program Execution 304

A P P E N D I X A Running Machine Language Programs with
On-Line Debugging Technique 309

A P P E N D I X B Routines for Reading and Printing Numbers 313

A P P E N D I X C

C.1 Running Assembly Language and FORTRAN Programs
Using RT-11 Batch 319

C.2 Notes for the Instructor 322

A P P E N D I X D Running Assembly Language and F O R T R A N
Programs from the Console Typewriter with the RT-11
System

D.1 Communicating with the RT-11 System 325
D.2 Files 326
D.3 Running a Program 327

A P P E N D I X E Using the RT-11 Editor

E.1 Function of the Editor 331
E.2 Creating a Program 332
E.3 Correcting Errors 333
E.4 Inserting and Locating the Pointer in a Line 334
E.5 Combining Commands 335
E.6 The Search Command 336
E.7 Terminating the Edit Run 336
E.8 Editing a Preexisting Program 337
E.9 Immediate Mode Editing 338

Glossary 341

Index 349

CHAPTER 1

INTRODUCTION

1.1 HISTORY

The Early Days

The history of automatic computers goes back much further than many people
realize. In the 1830s and 1840s, an English mathematician by the name of
Charles Babbage attempted to build an automatic computer based on gears and
punched cards. Unfortunately, Babbage was never able to complete his analytic
engine. Later in the century, however, an American named Herman Hollerith
developed a punched card tabulating system that was used with the 1890 U.S .
census.

Punched card tabulating equipment based on Hollerith's designs came into
extensive use in the early part of the twentieth century. This equipment, which
came to use the initials EAM for Electronic Accounting Machinery, was made
of electrical and mechanical parts (motors, switches, solenoids, relays, gears,
clutches, ratchets, and so forth). Although modern equipment is considerably
different from the early EAM equipment, the original Hollerith standards are
still used for punched cards. (See page 190 for more detail on Hollerith codes.)

One major drawback to the EAM equipment was that it consisted of a con
glomeration of special purpose machines, card duplicators, tabulators, sorters,
and collators. These were all hard-wired or designed to perform specific tasks.
Any variability in the system was accomplished by wiring configurations
through plug boards. These plug boards allowed the user to route data and con-

trol information in much the same way that a switchboard operator routes
telephone calls.

The next big step in computing came around 1940, when a more general
and convenient method for controlling computations was developed. This ap
peared in the form of the Mark I computer developed by Howard Aiken at Har
vard University. The Mark I computer was essentially a cross between a giant
adding machine and a player piano. The entire control of the machine was
' ' p rogrammed ' ' by punching appropriate patterns of holes in several player-
pianolike scrolls.

Electronic Computers

Like its predecessors, the Mark I computer was electromechanical. In other
words, electricity was only used to move mechanical parts. These moving parts,
in turn, activated switches that controlled the electric currents. At best such
mechanical operations require about one one-thousandth of a second, and
often may require much more. The solution to such relative slowness was to
replace the mechanical switches with electronic switches. An electronic switch is
one that has no moving parts . The switching is accomplished by applying elec
trostatic or magnetic fields to the materials or empty space where the electrical
conduction is taking place. In 1940, the available active element for an elec
tronic switch was the vacuum tube.

Shortly after the Mark I was in operation, Presper Eckert and John
Mauchly built the first electronic computer, called the ENIAC, at the Universi
ty of Pennsylvania. Because a vacuum-tube switch is capable of operating in
one one-millionth of a second, the ENIAC had the potential of being 1000 times
faster than the Mark I. As computers became faster, they began to tax people's
ability to make use of the speed. In fact, one of the early computer scientists
was reputed to have said that six ENIAC's would keep all the mathematicians in
the country busy forever, just finding problems for them to solve.

In order to perform a given computational process on the ENIAC, it was
necessary to plug in a large number of wires in a certain configuration, a time-
consuming process. The next innovation was the idea that a computational pro
cess should be specified by a computer program that resides in memory along
with the data . In addition to making computers easier to use, an internally
stored program makes it possible for the computer program to modify itself as
it executes. (Although this was important with early computers, modern com
puters have been designed with instruction sets so that modification is no longer
necessary or even desirable.)

In the past, many people have credited John von Neumann of Princeton
University for developing the idea of the internally stored program. However,
recent evidence indicates that Eckert and Mauchly deserve at least as much
credit as von Neumann. In any case, the computer field owes a great debt to all
three individuals.

The Solid-State Era

In the late 1950s and early 1960s, transistors began to replace the vacuum-tube
switches in computers. Transistors have five distinct advantages over vacuum
tubes: they are smaller, they consume much less energy, they are faster, they are
less expensive, and they are more reliable.

Although there is no fundamental difference between transistor computers
and vacuum-tube computers, the five advantages of transistors have a tremen
dous economic impact leading to two opposed trends in computer design:

1. First, it became feasible to build very large and powerful "super
computers. " Early examples of these were the IBM 7094, CDC 6600, and
DEC PDP-6.*

2. It also became feasible, for the first time, to build small, inexpensive
"min icomputers . " These computers were low enough in cost so that small
laboratories could afford to have them for dedicated use, so that one user
could have the computer all to him/herself. (The large computers were so
expensive that use had to be scheduled and shared.) Early examples of
minicomputers were the IBM 1620, Royal McBee RPG 4000, and DEC
PDP-5 .

The proliferation of both kinds of computers started the extensive use of
computers, and computers began to become better understood. Consequently
the architecture and organization of later computers reflect an improved
understanding; however, the organization principles have remained basically
unchanged since the days of the first general purpose machines.

Integrated Circuits

Transistors are made by implanting small amounts of impurities in a semicon
ductor crystal such as silicon. Early transistors were all individually packaged in
a small metal or plastic container with contact leads protruding. Because the
actual transistor was much smaller than its package, much space was wasted.
Integrated circuits, on the other hand, are made by forming many transistors
on the surface of a silicon wafer. Wiring is then photographically applied right
on the surface of the wafer. This allows extremely complex circuits to be con
structed in a very small space. (At present, it is possible to have 70,000 tran
sistors on a " c h i p " less than 1 cm 2 in area.)

The advent of integrated circuits completely revolutionized the economics
of computers. Large computers have become less expensive and minicomputers
have become more sophisticated, so that now it is sometimes difficult to dis-

*Some people may argue the appropriateness of the term "supercomputer" for these ex
amples. However, in the early to mid 1960s, they were pretty "super."

tinguish one from the other. We also have the so-called microcomputers in
which an entire computer is placed on a single silicon chip that can be sold for
only a few dollars. Originally, microcomputers were rather crude, but recent
advances have blurred the distinction between microcomputers and mini
computers.

At present, integrated-circuit technology is rapidly developing, and one
can only guess where the future will lead.

Other Hardware Advances

The physical components that make up a computer system are collectively
referred to as computer hardware. The previous subsections primarily dealt
with advances in processor design and implementation. Paralleling this, though
perhaps not so dramatic, have been advances in other hardware devices such as
memories and peripheral equipment.

Memory design has followed a similar history from electromechanical
designs to integrated circuits. On the other hand, peripheral devices such as
printers, card readers, magnetic tape units, disks and drums, and so forth have
not improved as much. As a result, peripheral devices are by far the most expen
sive parts of most computer systems.

1.2 D E V E L O P M E N T S IN
C O M P U T E R S O F T W A R E

Machine and Assembly Language

To build a computer, designers first select a particular set of orders or instruc
tions and then construct a machine that will carry out or execute programs com
prised of these orders or instructions. The instructions or orders are called
machine-language instructions and the resulting programs are called machine-
language programs. Notice that the machine-language instructions of one
machine may be totally different from the machine-language instructions of
another machine.

Machine languages are usually numerical languages that are awkward for
human beings to use. For example, the PDP-11 machine-language instruction
to add the contents of one memory cell (in this case the memory cell called
001000) to another memory cell (called 002000) can be written as:

063737 001000 002000

where 063737 is the numerical operation code for a particular kind of addition.
In the early 1950s, assembly languages were developed to ease the burden

on programmers. In an assembly language, names are substituted for numbers.

For example, the preceding PDP-11 machine-language instruction might be
rewritten in assembly language as follows:

ADD BONUS,SALARY

The advantage of using names instead of numbers should be obvious.
Before an assembly-language program can be executed, it must be

translated into machine language. This translation is basically a clerical process
that involves substituting the correct number for each of the names (that is,
substituting 063737 for A D D in the previous example). However, this is exactly
the kind of problem that is easily solved with a computer. Therefore, the
designer of an assembly language creates a program, called the assembler, that
will input a users' assembly-language program and translate it into machine
language.

Higher-Level Languages

In the mid 1950s, the first higher-level languages were developed. Unlike an
assembly language, a higher-level language is not associated with any particular
machine language. Instead, the designer of a higher-level language concentrates
on developing a language that is convenient for solving a certain class of com
puting problems. Then the designer builds a translator* called a compiler to
translate a users' program into a given machine language. If it is desired to use
the high-level language on a computer with a different machine language, a
second translator is constructed. Thus the user of a high-level language does not
have to know the machine language of the computer being used. In addition, it
is possible to transfer a program written in a high-level language from one com
puter to another without rewriting the program (assuming that the necessary
translators are available).

The difference between assembly language and higher-level languages can
also be described in terms of the translation process. Each assembly-language
instruction is generally translated into one machine-language instruction. In
contrast, each statement in a higher-level language may be translated into many
machine-language statements.

In the late 1950s and throughout the 1960s, a variety of high-level
languages became popular. The first of these was FORTRAN (FORmula
TRANslation) which was developed by a group headed by John Backus at IBM.
FORTRAN was designed to help people solve scientific problems where a large
number of calculations are required as opposed to data-processing problems
where a large number of input and output operations (such as reading and
printing) are necessary. In order to solve data-processing problems, COBOL
(Common Business Oriented Language) was designed by a committee spon-

*Some higher-level languages are interpreted, which is a step-by-step translation dur
ing program execution.

sored by the Department of Defense. In 1960, an international group of com
puter experts met to develop a new language for scientific problems. (The
original specifications for FORTRAN were written in 1954, and a great deal
had been learned about language design in the intervening years.) The result
was the programming language ALGOL 60 (ALGOrithmetic Language). In the
mid 1960s IBM developed the language PL-1 (Programming Language 1) which
was designed for both scientific programming problems and data-processing
applications. At about the same time, John Kemeny and Thomas Kurtz at Dart
mouth College developed BASIC (Beginners' All purpose Symbolic Instruction
Code). Although BASIC resembles a simplified version of FORTAN, it was
specifically designed to be used from an interactive time-sharing terminal.
Other languages that are now in common use include APL (A Programming
Language), which is also designed to be used from a time-sharing terminal, and
PASCAL, which resembles a simplified version of ALGOL. It should be noted
that this list of programming languages is far from exhaustive. There are lit
erally hundreds of programming languages. Many are specialized languages
designed for a particular class of problems such as simulation.

Why Study Assembly Language?

Higher-level languages are easier to use than machine or assembly language. In
addition, higher-level languages can generally be transported from one com
puter system to another without rewriting the program. Why then should peo
ple still write programs in machine or assembly language?

In some cases, a user may wish to use features of a computer that are not
accessible from available higher-level languages. This situation often occurs in
developing operating-system software, especially in the portions involving
input, output , and other machine-dependent resources. In such cases it
becomes necessary to use machine and assembly language for at least some sec
tions of the program.

For some applications, a carefully written assembly-language program to
solve a given problem will be more efficient (in terms of running time and/or
memory space used) than a carefully written program in a higher-level
language. This often overrides the fact that assembly-language programs may
require more programmer time to write, debug, test, and modify than an
equivalent program written in a higher-level language. The selection of a
language is an economic question, and the various costs for the particular ap
plication must be examined in order to make a rational decision. With current
costs, it appears that higher-level languages will be the correct choice in the ma
jority of applications but that assembly language is still appropriate for a
significant number of applications.

In addition, there are important reasons for knowing (as opposed to pro
gramming in) machine and assembly language. To a large extent, the purpose of
a higher-level language is to " h i d e " the complexity of machine language from
the average programmer or user. However, the higher-level language is gener-

ally not completely successful in burying the complexity. As a result, the higher-
level language may produce unexpected results such as arithmetic overflow,
and apparently simple changes in a higher-level language program may result in
large changes in running time or memory usage. A knowledge of machine
language is useful for understanding and predicting these results. Such
knowledge is particularly useful when a higher-level language program is
transported from one machine to another. Finally, computer scientists should
know machine and assembly languages for a variety of reasons, particularly if
they are to develop more effective higher-level languages.

E X E R C I S E SET 1

Exercise questions marked by an asterisk (*) will require outside reading.

1 Identify the following persons, and name their major accomplishment:

(a) Herman Hollerith

(b) Howard Aiken

(c) Presper Eckert

(d) John Mauchly

(e) John von Neumann

*2 Using reference material other than this text, write a short (one page or so)
biography of any of the persons named in question 1.

3 Vacuum-tube computers have been completely replaced by solid-state
computers. This is true to the extent that there are very few if any vacuum-
tube computers in practical operation anywhere in the world today. To ac
count for this, name as many disadvantages of vacuum-tube computers as
you can.

*4 One of the important names in the founding of computer science is Grace
Hopper . What is she best known for? And how do her accomplishments
differ from those referred to in question 1?

1.3 T H E P D P - 1 1 F A M I L Y OF C O M P U T E R S

Overview

The first PDP-11 computers were introduced at the end of the 1960s. These
computers were intended to replace the P D P - 5 / P D P - 8 family of minicom
puters that were then becoming obsolete. The PDP-11 's used integrated circuits
that allowed considerable sophistication at a reduced price. As a result, the
PDP-11 became a very popular minicomputer.

Early P D P - l l ' s were used primarily with paper tape operating systems.
This means that programs are stored in the form of a punched paper tape that
can be read into the computer. All programs are stored this way, both user pro
grams and system programs. As a result, use of such a machine was rather slow
and awkward. Fortunately inexpensive forms of magnetic media (tapes and
disks) have been developed. These are much faster and more convenient to use
and are within the economic reach of most users.

As a consequence, most PDP-11 's now have rather sophisticated operating
systems that use mass-storage media (disk or magnetic tape). These systems can
store many user programs and provide the user with a number of system func
tions. One of these functions is to provide the user with a variety of languages in
which to write programs. These include assembly language, FORTRAN, and
BASIC. Full-blown systems will also include COBOL, APL, PASCAL, and
other languages. With the operating systems provided, these languages are
easily accessible to the user.

The P D P - 1 1 Processors

The PDP-11 is designated a 16-bit minicomputer. The 16-bit designation means
that most operations in the processor deal with a unit of information that con
sists of sixteen binary digits. (See Chapters 2 and 3.) This is also called the word
size of the processor. To a certain extent, the word size determines the speed at
which the processor can operate. It also tends to determine the price. While a
32-bit machine may be twice as fast as a 16-bit machine, it may also be twice as
expensive because it needs parts that are at least twice as complicated.*

Although the basic architecture and primary operations are the same on all
P D P - l l ' s , many different models have many different features. Some dif
ferences are based on changes in technology that have occurred in the years
since the first PDP-11 's appeared on the market. Other differences are based on
how much a customer is willing to pay for a faster or more powerful computer.

The least expensive processors in the PDP-11 family are the so-called
L S I - l l ' s (see Figure 1.1). The name comes from the fact that the bulk of the
processor resides on a few Large-Scale Integrated-circuit chips. An LSI-11 pro
cessor board can be bought for well under $1000. This processor has all the
power of the basic PDP-11 instruction set. In packaged form, this processor
forms the 03 series of models, such as the PDP-11V03. The 03 series of
P D P - l l ' s are the least expensive, but they are comparatively slow, limited in
the amount of memory, and limited in the selection of peripheral equipment
(see Figure 1.2).

A new version of the LSI-11 is called the PDP-11 /23 . This version is about
twice as expensive, but is much faster and allows four times as much memory. It
also allows for the operation of sophisticated peripheral devices. (See Chapter
11.)
*Note the word may; the bit-price ratio may vary because different technologies may
cause radical cost and speed differences.

The full-scale PDP-11 processors use a high-speed parallel connection to
the outside world called the U N I B U S © . At the present time, in order to have
access to all of the available peripheral devices such as high-speed printers and
card readers, large-capacity disks, and magnetic tape, it is necessary to have a
UNIBUS© machine. The most popular machine with a U N I B U S © at present
is the PDP-11/34 (see Figure 1.3). The model 34 is somewhat faster than the
model 23 and has the added capability of the U N I B U S © . The cost is somewhat
higher, but is well within the reach of dedicated laboratory use.

The PDP-11/50 and 11/70 (see Figure 1.4) are larger, faster, and more
powerful PDP-11 computers that may be too big to be called "min icompute rs"
(although most people do). They share the machine language of the other
PDP-11 's but have added features that entitle them to be classified as full-scale
computers. These computers are normally used in a multiuser environment,
which means that the computer is servicing a number of users during the same
general time period.

The VAX-11/780 is an even more powerful machine that can execute
PDP-11 machine-language programs. However, it is really a 32-bit machine in
stead of a 16-bit machine, and it normally uses a different machine language.

Figure 1.1 LSI-11 Computer (Courtesy of Digital Equipment Corp.)

Figure 1.3 PDP-11/34 Computer System (Courtesy of Digital Equipment Corp.)

Figure 1.2 PDP-11/03 Computer (Courtesy of Digital Equipment Corp.)

Figure 1.4 PDP-11/70 Computer System (Courtesy of Digital Equipment Corp.)

Systems Software

Although it would be possible to enter one's own programs into a machine
without an operating system, various areas such as input, output , file manage
ment, and language translation would require much programming effort. As a
result, virtually all computer users purchase a packaged set of programs for
their computer for running the system. This is systems software.

Systems software falls into several categories:

1. Monitors—these programs coordinate and direct the execution of all other
programs.

2 . Utility programs—these programs are used for creating, copying, deleting,
and updating files and operating systems themselves.

3 . System subroutines—these allow user programs to perform system func
tions as described in item 2 .

4. Language processors—these enable the user to write programs in various
languages: assembly language, FORTRAN, BASIC, and so forth.

5 . Special library packages—these allow one to use special mathematical
functions, statistical functions, graphics control, and so forth.

An operating system normally contains programs in categories 1 through
3 , and user-selected features of 4 and 5. Since systems software requires a con
siderable development effort, one must pay a license fee to use an operating
system. The cost of these licenses may be thousands of dollars for PDP-11
systems (and even more for full-sized computers).

The most frequently seen operating systems for the PDP-11 are RT-11,
RSTS (pronounced "Ris t iss") , RSX-11, and paper tape systems. RT-11 is a
fairly simple operating system that services a single user at a time, although one
mode of operation allows two programs to execute at the same time. The intent
is to allow program development at the same time that the computer is con
trolling laboratory equipment. While RT-11 has many sophisticated file and
language features, it is streamlined so that it is fast and uses a minimal amount
of memory. Most small PDP-11's operate under the control of the RT-11
operating system.

RSTS is a multiuser system that was originally designed as a BASIC only
system but now allows other languages such as assembly language and FOR
TRAN. The intended purpose of the RSTS is to service terminal users.

RSX-11 is a large, complex, general-purpose system. It allows many users
access to the machine at many levels. Because of the sophistication of RSX-11,
it requires much memory and much input /output activity. As a consequence,
RSX-11 is used on most of the larger PDP-11 's . The PDP-11/34 and 11/23
seem to be the dividing line. Larger computers use RSX-11; smaller ones use
RT-11, and model 34 and 23 users are split.

Paper tape systems had just about disappeared until the advent of inexpen
sive " h o m e " versions of the PDP-11 such as the Heathki t© H-11. With a
paper tape system, the user purchases a supply of paper tapes, each of which
contains a system program that must be manually loaded using a paper tape
reader.

Peripheral Devices

Without peripheral devices, a computer would have no way of receiving or giv
ing out information. Peripheral devices are any input or output or external
data-storage devices. The PDP-11 computer can accommodate a large variety
of peripheral devices. These include teletypewriters, cathode-ray-tube (CRT)
displays, card readers, punched paper tape readers, and punches and various
kinds of magnetic media (tapes and disks).

Originally minicomputers such as the PDP-5 and later the PDP-8 and then
the PDP-11 had rather meager input and output facilities. This is because the
cost of peripheral equipment tends to be much greater than the cost of the com
puter. Therefore, most early minicomputers only had a teletypewriter that was
equipped with a paper tape reader /punch. With such a system, it was not
unusual for a program to require thirty minutes time to be read into the
machine.

Later machines had some rudimentary tape and disk capability. And now
it is possible to outfit a PDP-11 with the most sophisticated magnetic tapes,
multiplatter disks, high-speed printers, card readers, and more specialized
devices. The powerful, high-speed peripheral equipment found its way to the
PDP-11's by two routes. First, there are the big PDP-11's that need the high
speed equipment to operate effectively. Second, PDP-11's are used as input /

output controllers for some larger computers such as the DEC System 20 and
the VAX-11/780.

On the other hand, recent hardware developments have brought many
medium-speed devices within reach of the user with limited resources. Perhaps
the most significant of these at present is the floppy disk system. The floppy
disk is a small circular disk made of flexible plastic coated with magnetizable
iron oxide. The disk resides in a cardboard envelope from which it is never
removed. There are apertures in the cardboard that allow access to the rotating
disk by the read/wri te mechanism. Floppy disk systems are inexpensive,
moderately fast, and can store a fairly large amount of data . As a result, many
small systems are configured with a teletypewriter or a CRT along with a dual
floppy disk. Such a system would be considered minimal by today's standards
for practical use.

The next step up from a floppy disk system would be a single-platter hard
disk. Such systems are somewhat more expensive, but are much faster and can
store more data.

E X E R C I S E SET 2

Exercise questions marked by an asterisk(*) will require outside reading.

1 Identify the following PDP-11 processors. What are the main characteris
tics and main applications?

(a) PDP-11/03

(b) PDP-11 /23

(c) PDP-11 /34

(d) PDP-11 /70

*2 Identify the following peripheral devices that can be attached to the
PDP-11 . What purposes do they serve? What is their data-handling
capacity?

(a) CR-11 (b) LA-180

(c) DX-01 (d) LA-34

(e) LP-11 (0 R P - H

(g) VT-100 (h) VT-11

*3 What does DEC mean by "tradi t ional product l ine"? Name several tradi
tional products and state how they were superceded.

CHAPTER 2

NUMBERS, COUNTING,
AND LOGIC
IN A COMPUTER

2 .1 N U M B E R SYSTEMS

Historical Aspects

Throughout history, people have devised many and varied methods for reckon
ing or counting. Even today we can still find people using such primitive
methods of counting as placing stones in a bag or carving notches in a stick. In
contrast with the primitive schemes, we can find the elaborate Roman numeral
system which is now used mostly for show. However, the number system with
which all of us are most familiar is the decimal or Arabic system.* Figure 2.1
shows some examples of numbers represented in various systems.

One thing that is common to all these systems is that they use a physical
event or phenomenon such as a pile of stones, a carving, or a configuration of
ink on paper, to represent a number. Note the word represent. Numbers are not
physical objects but are abstract concepts which are used to answer the question
" H o w m a n y ? " The objects or shapes which we build or write down are often
referred to incorrectly as numbers. In reality they are representations of
numbers.

•Arabic numerals were introduced to the European culture in the twelfth century by
means of a Latin translation of a book by the Arabic mathematician Muhammad ibn-
Musa al-Khwarizmi (ca. A.D. 780-850). A corruption of al-Khwarizmi's name gives us
the word algorithm, meaning a well-defined, step-by-step process for solving a problem.

Figure 2.1 Several Systems of Number Representation

Decimal Notat ion

Another feature of most of the traditional number representation systems is
that the schemes of representation tend to use groupings of fives and tens. This
causes us to regard 5, 10, and their multiples and powers as extremely important
numbers with almost magical properties. After all, it is very easy to multiply or
divide a number by 10. It is not so easy to do those same operations with 8, 9,
11, or 12.

The fact is that the only reason that the numbers 5 or 10 have any special
properties is because the numbers ' representations are based on 10s. As we shall
soon see, number representations can be based upon numbers other than 10.
There is really no particular advantage to a ten-based system. The only reason
that fives and tens received such importance in number representation is that
humans are endowed with ten fingers (five per hand), and long before any writ
ten forms of counting were developed, people counted on their fingers. Since
computers do not have five-fingered hands, there is no special advantage to
fives or tens in a computer. In fact, the contrary is true. Computers can be built
to operate more efficiently if they operate using number-representation systems
based on numbers other than 10.

2.2 T H E D E C I M A L A N D O C T A L
N U M B E R SYSTEMS

Counting

As we introduce other number systems, we will review the basic concepts of the
decimal system. This includes counting, addition, and subtraction, as well as
the interpretation of number representations. In the decimal system, numbers
are expressed in the form of a string of symbols chosen from a collection of ten
digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Counting is performed by starting with 0,
and writing down successive digits, that is, 0, 1, 2. When we get up to 9, we have
used every digit, and thus continue by going back to 0 and placing a 1 to the left
to get 10, 11, 12, and so forth. When we get to 19, we bring the 9 back to 0 and
count once with the digit on the left to get 20, and so on. When a sequence of 9s
occurs on the right, they all go back to 0 and a count, or carry, is propagated to
the left. Thus, after 3999, we get 4000.

As stated in the preceding section, there is nothing sacred about the
number 10, nor is there any magic about using a set of ten digits. Suppose there
were only eight. This might be the number system we would be using if people
had four fingers on each hand rather than five. As it turns out , we are doing
more than just an intellectual exercise here because the base eight, or octal,
number system is extremely useful when dealing with some computers.

In the octal number system, we have eight digits: 0, 1, 2, 3, 4, 5, 6, and 7.
Counting is basically the same in octal as in decimal, except that since there are
no 8s or 9s, we must revert to 0 and produce a carry when 7 is reached. Thus, the
next number after 7 is 10, after 17 we get 20, and after 277 we get 300. Table 2.1
shows a sequence of counting, both in octal and decimal. (For the moment , ig
nore the columns labeled binary and hexadecimal). Note the octal and decimal
correspondences. For example, the table shows that the decimal number 30 is
equivalent to the octal number 36.

Addition and Subtraction

Addition and subtraction of numbers is an extension of the counting process. In
effect, you are performing counting for addition and backward counting for
subtraction. As we all learned in our early education, such counting becomes
quite tedious when dealing with large numbers. To avoid this, we were all
taught a shortcut method for addition and subtraction. This method required
that we memorize tables that give the results for adding or subtracting any com
bination of one-digit numbers. We then add or subtract the numbers digit by
digit. If the result of simple digit operation is greater than 9 or less than 0, we
carry a 1 into or borrow a 1 from the next digit to the left.

Addition and subtraction in the octal number system are basically the same
processes except that the tables are different. Since there is no 8 or 9, the carry
ing takes place when a sum goes over 7.

TABLE 2.I COUNTING IN DECIMA L, BIN A R Y, OCTA L,
AND HEXADECIMAL

Decimal Binary Octal
Hexa

decimal Decimal Binary Octal
Hexa

decimal

0 0 0 0 32 100000 40 20
1 1 1 1 33 100001 41 21
2 10 2 2 34 100010 42 22
3 11 3 3 35 100011 43 23
4 100 4 4 36 100100 44 24
5 101 5 5 37 100101 45 25
6 110 6 6 38 100110 46 26
7 111 7 7 39 100111 47 27
8 1000 10 8 40 101000 50 28
9 1001 11 9 41 101001 51 29

10 1010 12 A 42 101010 52 2A
11 1011 13 B 43 101011 53 2B
12 1100 14 C 44 101100 54 2C
13 1101 15 D 45 101101 55 2D
14 1110 16 E 46 101110 56 2E
15 1111 17 F 47 101111 57 2F
16 10000 20 10 48 110000 60 30
17 10001 21 11 49 110001 61 31
18 10010 22 12 50 110010 62 32
19 10011 23 13 51 110011 63 33
20 10100 24 14 52 110100 64 34
21 10101 25 15 53 110101 65 35
22 10110 26 16 54 110110 66 36
23 10111 27 17 55 110111 67 37
24 11000 30 18 56 111000 70 38
25 11001 31 19 57 111001 71 39
26 11010 32 1A 58 111010 72 3A
27 11011 33 IB 59 111011 73 3B
28 11100 34 1C 60 111100 74 3C
29 11101 35 ID 61 111101 75 3D
30 11110 36 IE 62 111110 76 3E
31 11111 37 IF 63 n u n 77 3F

64 1000000 100 40
65 1000001 101 41

Small octal numbers can be added using Table 2 .1 . Using the table you can
convert the octal numbers to decimal, perform the addition in decimal, and
then use the table to convert the sum to octal. Instead of using the table, it is
possible to add two octal digits using the following rule: Add the two digits as
though they were decimal digits. If the resulting sum is 7 or less, it represents the

correct octal sum. If the sum is greater than 7, add 2 more to the decimal sum to
get the correct octal answer. Thus 3+ 3 is 6 in decimal, which is less than or
equal to 7. Therefore 3 + 3 is 6 in octal. Similarly, 4 + 5 is 9 in decimal, which
is greater than 7. Therefore, add 2 to get 11. Thus 4 + 5 is 11 in octal. (The
reason that 2 is added is to skip over the decimal digits 8 and 9 which do not
appear in the octal system.) Analogous techniques can be developed for octal
subtraction.

Figure 2.2 shows several examples of octal addition and subtraction. Note
that octal arithmetic behaves like decimal arithmetic in that it is never necessary
to carry or borrow more than once from any given digit position. (This is based
on the assumption that just two numbers are added at a time, that is, no column
additions.)

Figure 2.2 Examples of Octal Addition and Subtraction

Addition

Octal to Decimal Conversion

The numbers computed in Figure 2.2 may seem bewildering. For example, what
do the octal numbers 23, 554, or 25736 represent? This raises the whole ques
tion of interpretation of numbers. One method of interpretation is to count
until you get there. For example, if Table 2.1 is examined, it is easy to see that 23
octal is equal to 19 decimal. If the table were extended, larger octal numbers
could be interpreted. However, the counting method would be almost useless
for large numbers such as 25736. To handle these numbers, we must treat them
just as we do multidigit decimal numbers. The respective digits of a decimal
number going from right to left are designated the units, tens, hundreds, and
thousands, and so on, columns. This means that the value of the number is
determined by multiplying the value of each digit by 1, 10, 100, and 1000, and
so on, and adding the products together. In other words, the decimal number
3469 is equal to (9 x 1) + (6 x 10) + (4 x 100) + (3 x 1000).

The same principle applies to the octal number system. The only difference
is that the multipliers are powers of eight rather than powers of ten. Thus, the
octal number 23 represents the number (3 x 1) + (2 x 8) = 3 + 16 = 19
(decimal). This is the same result we obtained by counting in Table 2 .1 . Simi
larly, the octal number 554 represents (4 x 1) + (5 x 8) + (5 x 64) = 4 + 40
+ 320 = 364 (decimal). Finally, the octal number 25736 can be converted as is
shown in Figure 2.3.

Figure 2.3 Octal to Decimal Conversion

2.3 B I N A R Y N U M B E R S

The Need for Binary Numbers

In the previous section, the octal number representation system was introduced
as an example of a system other than the decimal system. We will later see that
the octal system is extremely important for programming the PDP-11 com
puter. However, in the meantime we will consider a number system that is even
more important for computers, the binary system.

Recall that our use of the decimal number system is based upon the

primitive practice of counting on our fingers. In other words, the original
human hardware available for counting was fingers. Since fingers are used in a
ten-state fashion, we perceive the base 10 number system as natural for human
use. The use of base 5 and base 20 (the score) by some societies has a similar
origin.

The question now is, " W h a t is natural for the compu te r?" Clearly, com
puters do not have fingers and thus would have no propensity toward using the
decimal system. What is natural for computers is dependent upon the kinds of
operations that occur within the various parts of a computer. As we look at the
workings of a digital computer, virtually every operation consists of one or
more events that either happen or fail to happen. If you look at a certain region
of a punched card, that area can either have a hole punched through it or it can
fail to have a hole punched through it. There are just two alternatives and no
others. A hole cannot be half-way punched. A physical event that can only
occur in one of two ways (such as a hole either existing or not existing) is called a
binary event.* Table 2.2 lists several different binary events.

TABLE 2.2 BINARY EVENTS

Event States

Hole in punched card Can be punched or not punched
A toggle switch Can be on or off
A light bulb Can be lighted or dark
A wire Can have high voltage or low voltage

Because the design of most digital computers consists of combinations and
collections of two-state events, it is reasonable for computer designers to find it
natural to use base 2. As a consequence, the number system that is natural for
the computer is the base 2, or binary number representation system.

Binary Counting

The binary number system operates in much the same way as the decimal or
octal systems, except that there are only two digits, 0 and 1. When you count,
you start at 0 as usual. The next number is 1, but you cannot go further since
there are no more digits. Therefore, you must go back to 0 and carry a 1 to the
next place, giving us 10 for two. The second column of Table 2.1 (page 18) il
lustrates binary counting.

*Readers may note that it is possible for events such as hole punches to be multistate
rather than just two-state. For example, three or four or more differently shaped holes
could be punched. However, for computer design, this is not usually practical because
the construction of a device capable of reliably recognizing several different hole shapes
would be considerably more expensive than a device that merely has to recognize the
presence or absence of a hole.

Binary Arithmetic

Binary addition and subtraction follow the same scheme shown in the previous
section for octal arithmetic. First, a rule is needed for adding together two
binary digits. Although techniques analogous to those used with octal digits
could be used, it is easier simply to memorize the following table:

0 + 0 = 00 (zero with no carry)

0 + 1 = 0 1 (one with no carry)

1 + 0 = 01 (one with no carry)

1 + 1 = 10 (zero with a carry)

A similar set of rules can be developed for subtraction. Figure 2.4 shows some
sample binary calculations.

Figure 2.4 Binary Calculations

Binary numbers can be interpreted in much the same way that octal or
decimal numbers are interpreted. Since there are just two digits, the value of
each digit is weighted by a power of 2. Thus, the binary number 11010 is equal
to (0 x 1) + (1 x 2) + (0 x 4) + (1 x 8) + (1 x 16) = 2 + 8 + 16 = 26.
Similarly, 1011 = (1 x 1) + (1 x 2) + (0 x 4) + (1 x 8) = 1 + 2 + 8 = 11.
And finally, 100101 = (1 x 1) + (0 x 2) + (1 x 4) + (0 x 8) + (0 x 16) +
(1 x 32). This is 1 + 4 + 32 = 37. Note also that 37 = 11 + 26, as might be ex
pected from example b in Figure 2.4. A list of the powers of 2 is shown on the
endsheets at the back of the book.

2.4 OCTAL E N C O D I N G

Purpose for Encoding

It may be noted that the lower the base of the number system, the fewer possible
values for a single digit: 10 for decimal, 8 for octal, and 2 for binary. Because
there are fewer possibilities for each digit, the digits carry less information. As a
consequence, numbers represented in the octal system tend to require more
digits than the same numbers represented in decimal. For example, 10000 octal
represents the same number as 4096 in decimal. The problem is even more
severe with binary numbers. For example, the number 71230, as expressed in
decimal, comes out as 10001011000111110 in the binary system. There are more
than three times as many digits in the binary representation of this number as
there are in the decimal representation. This is usually the case.

A single binary digit contains the smallest possible amount of digital infor
mation and is usually referred to as a bit for binary digit. Because binary
numbers tend to be very long, they are very difficult for humans to deal with.
Consider your seven-digit telephone number. If it were translated into binary, it
would have around twenty-one binary digits or bits. How many people would
be able to remember their own telephone number, much less dial a string of
twenty-one 1s and 0s without making a mistake? It turns out that even profes
sional computer programmers who have been practicing for many years are not
usually capable of dealing with large binary numbers very well. How then can
people and machines communicate?

Method for Encoding

One solution comes in the form of octal encoding. Octal encoding operates as
follows: A large binary number is split into groups of three bits starting from
the right. For the number discussed in the previous section, this would be done
in the following manner:

Note that since the original number contains 17 bits and since 17 is not a multi
ple of 3, it was necessary to pad the left end of the number with a 0 to fill out the
leftmost group of three. Note that this does not change the number because ap
pending 0s to the left of the number does not change the number.

The next step is to consider each group of three bits as a three-bit binary

number. Three bits can be arranged in 2 3 or 8 ways. However, a single octal
digit can also be arranged in 8 ways. In this sense, one octal digit is equivalent to
three binary digits because they both represent a particular setting of an 8 posi
tion switch.

The next step is to replace each group of three binary digits with the
equivalent octal digit (see Figure 2.5). Applying this rule to the binary string
produces the following:

Thus the octal representation of the binary string is 213076.
It is important to notice that this procedure actually converts the binary

number into the equivalent octal number. For example, if the binary number
and the octal number above are both converted to decimal, the result will be
71,230 (decimal) in both cases. The reason that the conversion from binary to
octal (or from octal to binary) is so simple is that the octal number system
weights its digits by powers of eight, but eight is a power to two, namely 2 3 .
Consequently, it is not surprising that there is a simple relationship between
binary and octal.

The octal representation not only looks somewhat like the numbers with
which we are all familiar, but it has one-third the number of digits as the binary
number, and therefore it is much easier for humans to deal with. In addition, if
one wishes to examine the original binary number, it is easy to convert the octal
representation back to binary by using Figure 2.5 in reverse. For this reason,
throughout the remainder of this text, we will usually deal with binary numbers
in their octal encoded form.

Figure 2.5 Encoding of Binary Groups
Octal

Binary Grouping Encoding

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Exercise Set 1 25

E X E R C I S E SET 1

1 Making use of information available in dictionaries and encyclopedias,
describe three historical number systems other than the Roman and
Arabic. How do these number systems compare in:

(a) ease of learning (b) use for computational purposes

(c) use for representing large numbers

2 Continue the octal counting sequence shown in Table 2.1 until you reach
the equivalent of 200 decimal.

3 Perform the following octal additions:

(a)

(d)

(g)

573
+ 132

2146
+ 3704

71426
+ 53402

(b)

(e)

(h)

674
+ 326

2173
+ 3442

716534
61244

4 Perform the following octal subtractions:

(a) 573 (b) 674
- 132 - 326

(d)

(g)

3704
- 2146

71426
- 53402

(e)

(h)

3442
- 2173

716534
- 61244

(c)

(0

0)

(c)

(f)

(i)

777
+ 123

5723
+ 2710

7713642
+ 65413

521
- 123

2345
- 1346

10067134
67253

5 Give the decimal equivalent for the following octal numbers:

(a) 53 (b) 146 (c) 632
(d) 742 (e) 1675 (0 1777
(g) 43721 (h) 53462 (i) 52717

6 Continue the binary counting process shown in Table 2.1 until you reach
the equivalent of 100 decimal.

7 Perform the following binary additions:

(a) 101 (b) 110
+ 1 1 + 101

(c) 101
+ 101

(d) 10111
+ 1010

(e) 11011
+ 1001

(f) 11101
+ 101

(g) 1011011 (h) 110101101 (i) 110101100011
+ 101101 + 10110010 + 101100011010

8 Using the same pairs of numbers as in exercise 7, perform binary subtrac
tion rather than addition.

9 Give the decimal equivalent of the following binary numbers:

(a) 101

(d) 101110

(g) 1100011

(j) 1110101011

(b) 11010

(e) 110011

(h) 1101111

(k) 101110100001

(c) 111010

(0 1011101

(i) 11100101

(1) 11001010101110

10 Give the octal equivalents of the binary numbers shown in exercise 9.

2.5 T W O ' S C O M P L E M E N T A R I T H M E T I C

Fixed Register Arithmetic

Our discussion so far has treated numbers assuming that there are no size
limitations on the numbers. However, in a computer, arithmetic is generally
performed in devices called registers. A register is a device which contains the
representation of a number. A familiar example of a register is the automobile
odometer, which registers the accumulated mileage traveled. The odometer is
made of wheels with digits around them which can be rotated to display any
number from 0 through 99999 miles. It is important to note the fixed upper
bound. Most registers in computers have a fixed number of parts and,
therefore, there is a fixed upper bound to the size of the number that can be
represented. For example, most operations in the PDP-11 are limited to sixteen
binary digits. As a result, you can get some strange results as happens when an
old automobile has gone more than 100,000 miles and registers a very " l o w "
mileage.

It actually turns out that this property can be useful. Consider a small
machine with 5-bit binary registers. We will look at what happens when we add
11101 or decimal 29 to various numbers such as 7, 8, and 9. Figure 2.6 shows
this arithemetic in binary. It should be noted in each case that a carry is lost off
the answer because we are restricted to five bits.

Figure 2.6 Addition in a 5-Bit Register

11101 = 29
+ 00111 = 7

00100 = 4

11101 = 29
+ 01000 = 8

00101 = 5

11101 = 29
+ 01001 = 9

00110 = 6

Negative Numbers

Examining the results in Figure 2.6, we can see that when we add 11101 to the
binary representation of either 7, 8, or 9, the result is 3 less than the original
number. It is as if we had subtracted 3. This works for other examples as well.
As a result, in a 5-bit system, 11101 can be thought of as a negative 3. Similarly,
11111 behaves like - 1, 11110 behaves like - 2, and so on. Figure 2.7 shows all
32 possibilities of 5-bit numbers with their appropriate signed decimal
equivalent. To divide the number representations so that approximately half
are positive and half are negative, the leading digit is used to designate the sign:
1 means negative, and 0 means positive. Note that this means that numbers like
11101, which look as if they were large positive numbers, are in fact negative. It
should also be noted that there is a - 16 but no + 1 6 . This is to make up for the
fact that there is a positive 0 but no negative 0.

Figure 2.7 5-Bit Two's Complement Numbers

10000 - 1 6 11000 - 8 00000 0 01000 8
10001 - 1 5 11001 - 7 00001 1 01001 9
10010 - 1 4 11010 - 6 00010 2 01010 10
10011 - 1 3 11011 - 5 00011 3 01011 11
10100 - 1 2 11100 - 4 00100 4 01100 12
10101 - 1 1 11101 - 3 00101 5 01101 13
10110 - 1 0 11110 - 2 00110 6 01110 14
10111 - 9 11111 - 1 00111 7 01111 15

Representing negative numbers in this way is called the two's complement
system. The name derives from the fact that the negative of a number is ob
tained by subtracting the number from the power of 2 which is just too large to
fit in the register. For example:

100000
- 00011 = 3

11101 = - 3

Another way of computing the two's complement of a number is to change
all of the 0s in the number to Is and vice versa, and then add 1. For example:

00011 = 3

11100 Interchange 0s and Is

11101 Add 1 to get - 3

One's Complement

Some computers negate numbers more rapidly by eliminating the step of adding
1. Thus 11100 would be the representation of - 3 . This system is called the

one's complement system because negatives are obtained either by interchang
ing Is and Os, or by subtracting the number from all Is. For example:

11111

- 00011 = 3

11100 = - 3 in one's complement

Of particular note in the one's complement system is that there are two
representations of 0. They are 00000 and its complement 11111. The two
representations of 0 may require programmers to be cautious if they are check
ing to see if a result is 0. The arithmetic operations of addition and subtraction
as well as multiplication and division must be modified somewhat if one's com
plement notation is used. However, since very few computers* use one's com
plement arithmetic, these topics will not be discussed here.

Nevertheless, one's complementing is important to note because it is used
for logical as well as numerical operations as can be seen in the next section.

2.6 B O O L E A N LOGIC

Values and Operations

In the nineteenth century, an English mathematician named George Boole
developed algebraic methods for dealing with the logical values of true and
false. In computers it is quite useful at times to interpret the binary one and zero
as the Boolean values of true and false.

In order to manipulate the Boolean value, it is necessary to have Boolean
operations. The Boolean operations are AND, OR, and NOT. The AND and
OR combine the truth values of two sentences together in much the same way
that is done in English. For example, a A N D b is true if and only if both a and b
are true. Similarly a OR b is true when a or b is true or if both a and b are true.
The NOT operation reverses the truth value; thus, NOT a is true if a is false,
and NOT a is false if a is true. Figure 2.8 shows all of the possible combinations

Figure 2.8 Boolean Operations

0 AND 0 = 0
0AND 1 = 0
1AND0 = 0
1 AND 1 = 1

0OR0 = 0
0OR1 = 1
1OR0 = 1
1 OR 1 = 1

'The CDC Cyber computers are notable examples of one's complement machines.

NOT0 = 1
NOT 1 = 0

of operations for the three Boolean operators. As is done in most computer
usage, TRUE is represented as 1 and FALSE as 0.

Tables of a Boolean operation such as the one shown in Figure 2.8 are
called truth tables and can be used to define any Boolean operation other than
the basic three just shown. For example, another commonly used Boolean
operation is the exclusive OR. This is defined as the same as OR but false when
both operands are true. The truth table for exclusive OR is:

0 exclusive OR 0 = 0

0 exclusive OR 1 = 1

1 exclusive OR 0 = 1

1 exclusive OR 1 = 0

It turns out that any Boolean operation can be formed from the basic three;
AND, OR, and NOT. For example:

a exclusive OR b = (a OR b) A N D NOT (a A N D b)

Multibit Operations

Computers are usually designed with registers that contain a string of bits.
Because of this, Boolean operations in computers are often extended to operate
in a bit-by-bit fashion across corresponding bits in a pair of registers. For exam
ple, with 16-bit registers such as in the PDP-11 , we could have the following
operation:

1011011111001010

OR 0010010101010011

1011011111011011

Note that each bit of the result is the OR of the two corresponding bits above it.
There are operations other than purely logical ones that can make use of
Boolean operations this way. For example, the following use of A N D could be
used to mask out the leading bits of a string:

1011011111001010 string
A N D 0000000011111111 mask

0000000011001010 result

Finally note that if the NOT operation is applied to the bits of a string, it
will invert each bit, or change each 1 to a 0 and each 0 to a 1. Note that this is the
definition of one's complement given in the previous section. As a result, the
terms NOT and "one ' s complement" are used interchangeably.

2.7 H E X A D E C I M A L E N C O D I N G S
(Optional Section)

The manufacturer of the PDP-11 computer has published all its PDP-11
literature using octal encoding for binary numbers, which is why we have given
so much attention to the octal system. Some other manufacturers (IBM in par
ticular) prefer to use the hexadecimal or base 16 number system for encoding,
the basic difference being that binary numbers are split up into groups of four
bits rather than three.

Because four bits can be arranged in 2 4 or 16 different ways, the hexa
decimal system requires 16 different digits. The 10 decimal digits are augmented
with the first six letters of the alphabet. A is 10, B is 11, C is 12, D is 13, E is 14,
and F is 15. Since F is the last single digit, adding 1 to F causes a carry; that is
1 - I - F = 10. The fourth column of Table 2.1 shows hexadecimal counting from
1 through 65.

When converting from hexadecimal to binary, each digit is converted to a
4-bit binary string using the table of Figure 2.9. When converting back, the
binary number is split into four-bit groupings and converted back using the
table. Thus, the hexadecimal representation of the binary number 0001 0001
0110 0011 1110 is 1163E.

Figure 2.9 Hexadecimal Encoding of Binary Groups

Hexadecimal Hexadecimal
Binary Grouping Encoding Binary Grouping Encoding

0 0 0 0 0 1 0 0 0 8
0 0 0 1 1 1 0 0 1 9
0 0 1 0 2 1 0 1 0 A
0 0 1 1 3 1 0 1 1 B
0 1 0 0 4 1 1 0 0 C
0 1 0 1 5 1 1 0 1 D
0 1 1 0 6 1 1 1 0 E
0 1 1 1 7 1 1 1 1 F

2.8 O T H E R E N C O D I N G S

Numbers can be represented in other ways as well. For example, four bits can be
used to represent a decimal digit in the following manner: Four bits can, of
course, be arranged in 16 different ways. If six of these possibilities are con
sidered to be " i l legal ," the remaining ten " l ega l " arrangements result in a ten
position switch that can represent a single decimal digit. With this system, the
string of binary digits

0001 1000 1001 0010 0000 0100

represents the decimal number 189204 (where 0000 represents the decimal digit
0, 0001 represents the decimal digit l , a n d so on).This representation is called
binary coded decimal. Another representation that is based on scientific nota
tion is called real or floating point representation. It is similar to the exponent
notation used to represent large numbers in more expensive calculators (such as
3.84536E + 08).

Finally, the emphasis on representing numbers may give a reader the im
pression that computers are mainly used to perform arithmetic computat ions.
This is simply not true. Strings of binary digits can be used to represent any
physical event that can be detected. For example, many computer terminals are
capable of printing 95 separate characters (including the blank space). Seven
bits of information can be arranged in 2 7 or 128 ways. Thus seven bits are suffi
cient to represent any one of the 95 printable characters with 128 - 95 or 33
combinations that can be used to represent the special function keys such as
RETURN or TAB. Indeed, Chapter 8 will use such a 7-bit code in order to pro
cess strings of characters. Using these coding techniques, it is possible to write
programs for analyzing literary works.

Similarly, there are 88 keys on a standard piano. Seven bits of information
could therefore be used to designate the pressing of a particular key. (Addi
tional bits may, of course, be required to indicate such things as the time at
which the key was pressed, the velocity at which the key was struck, and the
length of time that the key was depressed.) With such coding techniques, it is
possible to write programs for analyzing music or even composing music.

As a final example, it is possible to represent pictures in terms of strings of
bits. To do this, a grid pattern with perhaps 1000 rows and 1000 columns is
drawn on top of a photograph. From each of the 1 million square areas on the
photograph, the amount of light that is reflected is measured and the result con
verted to a binary number. [If 64 different shades can be detected, the light
reflected from each square might be converted to a 6-bit number where 000000
(base 2) represents white, 111111 (base 2) represents black, and the other com
binations represent various shades of gray.] The picture has now been con
verted into a form that can be processed by computer. Photographs from
satellites and certain kinds of X-ray images are regularly processed by com
puters using similar encodings.

E X E R C I S E SET 2

1 Continue the hexadecimal counting sequence shown in Table 2.1 until you
reach the equivalent of 200 decimal.

2 Give the hexadecimal equivalents of the binary numbers shown in exercise
9 on page 26.

*3 Show how to count to the equivalent of 200 decimal in the base 7 number
system. In the base 7 system, how can you tell even numbers from odd
numbers? Is there a simple rule, as in decimal?

4 Add the following pairs of 5-bit two's complement numbers. Show the
signed number equivalents of both numbers and the result in decimal with
each problem.

(a) 00011 (b) 01011 (c) 11101
00101 11100 11010

(d) 11100 (e) 00111 (0 11101
11111 11011 00101

5 Repeat exercise 4 but subtract the second number from the first instead of
adding.

6 Show the signed decimal equivalents for the 64 binary combinations in a
6-bit two's complement number system.

7 For the pairs of binary numbers shown in exercise 4, show the results of the
multibit Boolean operations, AND, OR, and exclusive OR.

*8 Give an algorithm for converting a number in any base to any different
base.

CHAPTER 3

MACHINE LANGUAGE
PROGRAMMING

3.1 DIGITAL C O M P U T E R S

System Blocks

Figure 3.1 illustrates the important parts of a digital computer: an input device,
an output device, a memory, and a central control unit. The input device per
mits us to get information into the computer. The input device might be as sim
ple as the buttons on an electronic calculator or as complicated as a card reader.
The output device allows us to get results back from the computer. The output
device might be as simple as the lighted numerals on an electronic calculator or
as complicated as a high-speed line printer. The memory is used for storing in
formation. Generally, memory consists of a set of boxes or cells, each of which
contains a number. The input device, the output device, and the memory are all
connected by electrical wires to a central control unit called the processor. By
sending electrical signals on these wires, the processor can:

1. Ask the input device to get or read a number and make that number avail
able to the processor or memory.

2 . Ask the output device to print a particular number.
3. Ask memory to save or store a particular number in a particular memory

cell.
4. Ask memory to retrieve or fetch the number that was previously stored in a

particular memory cell.

34 Machine Language Programming

Figure 3.1 A Simple Computer

Ch.3

In this simple computer, the input device, the output device, and the
memory are passive devices. They do not do anything unless they are told to do
something by the processor. The processor is the active device that controls the
shuffling of numbers between itself and the other devices. The sequence of
operations that the processor performs is determined by a set of instructions
that form a computer program. The job of a programmer is to set up an ap
propriate set of instructions that direct the processor to perform the necessary
operations to solve a particular problem.

3.2 M E M O R Y REPRESENTATION
O N T H E P D P - 1 1 C O M P U T E R

Memory as a Collection of Bytes

Memory on the PDP-11 computer can be viewed as a large number of boxes or
memory cells, each of which contains an 8-bit binary number. For example, the
following illustrates a memory cell that contains the 8-bit number 00110101.

00110101

An 8-bit binary number is called an 8-bit byte, or simply a byte. Since each
memory cell can contain an 8-bit byte, we will refer to the contents of each
memory cell as a memory byte.

Each memory byte is identified by a number called the address. The ad
dress of a memory cell identifies it as a specific physical device, and can be
thought of as being analogous to the street address of a building. A street ad
dress allows you to find or identify a particular building; a memory address
allows you to find or identify a particular memory cell.

On the PDP-11 computer, an address is a 16-bit binary number. Notice
that two numbers are associated with each memory byte—the address, which is
16 bits long, and the contents, which is 8 bits long. The following example
shows that the memory byte with address 0000111100001111 contains
00110101:

Address Contents
0000111100001111 00110101

Since 16 binary digits can be arranged in 2 1 6 or 65,536 different ways, a
PDP-11 computer may have up to 65,536 different memory cells. The first byte
in memory has an address of 0000000000000000 (binary) and the last byte has
the address 1111111111111111 (binary). Since each of the 65,536 memory cells
can contain an 8-bit byte, the total storage capacity can be as high as 65,536
times 8 or 524,288 bits. Figure 3.2 illustrates the first 10 bytes of memory.

Figure 3.2 Byte Representation of Memory

Binary Address Binary Contents
0000000000000000 01010011
0000000000000001 11010101
0000000000000010 00001010
0000000000000011 00000000
0000000000000100 11111111
0000000000000101 11010001
0000000000000110 00000001
0000000000000111 11100000
0000000000001000 00000000
0000000000001001 00000000

Memory as a Collection of Words

Although 8 bits is a convenient amount of information for some purposes, it is
inconveniently small for others. For example, 8 bits can only be arranged in 2 8

or 256 different ways. If an 8-bit byte is used as a counter, it is only possible to
count from 0 through 255 (decimal).

To avoid this problem, memory on the PDP-11 combines two bytes to
form a 16-bit word. This situation is illustrated in Figure 3.3.

Figure 3.3 Byte/ Word Representation of Memory

Binary Address Binary Contents Binary Address
0000000000000001 11010101 01010011 0000000000000000
0000000000000011 00000000 00001010 0000000000000010
0000000000000101 11010001 11111111 0000000000000100
0000000000000111 11100000 00000001 0000000000000110
0000000000001001 00000000 00000000 0000000000001000

Notice that the contents of the 10 bytes in Figure 3.3 are identical to the bytes in
Figure 3.2. The position of the bytes has simply been rearranged. The 16-bit
word beginning at memory cell 0000000000000000 consists of the 8-bit byte in
0000000000000000 along with the 8-bit byte in memory cell 0000000000000001.
Similarly, the 16-bit word beginning at memory cell 0000000000000110 consists
of the 8-bit byte in memory cell 0000000000000110 along with the 8-bit byte in
memory cell 0000000000000111. A word in memory always consists of the con
tents of an even-numbered byte on the right, along with the contents of the next
successive byte on the left. For example:

Because of this, the address of a word must be an even number. In binary, this
means that the address of a word must end with a zero.

Octal Representation of Words

Dealing with binary numbers is awkward for human beings. To avoid this prob
lem, memory is usually represented using the octal number system. As shown in
Chapter 2, converting from binary to octal is accomplished by replacing three
binary digits with one octal digit using Figure 2.5 (page 24). For example, a
16-bit address is converted to octal as follows:

In converting t rom a 16-bit binary address to a 6-digit octal address, the
leftmost bit must be treated as a special case. (Six octal digits would normally
represent 3 times 6 or 18 binary digits.) The conversion is made by assuming
that there are two binary zeros immediately to the left of the 16-bit address.
This is the same as in decimal; adding zeros to the left of a number does not
change it. For example, the following shows the conversion of the largest legal
word address from binary to octal:

Notice that the largest legal word address is 177776.

Just as a 16-bit address can be represented in octal, the contents of a 16-bit
word can be represented in octal. For example, the contents of the word begin
ning at memory cell 000000 is represented in octal as follows:

As when converting addresses, it is necessary to add two binary zeros at the left
of the 16-bit binary word. If all of the 16-bit words in Figure 3.3 are converted
to octal, the result is Figure 3.4. Notice that Figure 3.2, 3.3, and 3.4 specify
identical memory contents. These figures represent different ways of describing
the contents of the first 10 bytes (or the first 5 words) in memory.

Figure 3.4 Word Representation of Memory

In using the octal representation of words, it is important to remember
three things. First, a 16-bit word is composed of two 8-bit bytes. Second, the
byte with the even (and lower) address forms the right half of the word and the
byte with the odd (and higher) address forms the left half of the word. Finally,
the address of a word must be even. (In octal, this means that word addresses
must end in either 0, 2, 4, or 6.)

Addresses versus Contents of Memory

It is important to avoid confusion between the address of a memory word and
the contents of a memory word. In Figure 3.4, for example, we might describe
memory word 000004 in any of the following ways:

1. The memory word with address 000004 contains 150777.

2. Memory word 000004 contains 150777.

3. 000004 contains 150777.

4. The contents of memory word 000004 is 150777.*

*The word * 'contents'' is often used in computer jargon as a singular noun meaning "the
number contained in some location.''

Octal Octal
Address Contents
000000 152523
000002 000012
000004 150777
000006 160001
000010 000000

In each of these cases, 000004 is the address, and 150777 is the contents. It is
possible to change the contents of a memory word but never its address. In
other words, the contents of a memory word is variable but the address of a
word in invariable.

In the vast majority of cases, we will consider memory to consist of 16-bit
words as shown in Figure 3.4. Indeed, when reference is made to the contents of
memory, it should be assumed that we are referring to 16-bit words, not to 8-bit
bytes. Furthermore, most of the PDP-11 operations will be described in terms
of the octal representation. This is possible because, in many instances, the
octal representation and the binary representation give equivalent results. For
example, with addition:

Binary Encoding Octal Encoding

0 000 000 010 110 011 000263

+ 0 000 000 001 101 110 000156

0 000 000 100 100 001 000441

The sum of the octal encodings, 000263 and 000156, is 000441, which is the
octal encoding of the binary answer.

As we proceed, octal encodings will be used for just about everything—so
much so in fact that there is a tendency to start thinking that the PDP-11 is an
octal computer rather than a binary computer. This is not the case, however,
since there are a few operations in the PDP-11 , such as shifting*, which can
most easily be understood in terms of the actual binary representation.
However, for a vast majority of the PDP-11 operations, it is quite acceptable to
think in terms of the much more compact octal representation.

E X E R C I S E SET 1

1 Convert each of the following binary words to octal:

(a) 0 111 000 111 000 111

(b) 1 111 111 111 111 111

(c) 0 000 000 011 111 111

(d) 1 111 111 100 000 000

(e) 0 001 010 011 100 101

(0 1 110 101 100 011 010

2 The contents of memory words 000000 through 000010 is represented
below as five words, each of which consists of six octal digits. Represent

•Shifting a binary number left has the effect of multiplying it by 2; that is, 110 (base 2) is 6
(base 10) and 1100 (base 2) is 12 (base 10).

the memory contents in terms of 10 bytes, each of which consists of 8 bits.
(In other words, specify the contents of bytes 000000 through 000011 in
binary.)

Address
000000
000002
000004
000006
000010

Contents
177776
000377
176000
123456
000777

3 Each of the following octal words represents an unsigned number . Give the
decimal equivalent.

(a) 000001

(b) 000010

(c) 000100

(d) 000064

(e) 000144

3.3 P R O C E S S O R U S E OF M E M O R Y

Fetch and Store Operations with Memory

Memory is controlled by the processor. The processor can either ask memory to
fetch the contents of a particular memory cell, or to store a particular number in
a particular memory cell. A fetch does not change the contents of the
designated memory location but a store does. In order to perform a fetch, the
processor sends memory the address of the desired memory location, and
memory responds by sending the processor the contents of the addressed cell.
For example, using the data from Figure 3.4, if the processor asked memory to
fetch the contents of memory cell 000004, memory would respond by sending
the number 150777 back to the processor. Memory cell 000004 would still con
tain 150777.

In order to perform a store, the processor sends memory the address of the
desired memory cell along with a number that is to be placed in the designated
cell. Again using data from Figure 3.4, assume that the processor asked
memory to store the number 123123 in memory cell 000004. The old contents of
memory cell 000004 would be lost or destroyed, and 123123 would become the
new contents. There would be no record of the fact that memory cell 000004
ever contained 150777. If the processor subsequently asked memory to fetch the
contents of memory cell 000004, memory would respond by sending back the
new contents, 123123.

The fetch and store operations are the only operations that memory can
perform. (Memory cannot perform an addition, for example.) However,
memory can perform the store and fetch operations quite rapidly (typically
more than 1 million operations in a single second).

Not all addresses are legal addresses. As previously noted, the memory ad
dress of a 16-bit word must be an even number. The use of an odd address dur
ing a fetch or store operation will cause an error, called an addressing error, to
occur.

Second, it is possible to purchase a PDP-11 computer with less than the
maximum amount of memory. For example, it is possible to purchase a
memory that only contains, and thus only responds to, memory addresses
000000 through 017777. An attempt to fetch or store from an address outside
this range, such as 040000, also causes an addressing error to occur.

Finally, memory addresses between 160000 and 177777 are reserved for
special purposes on many PDP-11 computers. Certain of these locations con
trol inpu t /ou tpu t devices and are described in Chapter 11. Using these memory
locations may produce unpredictable results.

The A D D Instruction

As previously noted, the processor is the active device that controls the shuf
fling of numbers back and forth between itself and the other devices that form
the computer, such as memory. The programmer, in turn, controls the pro
cessor by writing a set of instructions, called a program, that the processor ex
ecutes. For example, the following instruction will cause the processor to add
the 16-bit word contained in memory cell 000026 to the 16-bit word contained in
memory cell 000032, and place the 16-bit result in memory cell 000032:

A D D T H E CONTENTS OF 000026 TO 000032

Note that this instruction does not cause the processor to add 26 (octal) to 32
(octal) to get 60 (octal). Rather, this instruction causes the contents of memory
cells 000026 and 000032 to be added, and the sum to be placed in memory cell
000032. The processor executes this instruction in four steps:

Step 1: Fetch the contents of memory cell 000026.

Step 2: Fetch the contents of memory cell 000032.

Step 3: Add the numbers fetched during steps 1 and 2.

Step 4: Store the resulting sum in memory cell 000032.

Notice that instructions such as A D D T H E CONTENTS OF 000027 TO 000032
are illegal. Word addresses must be even numbers.

The S U B T R A C T , M O V E , and H A L T Instructions

The MOVE and the SUBTRACT instructions are similar to the A D D instruc
tion. To execute the instruction:

SUBTRACT T H E CONTENTS O F 000040 FROM 000050

the processor performs the following steps:

Step 1: Fetch the contents of memory cell 000040.

Step 2: Fetch the contents of memory cell 000050.

Step 3: Subtract the number fetched in step 1 from the number fetched in
step 2.

Step 4: Store the resulting difference in memory cell 000050.

To execute the instruction:

MOVE T H E CONTENTS OF 000070 T O 000060

the processor performs the following two steps:

Step 1: Fetch the contents of memory cell 000070.
Step 2: Store the number fetched during step 1 in memory cell 000060.

A program is simply a sequence of instructions. For example, the follow
ing will set the contents of memory cell 000032 equal to the sum of the numbers
that are contained in memory cells 000024, 000026, and 000030.

Instruction 1

Instruction 2
Instruction 3

Instruction 4

MOVE T H E CONTENTS OF 000024 TO 000032

A D D T H E CONTENTS OF 000026 T O 000032

ADD T H E CONTENTS OF 000030 TO 000032

H A L T

The processor executed these instructions one after the other. The H A L T in
struction causes the processor to stop executing instructions. Figure 3.5 shows
the effect of each instruction on the contents of memory locations 000024
through 000032.

Figure 3.5 Memory Contents During Execution
Original Contents Contents Contents Contents

Address Contents after after after after
Instruction 1 Instruction 2 Instruction 3 Instruction 4

000024 000003 000003 000003 000003 000003
000026 001000 001000 001000 001000 001000
000030 000200 000200 000200 000200 000200
000032 000000 000003 001003 001203 001203

3.4 M A C H I N E L A N G U A G E P R O G R A M S

Machine Language Codes

One question that should arise at this point is where the computer program
physically exists. In our previous description of the computer, there was one
place for holding information, the memory. The memory therefore can be used
for storing computer programs. However, since the memory cells are only
capable of storing binary strings, the specific processor instructions must be en
coded using a binary code. The following table shows the operation codes for
the instructions MOVE, ADD, SUBTRACT, and HALT. Each 6 digit octal
number in the table represents a 16-bit binary operation code.

Operation Name Operation Code

MOVE 013737

ADD 063737

SUBTRACT 163737

H A L T 000000

It should be noted that these codes can be broken down into significant
pieces. For example, the operation code for MOVE is really 01 . The 37s are ad
dressing mode codes that indicate which of several ways there are for accessing
the data. The addressing modes are described in more detail in Chapters 5
and 7.

Forming a Program

Substituting the operation code for each operation in the previous program
would produce the following numerically encoded program:

Numerical Encoding English Meaning

1. 013737 000024 000032 Move the contents of 000024 to 000032

2. 063737 000026 000032 Add the contents of 000026 to 000032

3. 063737 000030 000032 Add the contents of 000030 to 000032

4. 000000 Halt

Instructions in the all-numerical format are called machine language in
structions. While this encoding is quite inconvenient for human beings, it is the
language computers "unde r s t and . " In order to determine what the program
does, it is necessary to know that 013737 is the code for a MOVE operation,
063737 is the code for an ADD operation, and so on. The preceding program
consists of 10 numbers, each of which consists of 6 octal digits. These 10

numbers can be placed in memory cells 000000, 000002, 000004, . . . , 000022,
to produce the program shown in Figure 3.6.

Figure 3.6 A Simple Machine Language Program

Address Contents Meaning
000000 013737
000002 000024 Move the contents of 000024 to 000032
000004 000032
000006 063737
000010 000026 Add the contents of 000026 to 000032
000012 000032
000014 063737
000016 000030 Add the contents of 000030 to 000032
000020 000032
000022 000000 Halt
000024 000003 The octal number 000003
000026 001000 The octal number 001000
000030 000200 The octal number 000200
000032 000000

A program in this format is called a machine language program. If the proces
sor is told to execute the program that begins at memory cell 000000, the pro
cessor will execute instructions in sequence as follows:

a. Execute the MOVE instruction that begins at memory cell 000000.

b . Execute the A D D instruction that begins at memory cell 000006.

c. Execute the A D D instruction that begins at memory cell 000014.

d. Execute the H A L T instruction in memory cell 000022.

As the result of executing these four instructions, the sum of the numbers in
memory cells 000024,000026, and 000030 will be placed in memory cell 000032.

Although a program might reside almost anywhere in memory, the
numeric operation codes are 16 bits long and therefore must be located at even-
numbered addresses.

The Program Counter

The way that the processor keeps track of what it is doing as it executes a pro
gram is by use of a special register called the program counter. The program
counter contains a 16-bit number that is the address of the next instruction to be
executed. Every time an instruction or part of an instruction is fetched from
memory, the processor adds 2 to the program counter. In the previous example,
the program starts in memory location 000000. Therefore to start our program,
we must somehow set the program counter to 000000. (This can be done
manually with the switches on the machine if need be.)

The MOVE instruction at the beginning of the program requires three
words of memory: one for the operation code and one for each data address. As
each of these words is fetched, the program counter has 2 added to it. It will
therefore have a value of 000006 when the operation is complete. Note that
since 000006 is the address of the beginning of the next instruction, the pro
cessor is all set to start the next instruction in sequence.

The execution of a given instruction can be divided into a fetch cycle dur
ing which the instruction is fetched and an execute cycle during which the in
struction is actually executed. For example, consider the move instruction that
begins in address 000000. Since this instruction occupies memory words
000000, 000002, and 000004, the fetch cycle requires three fetches from
memory. In order to achieve the move, it is necessary to fetch the contents of
memory cell 000024 and store the result in memory cell 000032. Thus the ex
ecute cycle requires one fetch operation and one store operation. (Chapters 5
and 7 will describe the fetch and execute cycles in a somewhat different way.) In
total , the MOVE instruction requires four fetch operations and one store
operation. The reader should be able to determine that an ADD instruction re
quires a total of five fetch operations and one store operation—three fetches
for the fetch cycle and two fetches and one store for the execute cycle.

3.5 T H E U S E OF A M E M O R Y CELL

As was just stated, the contents of a memory cell can be interpreted or used in a
variety of different ways. In Figure 3.6 for example, the contents of some
memory cells were treated as operation codes, others were treated as numbers.
It is not possible simply to examine the contents of a memory cell and determine
how the contents should be interpreted. If a given memory cell contains 000000,
the contents could be interpreted as either the number 0, the address of the first
memory cell, or a H A L T instruction. To make the classification, it is necessary
to see how the processor uses the contents of the memory cell.

Consider the following machine language instruction that moves the con
tents of memory cell 000024 into memory cell 000032:

Address Contents Use
000000 013737 Operation code
000002 000024 Address
000004 000032 Address

000024 000003 Operand

000032 000000 Operand

When this instruction is executed, a total of five memory cells are involved. The
contents of 000000 is treated as an operation code, the contents of 000002 and
000004 are treated as addresses, and the contents of 000024 and 000032 are
treated as operands. (An operand is simply data that is operated on by the
processor.)

Operation Codes

It is important to distinguish between operation codes, addresses, and operands
because different rules apply to each. The operation code directs the processor
to perform some operation such as MOVE, A D D , SUBTRACT, or H A L T .
Only certain operation codes are legal or valid. For example, 000100 is an illegal
operation. If memory cell 000000 contained the (illegal) operation code 000100
and the processor were directed to execute the program beginning in memory
cell 000000, an error would occur and execution of the program would ter
minate. Only four legal operation codes have been discussed: 013737 (MOVE),
063737 (ADD), 163737 (SUBTRACTS and 000000 (HALT) .

Addresses

Just as there are legal and illegal operation codes, there are legal and illegal ad
dresses. As noted previously, addresses of 16-bit words must be even numbers.
In addition, computers that have less than the maximum amount of memory
will have an upper limit on legal addresses.

Signed and Unsigned Numbers

Finally, any octal number from 000000 to 177777 is a legal operand. As noted in
Chapter 2, the binary digits that are represented by these octal encodings can be
interpreted in a variety of ways. For the moment, our discussion will be limited
to two interpretations—unsigned numbers and signed numbers.

Table 3.1 shows how octal numbers between 000000 and 177777 can be in
terpreted as unsigned or signed numbers. As shown in the table, unsigned
numbers range from 0 to 65535 (decimal) with 000000 (octal) representing 0 and
177777 (octal) representing 65535 (decimal). For signed numbers, the two's
complement representation is used (see page 26 of Chapter 2). Signed numbers
range from - 3 2 7 6 8 (decimal) to 32767 (decimal). Note that 100000 (octal)
represents - 3 2 7 6 8 (decimal), 177777 (octal) represents - 1 , 000000 (octal)
represents 0, and 077777 represents 32767.

It is important to realize that only one A D D instruction is required. For
example, if 177774 and 000003 are added, the result is 177777. With the un
signed interpretation, this corresponds to adding 65532 to 3 to get 65535 (see
Table 3.1). With the signed interpretation, this corresponds to adding - 4 to 3
to get - 1.

TA BLE 3.I THE RA NGE OF SIGNED A ND UNSIGNED NUMBERS IN
OCTAL WITH DECIMAL EQUIVALENTS

Octal Unsigned Signed
Contents Interpretation Interpretation

000000 0 0
000001 1 1
000002 2 2
000003 3 3
000004 4 4
000005 5 5
000006 6 6
000007 7 7
000010 8 8
000011 9 9
000012 10 10
000013 11 11

• • •
• • •
• • •

077774 32764 32764
077775 32765 32765
077776 32766 32766
077777 32767 32767
100000 32768 -32768
100001 32769 -32767
100002 32770 - 32766
100003 32771 -32765

• • •
• • •
• • •

177774 65532 - 4
177775 65533 - 3
177776 65534 - 2
177777 65535 - 1

Overflow errors are possible with either interpretation; for example, the
sum of 177777 and 000003 is 000002 (what would normally be the correct sum,
namely 200002, will not fit in a memory cell). For signed numbers, this is cor
rect because the sum of - 1 and 3 is 2. However, for unsigned numbers, the
result is incorrect because 65535 plus 3 is certainly not equal to 2, and we say
that unsigned overflow has occurred. Similarly, the sum of 077776 and 000004
(octal) is 100002. In this case, the unsigned result is correct (32766 + 4 =
32770) but the signed result is incorrect (32766 - I - 4 is not equal to - 32766), and
we say that signed overflow has occurred. Obviously, either kind of overflow
condition indicates that an arithmetic operation may have produced an incor-

rect result. However, the processor does not treat overflow as an error, and it is
the programmer 's responsibility to ensure that overflow does not produce
wrong answers. Chapter 6 discusses how to test for overflow.

Multiple Interpretations

Let us now look at some ramifications of the fact that it is possible to interpret
the contents of a memory cell in more than one way. The contents of a given
memory cell might be interpreted or used as an operand, an address, and an
operation code at different times. Assume, for example, that the processor is
told to execute the program shown in Figure 3.7 beginning at memory cell
001000. This program appears to consist of three instructions—a SUBTRACT
instruction in memory cells 001000 through 001004, a SUBTRACT instruction
in memory cells 001006 through 001012, and a H A L T instruction in memory
cell 000014. However, the first instruction directs the processor to subtract the
contents of memory cell 001000 from memory cell 001006. Since both cells con
tain 163737, executing this instruction causes the contents of memory cell
001006 to be set to 000000. In effect, the SUBTRACT operation code in
memory cell 001006 has been changed into a H A L T operation code. When the
processor executes this instruction, it halts.

The program shown in Figure 3.7 obviously does not accomplish anything
useful. In fact, most programmers consider instruction modification of this
sort to be extremely bad style. However, there are important applications where
it is necessary to treat a memory cell in more than one way. In order to translate

Figure 3.7 A Self-modifying Program

Before executing the instruction in memory cells 001000 to 001004:
Address Contents
001000 163737
001002 001000
001004 001006
001006 163737
001010 002000
001012 002000
001014 000000

Apparent Interpretation

Subtract the contents of memory cell
001000 from memory cell 001006

Subtract the contents of memory cell
002000 from memory cell 002000

Halt
After executing the instruction in memory cells 001000 to 001004:

Address
001000
001002
001004
001006
001010
001012
001014

Contents
163737
001000
001006
000000
002000
002000
000000

Interpretation

Subtract the contents of memory cell
001000 from memory cell 001006

Halt

Unused

a computer program written in one language into another language, it is
necessary to treat operation codes and addresses as numbers. In order to pro
cess tables or arrays, addresses are frequently interpreted as numbers.

The processor uses very simple rules to decide whether the contents of a
memory cell will be interpreted as an operation code, an address, or an
operand. These can be illustrated by describing the sequence of steps the pro
cessor goes through to execute the program in Figure 3.7:

Step 1: Fetch the first instruction (fetch cycle). Because the program counter
was initially set to 001000, the processor fetches and interprets the
contents of that location as an operation code. Because 163737 is an
operation code for a subtract instruction that occupies three memory
cells, the processor fetches the contents (001000) of memory cell
001002 and the contents (001006) of memory cell 001004 as well, in
creasing the program counter to 001006.

Step 2: Execute the first instruction (execute cycle). At this point, the pro
cessor has been instructed to subtract the number in memory cell
001000 from the number in memory cell 001006. (The processor is
totally unaware of the fact that it just interpreted the contents of
memory cell 001000 as an operation code.) To execute the instruction,
the processor (a) fetches the number (163737) contained in memory
cell 001000; (b) fetches the number (163737) in memory cell 001006;
(c) subtracts the two numbers to obtain 000000; and (d) stores the
result (000000) in memory cell 001006. As the result of executing this
instruction, memory cell 001006 now contains 000000.

Step 3: Fetch the second instruction (fetch cycle). Since the program counter
now contains 001006, the processor fetches the operation code
(000000) in memory ckl 001006. (The processor is totally unaware
that the previous instruction modified the contents of memory cell
001006.)

Step 4: Execute the second instruction (execute cycle). The operation code
000000 causes the processor to halt.

As this example implies, the processor executes a program by blindly
fetching then executing instructions. This process continues until either (a) a
H A L T instruction is executed, (b) an illegal operation code is encountered, (c)
an illegal address is encountered, or (d) the computer operator manually stops
the computer.

Some Additional Instructions

The MOVE, A D D , and SUBTRACT instructions have a similar format. Each
of the instructions occupies three memory cells. The first memory cell contains
a 16-bit operation code, the second word contains the first 16-bit address, and

the third word contains the second 16-bit address. Consider the following
MOVE instruction:

Address Contents Interpretation

001000 013737 Operation code (Move)

001002 002000 First address (the address 2000)

001004 003000 Second address (the address 3000)

This instruction will, of course, cause the contents of memory cell 002000 to be
moved to memory cell 003000. The contents of memory cell 002000 is the source
of the operand that is moved, and memory cell 003000 is the destination of the
operand. For this reason, the first address is called the source and the second
address is called the destination.

The MOVE NUMBER, A D D NUMBER, and SUBTRACT NUMBER
instructions are very similar to the MOVE, ADD, and SUBTRACT instruc
tions with one major exception: the second word of the instruction is a number
rather than an address. (In other words, the second word of the instruction is
the operand rather than the address of the operand.) Consider the following
MOVE NUMBER instruction:

Address Contents Interpretation
001000 012737 Operation code (MOVE NUMBER)

001002 002000 Source (the number 002000)

001004 003000 Destination (the address 003000)

Note that the operation code for the MOVE NUMBER instruction is 012737
while the operation code for the MOVE instruction is 013737. Executing the
MOVE NUMBER instruction causes the number 002000 to be placed in
memory cell 003000. The contents of memory cell 002000 is not involved in the
execution of this instruction in any way. In a similar manner, the A D D
NUMBER instruction can be used to add a number to the contents of a memory
cell. For example, the following instruction will add the octal number 000001 to
the contents of memory cell 001400. The operation code for the ADD
NUMBER instruction is 062737.

Address Contents Interpretation

001000 062737 Operation code (ADD NUMBER)

001002 000001 Source (the number 000001)

001004 001400 Destination (the address 001400)

In the last example, notice that the source is an odd number. This is legal
because the source is a number rather than an address. In a similar manner, the
SUBTRACT NUMBER instruction with an operation code of 162737 can be
used to subtract a number from the contents of a memory cell.

Recall that executing a MOVE instruction requires a total of four fetch

operations and one store operation. Three memory fetch operations are re
quired during the fetch cycle to fetch the instruction, and one fetch and one
store are required during the execute cycle. In contrast, the MOVE NUMBER
instruction only requires a total of three fetch operations and one store opera
tion. The fetch cycle still requires three fetch operations. However, the execute
cycle requires only a store operation. The reader should be able to verify that
the A D D NUMBER and SUBTRACT NUMBER instructions require a total of
four fetch operations and one store operation. The seven instructions described
up to this point are summarized in Figure 3.8.

Figure 3.8 List of Seven Operation Codes

Instruction Operation Source Destination Fetch Store
Code Operations Operations

HALT 000000 None None 1 0
MOVE NUMBER 012737 Number Address 3 1
MOVE 013737 Address Address 4 1
ADD NUMBER 062737 Number Address 4 1
ADD 063737 Address Address 5 1
SUBTRACT NUMBER 162737 Number Address 4 1
SUBTRACT 163737 Address Address 5 1

E X E R C I S E SET 2

1 Assume that memory cells 001200 through 001236 contain the following:

Address Contents Address Contents
001200 000001 001220 000037
001202 000777 001222 177776
001204 123456 001224 001200
001206 177777 001226 000004
001210 001000 001230 001234
001212 177775 001232 000003
001214 001214 001234 000006
001216 077777 001236 100000

What will be the effect of executing each of the following instructions? That
is, what memory cell will be changed by each instruction, and what will be
the new contents of the memory cell?

(a) 013737 (b) 012737 (c) 063737
001202 001202 001200
001230 001224 001202

(d) 162737 (e) 062737 (0 063737
001210 000002 001216
001214 001206 001232

Exercise Set 2 SI

(g) 163737 (h) 163737 (i) 012737
001234 001204 000000
001236 001204 001220

(j) 163737
001216
001222

2 Assume that you are using a PDP-11 with 4096 decimal words (10000 octal
words) of memory, so that the largest legal memory address is 017776.
Which of the following instructions will execute without error?

(a) 013737 (b) 012737 (c) 163737
001234 020000 000000
012345 020202 000000

(d) 062737 (e) 000000 (f) 162737
062737 013737
001000 013736

(g) 063737 (h) 163737
017772 000001
016744 001000

3 Each of the following programs will modify zero to three memory cells and
then terminate, either by executing a H A L T instruction or encountering an
illegal operation code or address. Assume that any operation code other
than the seven that have been discussed is illegal. Assume that the largest
legal address is 017776. Six question marks (??????) mean that the contents
of the memory cell is not known. For each program, list the new contents of
any memory cell that is modified, and describe the way in which the pro
gram terminates.

(a) Address Contents
001000 012737
001002 000020
001004 001014
001006 062737
001010 177760
001012 001014
001014 ??????

Execute beginning at 001000.

(b) Address Contents
002000 012737
002002 012737
002004 002012
002006 000000
002010 000000
002012 000000

Execution begins at 002000.

(c)
(d)

Same as (b) except execution begins at 002002.
Address Contents
002000 062737
002002 000001
002004 002010
002006 163737
002010 002016
002012 002016
002014 000000
002016 ??????

Execution beginning at 002000.

(e) Address
001000
001002
001004
001006
001010
001012
001014

Contents
163737
001200
001200
012737
000001
001200
000000

Execution begins at 001000.

(0 Address Contents
004000 012737
004002 012737
004004 004006
004006 000000
004010 000000
004012 004014
004014 ??????
Execution begins at 004000.

3.6 W R I T I N G M A C H I N E
L A N G U A G E P R O G R A M S

Using the seven machine language instructions currently available, it is possible
to implement very simple computer programs. In this section, the FORTRAN
and BASIC programs shown in Figure 3.9 will be manually translated into
machine language.* These programs are identical in the sense that, when the

*Strictly speaking, there is no integer data type in BASIC, therefore the BASIC example
is perhaps somewhat erroneous. It is given here because some readers may know BASIC
but not be familiar with FORTRAN. Consequently, for this and other examples to
follow, the reader should assume that we are dealing with an "integer only" version of
BASIC. Such versions of BASIC do indeed exist and are implemented on some small
microcomputers such as those based on the National Semiconductor-based Nibbler.

Figure 3.9 A Simple FOR TRAN and BASIC Program

A Simple FORTRAN Program An Identical BASIC Program

INTEGER J,K,L,M
J=3 10 LET J=3
K=J+4 20 LET K=J+4
L=K-J 30 LET L=K-J
M=K-L+J 40 LET M=K-L+J
STOP 50 STOP
END 60 END

STOP statement is reached, memory cell J will contain 3, K will contain 7, L
will contain 4, and M will contain 6.

It is important to regard a variable name, such as J, K, L, or M, as the sym
bolic name of a memory cell rather than the contents of a memory cell. For ex
ample, the statement K = J + 4 tells the computer to add 4 to the number in
memory cell J and place the resulting sum into memory cell K. It does not tell
the computer to set the number K equal to the number J plus 4. Although this
may seem like a minor semantic point, it is really the difference between the
name of a memory cell and the contents of a memory cell. To emphasize this
distinction, we refer to variable names such as J, K, L, and M in the preceding
programs as symbolic addresses. They are symbols that represent the name
(rather than the contents) of a memory cell.

The machine language program is to occupy consecutive memory cells
beginning at memory cell 001000. This area of memory must contain space for
the variables J, K, L, and M as well as the machine language instructions.
Creating the program is easier if space for the variables is allocated first as
shown in the following table:

Symbolic
Address

Memory
Address

Contents

J 001000 ??????
K 001002 ??????
L 001004 ??????
M 001006 ??????

A table such as this, which shows the relationship between symbolic addresses
and actual memory addresses, is called a symbol table. Note that we are not
concerned with the contents of these memory cells. At this time, therefore,
question marks have been used to indicate the contents. The machine language
program will place numbers into these memory cells during execution. It is now
quite easy to implement each of the FORTRAN or BASIC statements as
follows:

1. J = 3

Since J is the symbolic name for memory cell 001000, the instruction can be
implemented in machine language by a MOVE NUMBER instruction that

moves the number 000003 into memory cell 001000. Since memory cells
001000 through 001006 have already been allocated, this instruction can be
placed into memory beginning at memory cell 001010:

Address Contents Comment
001010 012737 J = 3
001012 000003
001014 001000

2. K = J + 4

J is the symbolic name of memory cell 001000, and K is the symbolic name
of memory cell 001002. We can implement this instruction by (a) moving
the contents of memory cell 001000 to 001002, and then (b) adding the
number 4 to the contents of memory cell 001002. In effect, the complex
F O R T R A N statement, K = J + 4 , is replaced by two simple FORTRAN
statements, K = J and K = K + 4. The machine language implementation is:

Address Contents Comment
001016 013737 K = J
001020 001000
001022 001002
001024 062737 K = K + 4
001026 000004
001030 001002

3. L = K - J

This FORTRAN statement is also implemented with two machine language
instructions, MOVE and SUBTRACT. In effect, the FORTRAN state
ment, L = K - J , is being replaced by two simpler statements, L = K, and
L = L - J .

Address Contents Comment
001032 013737 L = K
001034 001002
001036 001004
001040 163737 L = L - J
001042 001000
001044 001004

4 . Similarly, M = K - L + J can be simplified toM = K , M = M - L , and M =
M + J.

Address Contents Comment
001046 013737 M = K
001050 001002
001052 001006
001054 163737 M = M - L
001056 001004
001060 001006
001062 063737 M = M + J
001064 001000
001066 001006

5. STOP

This statement is implemented with a H A L T instruction:

Address Contents Comments
001070 000000 STOP

The complete program is shown in Figure 3.10. Note that the processor
should begin executing instructions at memory cell 001010, not 001000.

Figure 5.10 Machine Language Simple FORTRAN Program

Address Contents Comments
001000 ?????? Memory cell J
001002 ?????? Memory cell K
001004 ?????? Memory cell L
001006 ?????? Memory cell M
001010 012737 J = 3 (Move the number 000003
001012 000003 to memory cell 001000)
001014 001000
001016 013737 K = J (Move the contents
001020 001000 of 001000 to 001002)
001022 001002
001024 062737 K = K + 4 (Add the number 000004
001026 000004 to memory cell 001002)
001030 001002
001032 013737 L = K (Move the contents of
001034 001002 001002 to 001004)
001036 001004
001040 163737 L = L - J (Subtract the contents
001042 001000 of 001000 from 001004)
001044 001004
001046 013737 M = K (Move the contents of
001050 001002 001002 to 001006)
001052 001006
001054 163737 M = M - L (Subtract the contents
001056 001004 of 001004 from 001006)
001060 001006
001062 063737 M = M + J (Add the contents of
001064 001000 001000 to 001006)
001066 001006
001070 000000 STOP

The process of manually translating FORTRAN programs into machine
language can be viewed in the following manner. The machine language in
structions MOVE, MOVE NUMBER, ADD, A D D NUMBER, SUBTRACT,
and SUBTRACT NUMBER can each implement a certain type of FORTRAN
or BASIC expression. These are shown in Figure 3.11.

Figure 3.11 FORTRAN to Machine Language Correspondence

Sample FORTRAN
Statement

J = 5
J = K
J = J + 5
J = J + K
J = J - 5
J = J - K

Machine Language Implementation

MOVE NUMBER instruction
MOVE instruction
ADD NUMBER instruction
ADD instruction
SUBTRACT NUMBER instruction
SUBTRACT instruction

In order to implement any FORTRAN statement that does not match one of the
six types shown, it is necessary to decompose the statement into simpler
statements that do match. For example, the statement N = 5 - N can be decom
posed into

Decomposed
Statement

T = 5
T = T - N
N = T

Type

Figure 3.11 line 1
Figure 3.11 line 6
Figure 3.11 line 2

Notice that temporary storage cells, such as T in the preceding example, may be
necessary to implement a given FORTRAN statement.

3.7 M E M O R Y S T R U C T U R E OF O T H E R
C O M P U T E R S (Optional Section)

We are primarily concerned with the organization and structure of the PDP-11
family of computers. However, in various sections in the text, the similarities
and differences between the PDP-11 and other computers will be discussed.
Although these sections are not required in order to understand the PDP-11 ,
they are very useful for someone who wants to gain a general knowledge of
computers.

One of the most obvious ways that computers differ is in the structure of
memory. The three most important factors in describing memory are (1) the
size of a memory cell, (2) the size of a word, and (3) the size of an address. The
size of a memory cell is usually referred to as the unit of addressable storage. On
the PDP-11 , the unit of addressable storage is an 8-bit byte. It is simply the
quantity of information that is contained in each memory " b o x " or memory
cell. (If the processor fetches the contents of memory byte 000123, the result is
an 8-bit byte.) On all of the computers to be mentioned here, the unit of ad
dressable storage is a certain number of bits. This, however, is not true of all

computers. Computers have been built in which the unit of addressable storage
is a ten-digit decimal number.

The range of addresses is sometimes called the address space and indicates
the maximum number of memory cells that a program can access. On the
PDP-11 , an address is 16 bits long. Since 16 bits can be arranged i n 2 , 6 o r 65,536
different ways, there are a maximum of 65,536 bytes of memory on the PDP-11
computer. For the computers to be described here, the size of an address is a
certain number of binary digits. However, other arrangements, such as decimal
addresses, are possible.

On many computers, the processor manipulates quantities of information
that are larger than the unit of addressable storage. For example, the processor
on the PDP-11 manipulates 16-bit quantities. This larger quantity of informa
tion that the processor can manipulate is called a word. Typically, the size of a
word on any processor is some multiple of the unit of addressable storage.

Many small computers, called microcomputers, have a memory structure
that is very similar to the PDP-11 memory structure. That is, the size of an ad
dress is 16 bits and the unit of addressable storage is 8 bits. However, on many of
these computers, the word size is only 8 bits. That is, the A D D instruction can
only add two 8-bit numbers. If longer additions are required, a series of several
instructions must be used. Such processors are called 8-bit microprocessors, and
computer systems built with these processors are called 8-bit microcomputers.
Processors in this category include the 8085 (Intel Corporat ion), the Z80 (Zilog
Corporation), the 6800 (Motorola), and the 6502 (MOS Technology). Com
puter systems based on these processors include the TRS 80 (Radio Shack) the
A P P L E (Apple Computer) , and the P E T (Commodore) .

Many of these computer systems use base 16 (hexadecimal) rather than
octal to represent memory. As shown in Chapter 2, the hexadecimal system uses
16 "d ig i t s "— 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. Since each hexa
decimal (hex for short) digit represents four bits, a 16-bit address is represented
with four hex digits, and an 8-bit byte is represented with two hex digits. The
contents of memory might be illustrated as shown in Figure 3.12.

A variety of minicomputers* have an addressing structure that is identical
to the PDP-11 . That is, the unit of addressable storage is 8 bits, the size of an
address is 16 bits, and the size of a word is 16 bits. Examples of such computers
include the TMS 9900 (Texas Instruments) and the Series 1 (IBM Corporat ion).
In most instances, memory is represented in terms of 16-bit words instead of
8-bit bytes, as in the PDP-11 . However, hexadecimal numbers are often used
instead of octal numbers. Thus, memory is represented as shown in Figure 3.13.

•Computers used to be classified into three approximate sizes based on their cost—small,
medium, and large. When computers were developed that were far less expensive than
small computers, they were called minicomputers. When even less expensive computers
were developed, they were called microcomputers. The PDP-11 is generally considered a
minicomputer. However, very small PDP-1 Ts, like the LSI-11, are often classified as
microcomputers, and very large PDP-11 's, like the PDP-11/70, are too large to be called
minicomputers.

Figure 3.12 Hexadecimal Memory Representation for 8-Bit Computer

Address Contents
(in hex) (in hex)

0000 13
0001 4A
0002 00
0003 FF
0004 BO

4099 03
409A E3
409B 52
409C 19
409D AA
409E 3C
409F 73
40A0 C2

FFFD 59
FFFE DF
FFFF 01

Figure 3.13 Hexadecimal Memory Representation for 16-Bit Word Computers

Hex Hex
Address Contents

0000 0135
0002 2A4F
0004 56B3
0006 537D
0008 AB2E
000A FFFF
000C 0012
000E 0000
0010 B3BC

FFFC 1234
FFFE 6ABC

International Business Machines Corporation (IBM) has produced and in
stalled a large number of medium- and large-scale computers. The IBM 360
series of computers was introduced in the mid-1960s. The 370 series was in
troduced in the early 1970s and the 303x and 43xx series were introduced in the
late 1970s. Each of these series represents a family of computers that vary in

capacity (and price). For example, the 303x series is currently available in three
models: 3031, the 3032, and the 3033. All of these computers are compatible in
that they have the same basic set of machine language instructions and thus
form an "extended family. ' ' (Several additional instructions and features were
added to the later series.)

On all of these computers, the unit of addressable storage is an 8-bit byte.
The hexadecimal (base 16) system is used, so that a byte is specified with two
hexadecimal digits. An address is 24 bits long, which means that memory may
contain up to 2 2 4 or 16,777,216 bytes. However, most installed systems have
much less memory than this. In addition to manipulating bytes, the processors
can manipulate 16-bit, 32-bit, 64-bit and longer quantities. These quantities of
information are given the following names:

Number of Number of
Name Bits Bytes

Halfword 16 2
Word 32 4
Doubleword 64 8

Notice that the length of a word on this machine is 32 bits or 4 bytes. In other
words, a word consists of 4 consecutive bytes in memory. (On some machines,
the address of a word must be divisible by 4 while other machines do not have
this restriction. Analogous comments apply to halfwords and doublewords.)

Figure 3.14 shows a section of memory that contains a variety of bytes,
halfwords, words, and doublewords. The 24-bit addresses are represented as six
hexadecimal digits.

Figure 3.14 Sample Memory Contents for Large IBM Computers

Address Contents Quantity of Information
0A3B0 3A63CD55AA12335F Doubleword
0A3B8 05BC3894 Word
0A3BC F53E16C3 Word
0A3C0 3E Byte
0A3C1 82 Byte
0A3C2 5AE6 Halfword
0A3C4 98F320E4 Word

All of the computers described to this point are examples of byte ad
dressable machines. On such machines, the unit of addressable storage contains
a small number of bits, such as 8. In contrast, many computers have a unit of
addressable storage that contains larger quantities of information, such as 36,
48, 60, or 64 bits. On these machines, the word size is generally the same as the
unit of addressable storage. For example, a variety of computers manufactured
by Control Data Corporation (CDC) have a 60-bit word as the unit of ad
dressable storage. The contents of a memory cell is generally represented as 20

octal digits. On these machines, addresses are 18 bits long and are usually
represented with 6 octal digits. Figure 3.15 shows how the contents of memory
is represented.

Figure 3.15 Sample Memory Representation for the CDC Cyber Computers

Address Contents
303627 57263433716263540536
303630 03613027451200353011
303631 53374620025323325536
303632 36264472613302004520
305633 47267773530025342302

The computers with large word lengths tend to be expensive. They are
generally designed to perform scientific calculations very rapidly. Computers
with a small word size, such as an 8-bit byte, tend to be less expensive and
slower. However, this is only a crude rule of thumb. One of the problems is that
we have described memory as the programmer sees it. If one looks at the elec
trical components and circuits inside a computer, it is possible to reach quite
different conclusions. Consider the problem of fetching a byte from memory
on a PDP-11 computer. The processor actually fetches a 16-bit word and then
" throws away" 8 of the bits to leave an 8-bit byte. This process is totally
transparent to the programmer. However, an electrical engineer looking at cir
cuit diagrams might well conclude that the unit of addressable storage on the
PDP-11 was 16 bits rather than 8 bits.

E X E R C I S E SET 3

1 Beginning in memory cell 001000, write a machine language program that is
equivalent to the following FORTRAN program. (Remember to convert the
decimal numbers to octal.)

INTEGER J , K , L
J = 15
K=22
L=J-K+9
STOP
END

2 Beginning in memory cell 001000, write a machine language program that is
equivalent to the following:

INTEGER J,K
J =27
K=-J
STOP
END

3 Translate the following FORTRAN program into a machine language pro
gram that begins at address 001200. Notice that multiplication can be
achieved with successive addition. (Your program should use a temporary
memory location to store the sum of J and K. When your program halts, J
and K should still contain 5 and 9, respectively.)

INTEGER J , K , L
J =5
K=9
L=3*(J+K)
STOP
END

4 Translate the following FORTRAN program into a machine language pro
gram beginning at address 001000. (Hint: K can be computed from J with
fewer than 10 additions.)

INTEGER J,K
J =5
K=J*32
STOP
END

5 Solve exercise 4 assuming that K = J*23. (Hint: Express 23 decimal in
binary. Each 1 represents a multiple of J that must be added to K.)

6 Solve exercise 1 assuming that the machine language program is to begin at
address 000000 instead of 001000. What numbers change when a program is
relocated? Can you easily change the program so that it begins at address
002000?

CHAPTER 4

ASSEMBLY
LANGUAGE
PROGRAMMING

4.1 I N T R O D U C T I O N

Programming in machine language is difficult for a programmer. For example,
in order to add a quantity called TAX to a quantity called TOTAL, a program
mer would have to write a machine language instruction such as:

Operation Source Destination
Code

063737 002000 003000

In creating this instruction, the programmer must remember that (a) 013737 is
the operation code for addition, (b) TAX is the symbolic name for memory cell
002000, and (c) TOTAL is the symbolic name for memory cell 003000. In order
to appreciate the problems that face a programmer, it is worth noting that the
PDP-11 contains several hundred different operation codes. Furthermore, it is
not unusual for a computer program to use several thousand memory cells.

Assembly languages relieve some of the demands on a programmer 's
memory by using symbolic names instead of numbers. For example, the
preceding machine language instruction could be written in assembly language
as:

A computer program, called the assembler, translates the assembly language
program into machine language by substituting appropriate numbers for the
symbolic names. For the preceding assembly language statement, the assembler
should substitute 063737 for A D D , 002000 for TAX, and 003000 for TOTAL.

In addition to allowing the programmer to use symbolic names, the
assembler also performs computational services such as converting numbers
from one base into another. Typically, each type or model of computer has its
own assembly language. Indeed, there are sometimes different assembly
languages for a given type or model of computer. The assembly language to be
described for the PDP-11 computer is called MACRO-11.

4.2 D E V E L O P I N G A N A S S E M B L Y
L A N G U A G E P R O G R A M

Mnemonic Operation Codes

In order to understand the assembly process, it is useful to see how an assembly
language program could be developed from a machine language program. In
this section, the machine language program presented in the previous chapter
(Figure 3.10) will be converted to assembly language. For convenience, this pro
gram is reproduced as Figure 4 .1 . Notice that the format has been altered
however. For instructions that occupy three memory cells, only the address of
the operation code is listed. Source and destination are obviously contained in
the next two memory cells. In addition, the location for J, K, L, and M have
been moved to the end of the program so that execution will begin at location
001000. In Figure 4 .1 , memory cell 001000 contains the operation code 012737,
memory cell 001002 contains the operand 000003, and memory cell 001004 con
tains the address 001062.

Figure 4.1 Machine Language Program

Address Op Code Source Destin
ation

Comments

0 0 1 0 0 0 0 1 2 7 3 7 0 0 0 0 0 3 0 0 1 0 6 2 J = 3
0 0 1 0 0 6 0 1 3 7 3 7 0 0 1 0 6 2 0 0 1 0 6 4 K=J+4
0 0 1 0 1 4 0 6 2 7 3 7 0 0 0 0 0 4 0 0 1 0 6 4
0 0 1 0 2 2 0 1 3 7 3 7 0 0 1 0 6 4 0 0 1 0 6 6 L=K-J
0 0 1 0 3 0 1 6 3 7 3 7 0 0 1 0 6 2 0 0 1 0 6 6
0 0 1 0 3 6 0 1 3 7 3 7 0 0 1 0 6 4 0 0 1 0 7 0 M=K-L+J
0 0 1 0 4 4 1 6 3 7 3 7 0 0 1 0 6 6 0 0 1 0 7 0
0 0 1 0 5 2 0 6 3 7 3 7 0 0 1 0 6 2 0 0 1 0 7 0
0 0 1 0 6 0 0 0 0 0 0 0 STOP
0 0 1 0 6 2 ?????? MEMORY CELL J
0 0 1 0 6 4 ?????? MEMORY CELL K
0 0 1 0 6 6 ?????? MEMORY CELL L
0 0 1 0 7 0 ?????? MEMORY CELL M

The first step in converting this program is to substitute names for the
operation codes, using Figure 4.2. Notice that some of the symbolic operation
codes are abbreviated. For example, the MOVE operation code is shortened to
MOV, and the MOVE NUMBER operation code is written as MOV #. (The
programmers who created the MACRO-11 assembler chose these abbrevia
tions. These abbreviations are often called Mnemonic op codes. Mnemonic
refers to a human memory aid that uses association.) Substituting symbolic
operation codes for the numerical operation codes in Figure 4.1 produces
Figure 4 .3 .

Figure 4.2 Seven Operation Codes

Symbolic Numerical
Operation Operation

Code Code

A D D 0 6 3 7 3 7

A D D # 0 6 2 7 3 7

H A L T 0 0 0 0 0 0

M O V 0 1 3 7 3 7

M O V # 0 1 2 7 3 7

S U B 1 6 3 7 3 7

S U B # 1 6 2 7 3 7

Figure 4.3 Machine Language Program with Symbolic Op Codes

Address Op Code Source Destination Comments

0 0 1 0 0 0 M O V #000003 0 0 1 0 6 2 J = 3

0 0 1 0 0 6 M O V 0 0 1 0 6 2 0 0 1 0 6 4 K = J + 4

0 0 1 0 1 4 A D D # 0 0 0 0 0 4 0 0 1 0 6 4

0 0 1 0 2 2 M O V 0 0 1 0 6 4 0 0 1 0 6 6 L = K - J

0 0 1 0 3 0 S U B 0 0 1 0 6 2 0 0 1 0 6 6

0 0 1 0 3 6 M O V 0 0 1 0 6 4 0 0 1 0 7 0 M = K - L + J

0 0 1 0 4 4 S U B 0 0 1 0 6 6 0 0 1 0 7 0

0 0 1 0 5 2 A D D 0 0 1 0 6 2 0 0 1 0 7 0

0 0 1 0 6 0 H A L T S T O P

0 0 1 0 6 2 ?????? M E M O R Y C E L L J

0 0 1 0 6 4 ?????? M E M O R Y C E L L K

0 0 1 0 6 6 ?????? M E M O R Y C E L L L

0 0 1 0 7 0 ?????? M E M O R Y C E L L M

Symbolic Addresses

Just as numerical operation codes can be replaced with mnemonic operation
codes, numerical addresses can be replaced with symbolic addresses. Figure 4.4
is a symbol table that lists the numerical addresses along with the symbolic ad-

dresses that the authors have chosen. The first entry indicates that every occur
rence of the numerical address 001000 should be replaced by the symbolic ad
dress START.

Figure 4.4 A Symbol Table

Symbolic Numerical
Address Address

START 001000
J 001062
K 001064
L 001066
M 001070

Using this symbol table, each numerical address of importance in Figure
4.3 can be replaced by a symbolic address. Performing this series of substitu
tions produces the partially converted program shown in Figure 4.5.

Figure 4.5 Program with Symbolic Op Codes and Addresses

Symbolic
Address

Op Code Source Destin
ation

Comments

START MOV #000003 J J=3
MOV J K K=J+4
ADD #000004 K
MOV K L L=K-J
SUB J L
MOV K M M=K-L+J
SUB L M
ADD J M
HALT STOP

J ????? MEMORY CELL J
K ????? MEMORY CELL K
L ????? MEMORY CELL L
M ????? MEMORY CELL M

Symbolic addresses such as J and START in Figure 4.5 are also called sym
bolic names or labels. Symbolic addresses such as J, K, L, and M are analogous
to variable names in FORTRAN or BASIC. They are the names of memory
cells that contain " n u m b e r s " which are manipulated by the program. Symbolic
addresses such as START are analogous to statement labels in FORTRAN and
BASIC. They are the names of memory cells that contain (machine language)
instructions. Higher-level languages such as FORTRAN or BASIC clearly
distinguish between variable names and statement labels. The statement label
10 is very different from the variable name J. Other higher-level languages,
such as P L / 1 , do not make this distinction so clearly. In machine language or
assembly language, however, this distinction does not really exist. A symbolic
address is the name of a memory cell, regardless of whether the contents of the
memory cell is a number or an instruction.

The partially converted program in Figure 4.5 is certainly much easier to
understand than the machine language program in Figure 4 .1 . However, the
conversion process has not altered the meaning of the program in any way.
Figures 4.1 and 4.5 are really just two different representations for the same
program.

The Syntax of Assembly Language

The final step in conversion is the addition of some punctuation so that the pro
gram satisfies certain rules of syntax required of assembly language programs.
The complete assembly language program is shown in Figure 4.6.

Figure 4.6 Assembly Language Program

Label Op Code Operands Comments

.TITLE SIMPLE PROGRAM

.ENABL AMA ;SEE TEXT
START: MOV # 3 , J ; J=3

MOV J f K ;K=J+4
ADD //4,K
MOV K, L ;L=K-J
SUB J , L
MOV K,M ;M=K-L+J
SUB LtM
ADD J,M
HALT ;STOP

J : .BLKW 1 ;MEMORY CELL J
K: .BLKW 1 ;MEMORY CELL K
L: .BLKW 1 ;MEMORY CELL L
M: .BLKW 1 ;MEMORY CELL M

.END START ;SEE TEXT

The assembly language program consists of four columns or fields. The
first field contains symbolic addresses, the second field contains operation
codes, the third field specifies operands, and the fourth field is for comments.
Each of these fields will be described in greater detail.

The label field contains labels or the names of symbolic addresses. Each
label is the name of a memory cell. (Generally, the remaining fields on each line
specify the contents of the memory cell.) Labels are composed of one to six let
ters and numbers. In addition, the first character must be a letter. Thus A,
Z123, and SUNDAY are valid, but 52, AB?CD, and TUESDAY* are illegal. A

•Names that are too long do not produce error messages, but the extra characters are ig
nored, and thus confusion could occur between TUESDAY and TUESDAQ, which
would be indistinguishable. Additionally, periods and dollar signs can be used in names
as if they were letters of the alphabet. However, since they are frequently used in systems
programs, their use in non-systems programs is not recommended.

colon (:) must immediately follow a label. A label may begin anywhere on a
line, but by convention they are normally typed beginning in column 1.

The operation code field contains mnemonic operation codes such as
MOV, A D D , SUB, and so on. In addition, however, it may contain things like
.TITLE, .ENABL, .BLKW, and .END, which are definitely not operation
codes. These are called assembly directives (with some assemblers, they are
called pseudo-operations). It is easy to distinguish operation codes from
assembly directives because MACRO-11 assembly directives always begin with
a period (.). The .BLKW 1 indicates that a word of memory is to be reserved
without specifying its contents. In other words, it is equivalent to our writing six
question marks (??????). In Figure 4.6, .BLKW 1 simply indicates that J, K, L,
and M are the names of four memory cells (16-bit words) whose contents are
not known. Specifically .BLKW means "block of words . " The number follow
ing .BLKW is called an argument and indicates the number of words in the
block. The .TITLE, .ENABL and .END assembly directives are described fur
ther on. Operation codes and assembly directives may begin in any column, but
by convention they are usually typed beginning in column 9.

The contents of the operand field on a given line depends on the contents
of the operation code field. A H A L T op code must not have any operands, an
.END directive in this context should have one operand, and a MOV op code re
quires two operands. When two operands are required, they must be separated
by a comma with no spaces between the two operands. Notice that leading zeros
on numbers may be eliminated, so that #000003 may be typed as #3. By conven
tion, the operand field begins in column 17.

A comment must start with a semicolon (;). Anything after the semicolon is
ignored in the sense that it is not considered to be part of the assembly language
program. Comments can begin anywhere on a line after the operands (or after
the op code or assembly directive if there are no operands). It is possible to
make an entire line a comment by placing a semicolon in column 1.

The .END, .ENABL, and .TITLE directives still have to be described. The
.END directive is analogous to the END statement in FORTRAN or BASIC.
.END, which must appear on the last line of an assembly language program,
simply marks the physical end of the program. The operand following .END is
called an argument and specifies the symbolic address where execution is to
begin.

The function of the .ENABL directive is more difficult to explain. There
are two slightly different versions of the operation code table. The directive
.ENABL AM A is a message to indicate that the operation code table shown in
Figure 4.2 is being used. The PDP-11 has two memory addressing schemes:
relative (discussed later) and absolute. In absolute, the actual numerical address
is used in the instruction. Enabling AM A tells the assembler to use the easier to
understand absolute memory addressing wherever possible. The .TITLE direc
tive is simply for identification purposes. It has a message in the operand field
that is printed at the top of every page of assembly language listing. Therefore,
each listing page for this example would say SIMPLE P R O G R A M in the upper

Sec. 4.3 The Assembly Process 69

left hand corner. The .TITLE directive is not necessary to the program and has
little more effect than a comment. However, its use is important for the proper
documentation of the program.

Another commonly used assembly directive that was not used in the exam
ple is .WORD. This directive is used to place one or more numbers into con
secutive memory locations. For example, .WORD 57,34,171 would cause three
words to be inserted into the program:

000057
000034
000171

4.3 T H E A S S E M B L Y P R O C E S S

The P D P - 1 1 Assembler

In order to create machine language programs for the PDP-11 , programmers
typically write assembly language programs such as the one in Figure 4.6. The
assembly language program is input data to another computer program called
the assembler which translates the assembly language program into machine
language. The assembler to be described here is called MACRO-11 .
MACRO-11 was written by the manufacturer of the PDP-11 , Digital Equip
ment Corporat ion.

Simple Translation

If the symbol table and the operation code table are available, the assembly pro
cess is simple. Consider, for example, the assembly language program in Figure
4.6. Using the symbol table (Figure 4.4), replace each symbolic address with the
equivalent numerical address. Using the operation code table (Figure 4.2),
replace each symbolic operation code with the equivalent numerical operation
code. Remove the punctuation characters, and the result is the machine
language program shown in Figure 4 .1 .

The previous description assumed that (a) the operation code table is
available, and (b) the symbol table is available. The operation code table does
not vary from one program to another. That is, the symbolic operation code
H A L T is always replaced with the numerical operation code 000000. For this
reason, the operation code table is built in to the program called MACRO-11
that translates assembly language programs into machine language.

In contrast, the symbol table varies from program to program. It would be
possible to require the programmer to construct the symbol table and give
the table to MACRO-11 . However, creating the symbol table is almost as
difficult as creating the machine language program directly. A much better

method is to let MACRO-11 create the symbol table from the assembly
language program.

Creating a Symbol Table

MACRO-11 creates the symbol table by assuming that numbers are to be placed
in consecutive memory cells. For example, suppose that MACRO-11 has deter
mined that START in the following program segment is the symbolic name of
memory cell 001000:

START: MOV #3,J
MOV J,K

Since the instruction MOV #3, J is a three-word instruction, it will occupy loca
tions 001000, 001002, and 001004. The next available location is 001006.
Therefore, the second MOV instruction will be located starting at 001006. Since
it also requires three words, locations 001006, 001010, and 001012 will be used,
and the next available location will be 001014.

Using this technique, the assembler can determine the exact address of
each instruction or data location in the program. Since some of these lines in the
program contain a label, the labels can be identified with addressses to form a
symbol table. For example, this allows us to determine that J would be location
001062, K would be 001064, and so on. The assembler can then use these ad
dresses to fill in the addresses of such instructions as MOV #3,J.

Let us now review the method that MACRO-11 uses to construct the sym
bol table. MACRO-11 keeps track of a single quantity—the address of the next
available memory cell. This quantity is called the location counter. MACRO-11
scans the assembly language program from beginning to end using the follow
ing rules:

Rule 1: When MACRO-11 encounters a symbol followed by a colon (such as
START:, A:, or ZONK:), a symbolic address is being defined.
MACRO-11 inserts the symbolic address into the symbol table along
with the current value of the location counter. The value of the loca
tion counter is not changed.

Rule 2: When MACRO-11 encounters a symbol in the operation code field,
MACRO-11 adds an appropriate quantity to the location counter as
shown by the following table:

Op Code Appropriate Op Code Appropriate
Field Quantity Field Quantity

ADD 6 SUB 6

ADD# 6 SUB# 6
HALT 2 .BLKW 2 times the argument
MOV 6 .ENABL 0
MOV# 6 .END 0

It should be noted that the location counter is to the assembler what the
program counter is to the processor during execution. Although producing a
symbol table is crucial to the assembly process, the primary objective of the
assembler is to produce a machine language program. Let us now examine the
problems associated with producing machine language.

Examining the program in Figure 4.6, we can see what the assembler
" s e e s " during the translation process. The first thing is the .ENABL A M A line.
As described earlier, this directive does not generate any machine language
code, but merely sets a mode switch in the assembler. The next line, however, is
START: MOV #3, J. This line causes much to happen. First the symbol START
is entered in the symbol table with the starting address of 001000. Next the
MOV # instruction is encountered. The assembler searches the table in Figure
4.2 to determine that MOV # is a 6-byte or 3-word instruction and the location
counter is modified. Finally, we would like to produce the three words of the in
struction, 012737, 000003, and 001062. However, there is a problem. The last
of these words, 001062, is the address of J. But how can the assembler " k n o w "
the address of J since it has not yet " s e e n " the line J: .BLKW 1 where J is
defined.

Two-Pass Assembly

To solve this problem, the PDP-11 assembler uses two passes. (Chapter 13 men
tions other possible solutions to this problem.) This means that the assembler
reads through the assembly language program twice. The first time, no machine
language code is generated because address definitions are missing. However,
addresses can be determined as the program is read, and the symbol table is
generated. Then in a second pass through the program, the assembler will have
all the addresses defined in the symbol table, and the machine language code is
produced.

The process of constructing the symbol table by scanning the assembly
language program is called pass 1 of the assembly process. The machine
language program is produced during pass 2. During pass 2, MACRO-11 scans
the assembly language program a second time and, using the operation code
table and the symbol table, substitutes numbers for symbolic names to create
the machine language program.

4.4 E X A M P L E S OF ERRORS IN
T H E A S S E M B L Y P R O C E S S

Kinds of Errors

Two distinct steps are required to execute an assembly language program. First,
the assembly language program is given to the MACRO-11 assembler which
translates the assembly language into machine language. Second, the machine

language program is executed. Errors can occur during either one of these steps.
The errors that may be generated during each step are quite different.

The errors generated during the assembly step are generally either syntax
errors or undefined symbols. In order to translate an assembly language pro
gram into machine language, MACRO-11 must be able to find the label field,
the op code field, and the operands field on each line of the assembly program.
In order to make this possible, the assembly program must contain appropriate
punctuation, such as a colon after a symbolic address. Syntax is the set of punc
tuation and other grammar rules, and if the punctuation is incorrect, a syntax
error will be produced. An undefined symbol occurs when MACRO-11 en
counters a name that is not contained in either the operation code table or the
symbol table. This will occur if the operation code MOV is misspelled as
MOVE, or if the .END directive is misspelled as END. This error will also occur
if the programmer forgets to define a symbolic address. (Symbolic addresses
are defined by placing the name in the label field, followed by a colon.) It is also
possible to generate an error by defining the same symbolic name twice.

It is important to understand that errors such as syntax errors and unde
fined or multiply defined symbols are the only kinds of errors that MACRO-11
detects. In particular, MACRO-11 does not check the validity of the machine
language program that it produces in any way. MACRO-11 's only function is to
substitute numbers (such as operation codes and addresses) for names. It is the
programmer 's responsibility to ensure that the result is a valid machine
language program.

Once the assembly process is completed, the machine language program
can be executed. The errors that occur during execution include such things as
illegal addresses and illegal operation codes. In addition, of course, the pro
gram may simply produce incorrect answers.

Examples of Errors

To illustrate these points, a series of assembly language programs and their
machine language translations are described next. Each example consists of
eight columns. The assembly language program is contained in columns 2, 3,
and 4, with column 2 containing the label field, column 3 containing the opera
tion code, and column 4 containing the operands, if any. Column 1 contains the
numerical addresses, so that columns 1 and 2 represent the symbol table created
by pass 1 of the assembly process. The machine language program produced by
MACRO-11 is shown in columns 5 through 8. In each case, it is assumed that
the location counter is initialized to 001000, so that cell 001000 is the first
memory cell used by the program.

EXAMPLE 1 This assembly language program is designed to (a) set the
contents of memory cell A to 000003 (octal), (b) set the contents of
memory cell B equal to the contents of memory cell A, or 000003, and (c)
add the number 000004 to memory cell B, so that its contents become
000007. Notice that we do not say that the value of B is 000007. The value
of B is its symbol table entry, 001026. The value contained in memory cell
B is 000007.

ASSEMBL Y LANGUAGE
PROGRAM

Address Label Op Code Operands

.TITLE EXAMPLE //1

.ENABL AMA
001000 ST: MOV #3,A

MOV A, B
ADD #4,B
HALT

001024 A: .BLKW 1
001026 B: .BLKW 1

.END ST

MACHINE LANGUAGE PROGRAM
Address Op Code Operand Operand

Program title
Use the op code table in Figure 4.2
001000 012737 000003 001024
001006 013737 001024 001026
001014 062737 000004 001026
001022 000000
001024 ??????
001C26 ??????

During pass 1 of the assembly process, the symbol table is con
structed. ST becomes the symbolic name for memory cell 001000, A
becomes the symbolic name for memory cell 001024, and so on. During
pass 2, the machine language program is created. Finally, the machine
language program is executed beginning at memory cell 001000. When the
program halts at memory cell 001022, memory cell 001024 will contain
000003, and memory cell 001026 will contain 000007.

EXAMPLE 2 The second example is similar to example 1 except that
the programmer has forgotten the .BLKW directive on the fifth and sixth
lines of the program. The omission of .BLKW does not cause an assembly
error. Recall that the only function of the .BLKW directive is to add
000002 to the location counter during pass 1 of the assembly process.
Because .BLKW is omitted, A and B are both symbolic names for
memory cell 001024. (MACRO-11 simply assumes that the programmer
wishes to refer to memory cell 001024 by two different symbolic names.)

When the machine language program is executed, the MOV # in
struction in 001000 replaces the contents in 001024 with the number
000003. The MOV instruction moves the new contents 001024 into
001024, and the A D D # instruction adds 000004 to the contents of 001024.
When the H A L T instruction is executed, memory cell 001024 will contain
000007. Obviously, this is not what the programmer intended. However,
this is a difficult error to find because no error messages are produced.

ASSEMBL Y LANGUAGE
PROGRAM

Address Label Op Code Operands

.TITLE EXAMPLE //2

.ENABL AMA
001000 ST: MOV #3.A

MOV A,B
ADD //4,B
HALT

001024 A:
001024 B:

. END ST

MACHINE LANGUAGE PROGRAM
Address Op Code Operand Operand

Program title
Use the op code table

in Figure 4.2 001000 012737 000003 001024
001006 0 1 3 7 3 7 001024 001024
001014 062737 000004 001024
001022 000000
001024 ??????
001024

EXAMPLE 3 Example 3 is identical to example 1 except that the
number 3 has been changed to 7 and the programmer has forgotten the
HALT statement. This too will fail to produce an assembly time error.
During execution, however, the PDP-11 will eventually execute the ADD
instruction in memory cells 001014, 001016, and 001020. The processor
will then try to execute the " ins t ruct ion" in memory cell 001022 (sym
bolic address A). By this time, memory cell 001022 contains 000007,
which happens to be an illegal operation code. The computer will stop
executing the program and print an error message such as:

TRAP TO 000010 FROM 001024

The T R A P TO 000010 simply indicates that the processor has found an il
legal operation code. The address that follows (in this case 001024) is
generally one or two memory cells after the memory cell that caused the
problem.

The programmer in this example was lucky because the machine
language program " b o m b e d " immediately. If the contents of memory
cell 001022 were a valid machine language instruction, the processor might
execute a large number of "garbage instructions" in memory cells
001022, 001024, 001026, 001030, and so on.

If the processor finally encountered an illegal instruction at memory
cell 001040, an error message such as:

TRAP TO 000010 FROM 001044

would be produced. This message is not particularly useful in finding the
cause of the error (the missing H A L T instruction). A clue is that the value
001044 is the contents of the program counter when the error was
detected. However, the value will usually be somewhat higher than the in
struction causing the error because the program counter will be in
cremented some number of times depending upon how many fetches were
needed before the error was detected.

Address Label Op Code Operands

.TITLE EXAMPLE / / 3
ENABL AMA

0 0 1 0 0 0 ST: MOV #7, A
MOV A,B
ADD # 4 , B

0 0 1 0 2 2 A: .BLKW 1

0 0 1 0 2 4 B: .BLKW 1

. END ST

A SSEMBL Y LA NG UA GE
PROGRAM MACHINE LANGUAGE PROGRAM

Address Op Code Operand Operand

Program title
Use the op code table in Figure 4.2
0 0 1 0 0 0 0 1 2 7 3 7 0 0 0 0 0 7 0 0 1 0 2 2

0 0 1 0 0 6 0 1 3 7 3 7 0 0 1 0 2 2 0 0 1 0 2 4

0 0 1 0 1 4 0 6 2 7 3 7 0 0 0 0 0 4 0 0 1 0 2 4

0 0 1 0 2 2 ? ? ? ? ? ?

0 0 1 0 2 4 ? ? ? ? ? ?

EXAMPLE 4 This example is identical to example 1 except that the
number sign (#) has been omitted from the assembly language instruction
MOV #3,A. Recall that the number sign is really part of the operation
code. Omitting the number sign changes the operation code in memory
cell 001000 from 012737 to 013737. The rest of the machine language pro
gram is unchanged. Since MACRO-11 was able to substitute a number for
each symbol in the program, no error message is generated.

When the machine language program is executed, however, the MOV
instruction beginning in memory cell 001000 instructs the processor to
move the contents of memory cell 000003 into memory cell 001026.
Because 000003 is an illegal (odd) address, the program will " b o m b " with
an error message such as T R A P TO 000004 FROM 001004.

A quite different result would occur if the number sign were omitted
on the instruction A D D #4,B in example 1. The assembly language in
struction ADD 4,B generates a machine language instruction that tells the
processor to add the contents of memory cell 000004 to memory cell B
(001026). Since the contents of memory cell 000004 has not been
specified, it must be assumed to contain garbage. When the machine
language program halts, memory cell B (001026) will contain garbage.

ASSEMBL Y LANGUAGE
PROGRAM

Address Label Op Code Operands

.TITLE EXAMPLE #4

.ENABL AMA
0 0 1 0 0 0 ST: MOV 3 , A

MOV A,B
ADD # 4 , B

HALT
0 0 1 0 2 4 A: .BLKW 1

0 0 1 0 2 6 B: .BLKW 1

.END ST

MACHINE LANGUAGE PROGRAM
Address Op Code Operand Operand

Program title
Use the op code table in Figure 4.2
0 0 1 0 0 0 0 1 3 7 3 7 0 0 0 0 0 3 0 0 1 0 2 4

0 0 1 0 0 6 0 1 3 7 3 7 0 0 1 0 2 4 0 0 1 0 2 6

0 0 1 0 1 4 0 6 2 7 3 7 0 0 0 0 0 4 0 0 1 0 2 6

0 0 1 0 2 2 0 0 0 0 0 0

0 0 1 0 2 4 9 9 9 9 9 9

0 0 1 0 2 6 9 9 9 9 9 9

EXAMPLE 5 The previous examples have emphasized errors that may
occur when a machine language program is executed by the processor.
The following example illustrates the kinds of errors that will be detected
by MACRO-11 during the assembly process.

Label Op Code Operands Error

.TITEL EXAMPLE #5 .TITLE IS MISSPELLED
ENABL AMA ENABL IS UNDEFINED (MISSING PERIOD)

ST; MOV #3,A ST IS UNDEFINED (";" TYPED FOR " : ")
MOV A,B B IS UNDEFINED (SEE BELOW)
ADD B IS UNDEFINED (SEE BELOW)
.HALT ILLEGAL SNYTAX (ADDED COMMA)

B .BLKW 1 B IS UNDEFINED (MISSING COLON)
A: .BLKW 1

.END ST ST IS UNDEFINED (SEE ABOVE)

Some of these errors deserve greater explanation. On the third line,
the programmer has inadvertently typed a semicolon (;) instead of a colon
(:). As a result, MACRO-11 assumes that ST is in the operation code field
and that the remainder of the line is a comment. (ST cannot be in the label
field, because arguments in the label field must end with a colon.)
MACRO-11 searches the operation code table and the symbol table look
ing for the symbol ST. In this case, no such symbol is found and an error
message is printed. Because of the error, ST is not entered in the symbol
table and a second error message is printed with the .END statement
because the operand is undefined.

The missing colon on the sixth card produces a similar result. B is
undefined and every line that uses B as an operand will be flagged with an
error message. A single error can generate a large number of error
messages.

E X E R C I S E SET 1

1 In examples 1 through 4, it was assumed that the location counter was
initialized to 001000. Reassemble example 1 assuming that the location
counter is initialized to 000000. Does this change affect the content of
memory cells A and B when the machine language program halts?

2 Assume that the fourth line in example 1 is modified to read MOV #A,B.
(That is, a number sign is added in front of the operand A.) Hand assemble
this program assuming that the location counter is initialized to 001000.
What will be contained in memory cell B when the machine language pro
gram halts? (Hint: Remember that the number sign just changes the opera
tion code.)

3 Hand assemble the following program beginning at memory cell 001000.
What will be contained in memory cell LAST when the machine language
program halts? Can you describe what this program does in a few (English)
words?

Label Op Code Operands

.TITLE EXERCISE

.ENABL AMA
FIRST: MOV #LAST ,LAST

SUB #FIRST, LAST
ADD #2, LAST
HALT

LAST: .BLKW 1
.END FIRST

4 Hand assemble the following program beginning in memory cell 001000.
What number will be contained in memory cell ANS when the program
halts?

5 What effect will each of the following changes have on the program in exer
cise 4? (The changes are not cumulative.) If the program reaches the H A L T
statement, either identify the final contents of ANS or indicate the source of
the garbage that makes the contents of ANS unknown. If the program ex
ecutes a garbage instruction, identify the memory cell that contains the gar
bage instruction.

(a) The number sign is omitted from the third line so that the line becomes
START: MOV 10,J.

(b) The line containing the H A L T instruction is omitted.

(c) A number sign is added to the fifth line so that the line becomes
A D D #J ,ANS.

(d) The assembly directive, .BLKW is omitted from the seventh line so that
the line contains only the label definition J:.

START:

J :
ANS:

.TITLE EASY

.ENABL AMA
MOV #10, J
MOV #20.ANS
ADD J,ANS
HALT
.BLKW 1
.BLKW 1
.END START

4.5 P R O G R A M S IN T H E C O M P U T E R

Multiple Programs in Memory

The memory of a modern computer typically contains more than one machine
language program. Figure 4.7 illustrates a computer system in which memory
contains two programs labeled A and B.

Figure 4.7

At any point in time, only one program is actually being executed by the pro
cessor. However, there are special machine language instructions that cause the
processor to stop executing one program and start executing another. There are
several reasons why it is desirable to have more than one program in memory.
Some of these are described next.

Modular Programs

Debugging one large program is usually much more difficult than debugging
several small programs. As a result, good programmers usually break up a large
problem into two or more small programs. In Figure 4.7, for example, pro
grams A and B might be two programs, written by the same programmer, that
were designed to solve a single complex problem. When a problem is split up in
this fashion, the first program (in this case program A) is called the main pro
gram. The other programs (in this case B) are called subprograms or
subroutines. There are two instructions in the PDP-11 for calling subroutines
and returning from them: JSR and RTS. The JSR instruction (Jump to
SubRoutine) can be used to tell the processor to temporarily stop executing the
main program and start executing the subroutine. The RTS instruction
(ReTurn from Subroutine) can be used to stop executing the subroutine and
resume execution of the main program. These instructions will be described in
more detail in the next chapter.

It is even possible for the programs to be written in different languages. In
Figure 4.7, program A could be the machine language translation of an
assembly language program, while B could be the machine language translation

of a FORTRAN program. By breaking a large problem into smaller sub-
problems, the programmer can select the best language for solving each
subproblem.

Even if the programmer writes a single program with no subroutines, there
is usually another program in memory. In Figure 4.7, program A could be a
user's program, while program B could be part of the RT-11 operating system.
The user program can use the RT-11 operating system to obtain various services
such as input or output operations. These services are obtained by placing an
EMT instruction (EMulate Trap) in the user program. The EMT instruction
stops the execution of the user program and starts executing the RT-11
operating system. For example, if you are using RT-11, you should use an EMT
350 instruction to terminate your program rather than a H A L T instruction.
EMT 350 simply informs RT-11 that your program has finished executing.
RT-11 can then load the next user's program into memory and execute it.

Relocation

Because there are multiple programs in memory, it is important to be able to
move or relocate a program from one area of memory to another. (It would be
very unfortunate if a user accidentally placed a machine language program in
memory cells that were already occupied by the RT-11 operating system.) One
way of relocating an assembly language program is to reassemble the program.

Figure 4.8 contains the same assembly and machine language program that
previously was shown in example 1 (page 73). This example assumed that the
location counter was initialized to 001000. During pass 1 of the assembly pro
cess, the following symbol table was generated:

Symbolic A ddress Numerical A ddress
ST 001000
A 001024
B 001026

During pass 2, the machine language program on the right side of Figure 4.8
was generated. During execution, this program resides in memory cells 001000
through 001024.

Figure 4.8

Address Label Op Code Operands

.TITLE EXAMPLE //1

.ENABL AMA
001000 ST: MOV #3.A

MOV A, B
ADD #4,B
HALT

001024 A: .BLKW 1
001026 B: .BLKW 1

.END ST

ASSEMBLY LANGUAGE
PROGRAM MACHINE LANGUAGE PROGRAM

Address Op Code Operand Operand

Program title
Use the op code table in Figure 4.2
001000 012737 000003 001024
001006 013737 001024 001026
001014 062737 000004 001026
001022 000000
001024 ??????
001026 ??????

Figure 4.9 ASSEMBL YLANGUAGE
PROGRAM

Address Label Op Code Operands

.TITLE RELOCATION

.ENABL AMA
000000 ST: MOV #3.A

MOV A,B
ADD #4,B
HALT

000024 A: .BLKW 1
000026 B: .BLKW 1

.END ST

MACHINE LANGUAGE PROGRAM
A actress Op Code Operand Operand

Use the op code table in Figure 4.2
000000 012737 000003 000024
000006 013737 000024 000026
000014 062737 000004 000026
000022 000000
000024 ??????

000026 ??????

The assembly language program in Figure 4.9 is identical to the one in
Figure 4.8. However, the location counter has been initialized to 000000 rather
than 001000. As a result, the symbol table produced from Figure 4.9 is:

Symbolic A ddress Numerical A ddress

ST
A
B

000000
000024
000026

The resulting machine language program, shown on the right side of Figure 4.9,
occupies memory cells 000000 to 000026 during execution.

The Relocation Process

Notice that both machine language programs produce the same answer. When
either program halts, the contents of memory cell B will be 000007. It should be
obvious that the assembly language program can be relocated to any area in
memory by initializing the location counter to an appropriate value. If the loca
tion counter is initialized to address n, the resulting machine language program
will occupy memory cells n through n + 26.

It should also be noted that most of the actual words of both programs do
not change when we go from the machine language of one to the other. There
are, however, four exceptions. These exceptions are words that contain ad
dresses within the program. In Figure 4.8 and 4.9, the four words that change
when the program is relocated have been underlined. Notice that each of the
underlined quantities is an address in the program and that the relocation
changes each address by the amount of 001000. This result is obvious if the
assembly process is considered. The only difference between the two assemblies
is the initial value given to the location counter—001000 in the first assembly
and 000000 in the second. Changing the location counter by 001000 changes
each address by 001000.

This suggests a way of relocating a machine language program: simply add

the appropriate constant to each address and each underlined word in Figure
4.9. For example, if 001000 is added to each underlined word, the machine
language program in Figure 4.8 is produced. If 003000 is added to each number,
the following machine language program is produced:

Address Op Code Source Destination

Use the op code table in Figure 4.2
003000 012737 000003 003024
003006 013737 003024 003026
003014 062737 000004 003026
003022 000000
003024 ? ? ? ? ? ?
003026 ? ? ? ? ? ?

Execution begins at 003000

During execution, this machine language program will occupy memory cells
003000 through 003026.

In a machine language program, the addresses that must be changed when
a program is relocated are called relocatable addresses and all other numbers
are called absolute. In Figure 4.9, for example, the relocatable addresses are
underlined, while the absolute, or unchanging, locations are not. The assembler
uses a simple rule to distinguish relocatable from absolute quantities. Any word
that contains an address within the program is relocatable and must change
when the program is moved. For example, the address A is relocatable. On the
other hand, data, numerical operation codes or fixed addresses in memory are
absolute. The following example shows where a program uses a fixed address in
memory:

.TITLE ABSOLUTE EXAMPLE

.ENABL AMA
ST: MOV 10 t A

HALT
A: .BLKW 1

.END ST

This program contains an absolute address (000010) and a relocatable address
(A). If the program is relocated to begin at memory cell 004000, then A is the
symbolic name of memory cell 004010. In contrast, 000010 is an absolute ad
dress. No matter where the program is relocated, the processor will fetch the
contents of memory cell 000010 when the MOV instruction is executed. In most
assembly language programs, the use of an absolute address is an error, unless
it is used for special system purposes.

Modern large computer systems attempt to allocate memory to programs
at the last possible moment. This allows the allocation decision to be tailored to
the current workload of the computer system. The relocation technique
described previously allows the allocation decision to be made after the pro
gram is assembled. Some computer systems attempt to delay the decision until

the program is actually executing. This involves techniques such as paging,
segmentation, and virtual memory, which are beyond the scope of this book.
Memory is an important computer resource, and the management of this
resource is a fairly complex topic.

4.6 R U N N I N G A S A M P L E P R O G R A M

A Sample Program

As an illustration, the following program will be assembled, relocated, and

The first step is to load the M A C R O assembler program into memory and ex
ecute it. (On a large PDP-11 , the MACRO-11 program would almost certainly
be stored on a magnetic disk of some kind. On a small system, the user might
have to put a paper tape containing MACRO-11 into the paper tape reader).

The MACRO-11 program reads the user's assembly language program and
translates it into a relocatable machine language program called an object pro
gram. (An object program is simply a machine language program in which the
relocatable numbers are marked in some way.) During the translation process,
MACRO-11 prints the following information for the user:

SAMPLE PROGRAM RT-11 MACRO V03-02B 14 :51 :11 PAGE 1

executed:

ST:

A:
B:
C:

.TITLE SAMPLE PROGRAM

.ENABL AMA
MOV #7,A
MOV #4,B
MOV A,C
SUB B,C
HALT
.BLKW 1
.BLKW 1
.BLKW 1
.END ST

2
3
4
5
6
7
8
9
10
11

000000
000006
000014
000022
000030
000032
000034
000036

012737
012737
013737
163737
000000

000000

000007 000032 1 ST:
000004 000034 1

000032 1 000036 1

000034 1 000036 1

A:
B:
C:

.TITLE SAMPLE PROGRAM

.ENABL AMA
MOV #7,A
MOV #4,B
MOV A.C
SUB B,C
HALT
.BLKW 1
.BLKW 1
.BLKW 1
.END ST

Sec. 4.6 Running a Sample Program 83
SYMBOL TABLE

A
C

000032R
000036R

B
ST

000034R
000000R

ERRORS DETECTED: 0
FREE CORE: 18096. WORDS

The assembly language program is printed on the right side, and the object pro
gram is printed on the left. The first memory cell used is (relocatable) memory
cell 000000. The relocatable words in the object program are followed by an
apostrophe (').

Below the program listings, MACRO-11 lists the symbol table. In the sym
bol table, relocatable numbers are followed by the letter R. The symbol table
entry for A is 000032R.

Object Output

In addition to the listing, MACRO-11 also outputs a machine-readable copy of
the object program to some output device such as a paper tape punch or a disk.
The object program that is produced by the assembler contains the following
kinds of information.

1. The size of the program

2. Address and contents of each location to be loaded into memory

3. A code of some sort indicating which locations contain relocatable values
that must be changed

4. The (unrelocated) address where the program begins

Linking and Loading

The next step is to load and execute a program called LINK (for linker). One of
the linker's functions is to relocate programs. To accomplish this, the linker in
puts the object program that was created by MACRO-11 , adds a constant to all
the addresses to relocate the program to an unused area in memory. It then out
puts the relocated program, adding the constant to all of the relocatable loca
tions. In addition, the linker prints information such as the following:

The first line indicates that something is using a section of memory called
. ABS. which occupies memory cells from 000000 up to (but not including)
memory cell 001000. (The something is the RT-11 operating system which uses

SECTION ADDR
. ABS. 0000

ADDR SIZE
000000 001000
001000 000040

memory cells 000000 through 000776 for special purposes.) The second line in
dicates that an unnamed section of memory occupies memory cells from 001000
up to (but not including) 001040. This is the machine language program that has
been relocated to run in memory cells 001000 through 001036. This completes
the link step.

The final step is to load and execute the relocated program that was created
by the linker. In order to see if the program ran correctly, it is necessary to
dump the contents of memory cells 001000 through 001036 after the program
halts. The memory dump produces the following:

Memory cell C contains 000003 indicating that the program generated an
answer that happens to be correct. Notice that the number 001000 was added to
the contents of each of the relocatable locations.

E X E R C I S E SET 2

1 The following FORTRAN programs appeared in the exercises at the end of
Chapter 3 (pages 60-61). Translate each program into assembly language.

(a) INTEGER J , K , L (b) INTEGER J,K
J = 15 J=27
K=22 K=-J
L=J-K+9 STOP
STOP END
END

(c) INTEGER J , K , L
J =5
K=9
L=3*(J+K)
STOP
END

(d) INTEGER J,K
J=5
K=J*32
STOP
END

(e) INTEGER J,K
J=5
K=J*23
STOP
END

Exercise Set 2 85
2 In a previous exercise (page 77, exercise 3), the following program was

hand assembled beginning at memory cell 001000. Hand assemble the pro
gram beginning at memory cell 000000 and then relocate the program so
that it begins in memory cell 002000. When the program executes, will the
same number be left in memory cell LAST?

3 The following is a nonsense program that uses instruction modification.
However, the program will terminate normally. Hand assemble this pro
gram beginning at memory cell 000000, relocate the program so that it
begins at memory cell 001000, and then specify the contents of memory cells
001000 through 001020 when the program halts (and it will halt).

FIRST:

LAST:

.TITLE EXERCISE

.ENABL AMA
MOV //LAST .LAST
SUB //FIRST, LAST
ADD / / 2,LAST
HALT
.BLKW 1
.END FIRST

STRT: ADD
BAD: ADD
NOHOPE: MOV

.TITLE HARD

.ENABL AMA
#101000.BAD
#NOHOPE, NOHOPE
BAD,STRT
STRT .END

CHAPTER 5

PROGRAM
CONTROL
FEATURES

5.1 I N T R O D U C T I O N

As anyone experienced with computers knows, the whole purpose for having
high-speed circuitry is so that programs or sections of programs can be executed
repeatedly. Repeated sections of programs are called loops. In order to have a
loop, there must be some way of transferring control from one part of the pro
gram to another. In FORTRAN or BASIC, the GO TO statement can be used
to achieve this transfer of control. In order to be executed, these statements are
translated into branch and jump instructions that are part of the PDP-11
machine and assembly language.

Another important point of any loop is the determination of how many
times the instructions are to be repeated. In order to make such determinations,
the computer must have some decision-making capability. The computer can
then determine whether to go back to loop again, or to continue on without
looping, or even to jump out of the loop from somewhere inside. In FORTRAN
and BASIC, this can be done with IF statements. Such statements are translated
into conditional branch instructions that are part of the machine language in
struction set of the PDP-11 .

Another topic discussed in this chapter is the use of processor registers.
The processor registers are special locations that can hold 16-bit words of data .
Because they are faster than memory, their use can improve program speed. In
addition, some special operations require using the processor registers.

Finally, this chapter will look at how to write subroutines for the PDP-11 .

Although this topic is covered in considerable detail in Chapter 9, we will take a
brief look at simple cases of subroutine use. As we shall see, the PDP-11 has in
structions to which the CALL or GO SUB statements and the RETURN state
ment of FORTRAN and BASIC are translated. The reader is shown how to use
subroutines to read and print numbers.

5.2 L O O P I N G

A n Example of Looping

Figure 5.1 contains program segments designed to compute the sum of the in
tegers from 1 to 10 (decimal).* After each program segment is executed,
memory cell K will contain 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 0 = 55 (decimal) or
000067 (octal). Notice that the examples shown in Figure 5.1 are program
segments rather than complete programs. It is therefore assumed that certain
lines of program precede and follow the segments. For this reason, the STOP
and E N D statements are missing from the BASIC and FORTRAN segments.
Similarly, the H A L T instruction and all of the assembly directives (.ENABL,
.BLKW, and .END) are missing from the assembly language segment.

Figure 5.7 Simple Loop

BASIC FORTRAN Assembly Language

20 LET K=0
30 LET J=10
40 LET K=K+J
50 LET J = J - 1
60 IF J O 0 THEN
70

40

K=0
J = 10

40 K=K+J
J = J - 1
IF (J . N E . 0) GO TO 40

70

LOOP:

AFTER:

MOV
MOV
ADD
SUB
TST
BNE

#0 t K
#12, J
J,K
#1 , J
J
LOOP

Testing and Branching

The last two instructions in the assembly language segment are TST J and BNE
L O O P . The machine language translation of these instructions tells the pro
cessor to test the value of J, and then branch to (GO TO) statement LOOP if
memory cell J does not contain 0. If J contains 0, the processor will execute the
next sequential instruction (that is, the instruction contained in memory cell
AFTER) . The first 11 (octal) times that the branch instruction is executed, J will
be greater than 0, and the processor will branch to LOOP to repeat the loop

•Again we are assuming an "integer only" form of BASIC, and integer variables in
FORTRAN.

Sec. 5.2 Looping 89
again. On the twelfth (octal) time, J will be 0 and no branch will occur. Instead,
the processor will execute the next sequential instruction which begins in
memory cell AFTER.

The process of performing a conditional branch involves two separate pro
cesses that require two separate instructions. First, a value must be tested, and
then a conditional branch can occur based upon the value tested. In this case,
the instruction TST J tests the value of J. Then, the BNE LOOP instruction
branches to location LOOP if the tested value is not equal to 0. Note that the
BNE instruction itself does not state what is being compared with 0. The
assumption is that this instruction will be preceded by a test such as TST J.

Several other things about Figure 5.1 should be mentioned. First, notice
that the octal number 12 was used on the second line of the assembly language
segment. When FORTRAN or BASIC programs are converted to assembly
language, decimal constants should be converted to octal constants. Notice that
symbolic addresses (statement labels) in BASIC or FORTRAN must be
numbers, while symbolic addresses in assembly language must begin with a let
ter. It is strongly recommended that assembly language programmers select
meaningful names for symbolic addresses. Such names can be a very important
aid in understanding and debugging an assembly language program. Most
BASIC dialects require a symbolic address (statement label) on each line. FOR
TRAN and assembly language do not have this restriction. Finally, each BASIC
or FORTRAN statement in Figure 5.1 was translated into one or two lines of
assembly language. It frequently requires many lines of assembly language to
implement a single BASIC or FORTRAN statement.

Additional Instructions

The BR (for BRanch) instruction is an unconditional branch instruction. It is
analogous to the GO TO statement in FORTRAN or BASIC.

BASIC
40 GOTO 80

FORTRAN
40 GO TO 80

MACRO-11
OLDADR: BR NEWADR

The operation code is BR. The operand NEW ADR is the symbolic address to
which the processor branches. The machine language instruction that is pro
duced from this assembly language statement causes the processor to fetch its
next operation code from memory cell NEWADR. (The processor simply uses
the information from the branch instruction to place the desired branch address
in the program counter).

The BEQ (for Branch if EQual to 0) instruction is the opposite of the BNE
instruction.

BASIC FORTRAN M A C R O

30 IF L=0 THEN 90
40 . . . 40

IF (L.EQ.O) GO TO 90
NEXT:

TST
BEQ

L
LZER0

In the MACRO-11 program segment, the number contained in memory cell L is
tested. If memory cell L contains 0, the processor will branch to memory cell
LZERO. Otherwise, the next sequential instruction (beginning in memory cell
NEXT) will be executed.

The Testing Process

As was the case with the BNE and BEQ instructions, each conditional branch
requires that a value be tested before the branch can have meaning. In all the
previous examples, this was accomplished with the TST instruction. There are,
however, a number of other ways to test a value.

One of these ways is to perform an arithmetic operation. Every arithmetic
instruction automatically tests its result as it is stored in the destination loca
tion. For example, the instruction A D D A,B automatically tests the value being
stored in B. The result is almost as if the pair of instructions:

ADD A , B
TST B

were executed. Since this is true of all arithmetic instructions, the same applies
to A D D SUB, SUB and (although no computation is performed) MOV
and MOV

The advantage of this is that many times the TST instruction will be un
necessary. In fact, this happens to be the case in the example shown in Figure
5.1. Note that the instruction SUB #1,J is followed by TST J. Since the instruc
tion SUB #1, J automatically tests the resulting value of J, the instruction TST J
is redundant and can be eliminated. As a result, the program segment of Figure
5.1 can be shortened to:

MOV #0 t K
MOV # 1 2 , J

LOOP: ADD J,K
SUB #1,J
BNE LOOP

The computed result would be exactly the same.
As it turns out, this is not a freak situation. It is usually the case that the

value being tested by a conditional branch is, in fact, the most recently com
puted number. Consequently, it is rare that the TST instruction is needed. The
following is an example where the TST instruction is necessary:

BASIC FORTRAN M A C R O

20 LET K=K-4 K=K-4 SUB #4,K
30 IF L=0 THEN 90 IF (L.EQ.O) GO TO 90 TST L
40 BEQ LZERO

5.3 S I N G L E - O P E R A N D I N S T R U C T I O N S

Program Execution Time

In building computers, it is often inexpensive to add additional machine
language instructions. It is significantly more expensive to speed up the pro
cessor or to add additional memory. As a result, modern computers typically
have in excess of 100 different machine language instructions, many of which
are unnecessary in the sense that their functions can be accomplished in other
ways. However, these unnecessary instructions generally reduce program ex
ecution time and memory requirements. For example, only two of the three
branch instructions described up to this point are absolutely necessary. A BNE
instruction such as:

TST THETA
BNE GAMMA

NEXT:

can always be replaced with a BEQ and a BR instruction. For example:

TST THETA
BEQ NEXT
BR GAMMA

NEXT:

Both program segments will branch to G A M M A if the number contained in
memory cell T H E T A is not equal to 0. If the number in T H E T A is 0, the in
struction beginning at NEXT will be executed.

The Clear Instruction

In writing a program, it is frequently necessary to set the contents of a memory
cell to 0. This can be accomplished with a MOV # instruction. For example:

MOV #0,ALPHA

This method requires a total of four memory operations—three fetches to fetch
the instruction, and one store to execute the instruction. The same result can be
achieved with a SUB instruction. For example:

SUB ALPHA,ALPHA

However, this approach requires six memory operations—three fetches to fetch
the instruction, and two fetches and a store to execute the instruction.

To save time and space, the PDP-11 instruction set includes a CLR (for

CLeaR) instruction whose only purpose is to set a memory cell to 0. For
example:

CLR ALPHA

will set the contents of memory cell A L P H A to 0. Assuming that the instruction
is located at address 001012, and that A L P H A is the symbolic name for address
002000, the machine language translation of this instruction would be:

Address Contents Comment
001012 005037 CLR operation code
001014 002000 Address of memory cell to be cleared

This instruction requires only three memory operations—two fetches to fetch
the instruction and one store to execute the instruction. In addition, the CLR
instruction only occupies two words of memory instead of three, thus saving
memory space.

The Increment Instruction

Another common function is adding 1 to the contents of a memory location.
The instruction:

ADD #1,ALPHA

requires five memory operations—three fetches to fetch the instruction, and
one fetch and one store to execute the instruction. This instruction can be
replaced by the INC (for INCrement) instruction:

INC ALPHA

which increments the contents of A L P H A by 1. Assuming that the increment
instruction and A L P H A are located at 001012 and 002000, respectively, the
machine language translation of this instruction is:

Address Contents Comment
001012 005237 The INC operation code
001014 002000 Address of memory cell to be incremented

This instruction requires a total of four memory operations—two fetches to
fetch the instruction, and one fetch and one store to execute the instruction.

The Decrement Instruction

Similarly, the DEC (for DECrement) instruction is used to subtract 1 from the
contents of a memory cell. For example:

DEC ALPHA

will decrement the contents of A L P H A by 1. The machine language translation
of this instruction is:

Address Contents Comment
001012 005337 DEC operation code
001014 002000 Address of memory cell to be decremented

The Test Instruction

To complete the machine language translation for our new instructions of this
type, consider:

TST ALPHA

The machine language translation for this instruction is:

Address Contents Comment
001012 005737 TST operation code
001014 002000 Address of memory cell to be tested

Operation Codes

As the following table shows, the operation codes for these new instructions are
close together*:

Symbolic Operation Numerical Operation
Code Code

CLR 005037
INC 005237
DEC 005337
TST 005737

*As before, the 37 on each of these operation codes indicates an addressing mode.

These four instructions belong to a group or family of instructions called single-
operand instructions. Instructions in this family consist of a 16-bit operation
code followed by a 16-bit address.

Using these instructions, it is again possible to rewrite the assembly
language program that sums the integers from 1 to 10 (decimal). The original
program is reproduced on the left side of Figure 5.2. The revised version is
shown on the right. The machine language translation of the original program
requires 15 words, but the revised program requires only 11. This is a significant
savings in memory and in execution time.

Figure 5.2 Revised Simple Loop

Original

MOV #0 f K
MOV # 1 2 , J

LOOP: ADD J,K
SUB # 1 t J
TST J
BNE LOOP

Revised

CLR
MOV

LOOP: ADD
DEC
BNE

K
#12, J
J,K
J
LOOP

Using these instructions, we can now see one of the most common ways for
writing a loop for the PDP-11 . Imagine a process that we wish to perform N
times. The skeleton structure shown in Figure 5.3 is often the simplest way to

Figure 5.3 Common Loop Structure

MOV N , COUNT
LOOP:

Lines of program needed
for the process that is
to be repeated N times

DEC COUNT
BNE LOOP

INITIALIZE COUNTER

DECREMENT COUNTER
;L00P UNTIL COUNT = 0

construct the program. As we can see, the revised program in Figure 5.2 is, in
fact, an example of this structure. Many examples to be found later will also
follow this form.

Sec. 5.4 Machine Language Coding of the Branch Instructions 95
5.4 M A C H I N E L A N G U A G E C O D I N G
OF T H E B R A N C H I N S T R U C T I O N S

One-Word Instructions

Up to this point, no mention has been made of the machine language transla
tion of the branch instructions. One would expect the translation of a branch
instruction such as:

BR ALPHA

to occupy two memory cells—one for the 16-bit operation code and one for the
16-bit address. However, this is not the case.

It has been found that most branch instructions branch to a nearby
memory cell. For example, a branch instruction in memory cell 001000 is much
more likely to branch to memory cell 001020 than to memory cell 040000.
Because of this, the PDP-11 branch instruction packs an operation code and the
address into a single 16-bit memory cell. The left eight bits specify the operation
code, and the eight bits on the right specify the relative branch address as a
two's complement number from - 128 to + 127. The possible branch addresses
are restricted so that it is only possible to branch backward up to 127 memory
words and forward up to 128 memory words from the branch instruction.

To understand the branch instruction, it is necessary to represent the con
tents of a memory cell as a 16-bit binary number rather than as a 6-digit octal
number. The binary representation of the BR instruction is as follows:

0 0 0 0 0 0 0 1 ? ? ? ? ? ? ? ?

Operation Code Displacement

The 8-bit displacement designates the branch address. The displacement is
coded as shown in Figure 5.4. The following branch instruction will cause the
processor to branch ahead three memory cells:

0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0

Operation Code Displacement

The way this operates is that twice the signed value of the displacement is added
to the program counter. The displacement is multiplied by 2 because the pro
gram counter must always be an even number. In this example, the signed value
of the displacement is 0 0 0 0 0 0 1 0, or + 2. Therefore + 4 is added to the pro
gram counter. However, the normal instruction fetch has already added 2 to the
program counter, so the total increment is six bytes or three words from the
location of the branch instruction. In other words, if the branch instruction had
been in location 0 0 1 0 0 6, the next instruction executed would be taken from
0 0 1 0 0 6 + 6 = 0 0 1 0 1 4 octal.

Figure 5.4 Branch Displacement Table

Displacement Meaning
10000000 Branch backward 127 (decimal) memory words
10000001 Branch backward 126 (decimal) memory words
10000010 Branch backward 125 (decimal) memory words
10000011 Branch backward 124 (decimal) memory words

11111101 Branch backward 2 (decimal) memory words
11111110 Branch backward 1 (decimal) memory words
11111111 Branch backward 0 (decimal) memory words
00000000 Branch forward 1 (decimal) memory words
00000001 Branch forward 2 (decimal) memory words
00000010 Branch forward 3 (decimal) memory words
00000011 Branch forward 4 (decimal) memory words

01111110 Branch forward 127 (decimal) memory words
01111111 Branch forward 128 (decimal) memory words

Example of Branch Instructions
in Machine Language

Two special cases of the branch instruction should be mentioned. Consider first
the instruction 000777 (octal). In octal, it is not clear that this is a branch in
struction. To interpret the instruction, it is necessary to convert it to binary:

The binary representation shows that this is a BR instruction that will branch
backward zero memory cells. This is because the displacement is
1 1 1 1 1 1 1 1, which is equivalent to - 1. Therefore, - 2 is added to the pro
gram counter, canceling out the + 2 that was added for the instruction fetch.
This puts the program counter back where it started, at the address of the
branch instruction. It is equivalent to the following:

BASIC FORTRAN MACRO

30 GOTO 30 30 GO TO 30 LOOP: BR LOOP

Neither the assembler nor the processor treats this infinite loop as an error.
The instruction 000400 is represented in binary as:

This instruction will branch to the instruction that immediately follows the
branch instruction. Here the displacement is 0 so nothing extra is added to the
program counter. Therefore, the processor simply proceeds to the next instruc
tion. It is equivalent to:

BASIC FORTRAN M A C R O

G O T O 30 G O T O 30 B R N E X T

30 . . . 30 . . . N E X T : . . .

In assembly or machine language, such " d o nothing ' ' statements are often
called no-ops (for no operation).

Because of the way the operation code and the displacement are coded, any
instruction between 000400 and 000777 will be an unconditional branch (BR)
instruction. Similarly, instructions between 001000 and 001377 octal are BNE
instructions, and those between 001400 and 001777 are BEQ instructions.

Relative Addressing

The displacement in any branch instruction tells the processor to branch so
many memory cells from the memory cell that contains the branch instruction.
This method of specifying an address is called relative addressing. In contrast,
all of the other instructions described up to this point (such as MOV) use direct
addressing. That is, the actual 16-bit address is part of the instruction.

Computing displacements for branch instructions is awkward. Fortu
nately, the assembler will calculate the displacements for the programmer. In
fact, the assembly language programmer can ignore the exact coding of the
branch instructions if two points are remembered: (1) branch instructions oc
cupy only one memory word; (2) it is only possible to branch backward 127
(decimal) words or forward 128 words from the branch instruction. If the pro
grammer specifies a branch address that is too far away, the assembler will print
an error message.

5.5 O T H E R I N S T R U C T I O N S

The J M P Instruction

For long branches where the BR instruction will not reach, the J M P (for JuMP)
instruction is used instead. For example, the following statement will cause an

unconditional branch to memory cell A L P H A :

JMP ALPHA

The machine language translation of this statement is straightforward. If the in
struction and A L P H A are located at addresses 001006 and 002000, respec
tively, then the machine language translation would be:

Address Contents Comment
001006 000137 The J M P operation code
001010 002000 Branch address

For short branches, BR is preferable because it only occupies one word of
memory and only requires one memory operation (a fetch). The J M P requires
two words of memory and two fetches. To execute the jump instruction, the
processor simply copies the branch address into the program counter.

The J M P instruction must sometimes be used for loops. For example, the
following segment executes the indicated statements 100 (octal) times:

MOV #100,COUNT
LOOP:

Statements to be executed 100 times

DEC COUNT
BNE LOOP

However, if there are too many statements inside the loop, address LOOP will
be more than 127 memory cells from the BNE instruction. In this case, the loop
would have to be rewritten as:

MOV #100,COUNT
LOOP:

Statements to be executed 100 times

DEC COUNT
BEQ ENDLP
JMP LOOP

ENDLP: . . .

The C M P Instruction

The branch instructions described thus far can only test to see if a memory cell
contains 0 or not. Some method is needed to determine if one number is greater
than another. That is, an assembly language equivalent of the following

statements is needed:

FORTRAN IF (J . G T . K) GO TO 5 0

BASIC IF J>K THEN 5 0

The desired result is achieved with the following pair of instructions:

NEXT:

CMP
BGT JGTK

These statements tell the processor to branch to JGTK if the number in memory
cell J is greater than the number in memory cell K. If the number in J is equal to
or less than the number in K, no branch occurs and the next sequential instruc
tion that begins in NEXT is executed.

The C M P (for CoMPare) instruction is similar to the TST instruction in
that its only function is to test something. The instruction C M P J,K causes the
processor to test whether (1) the number in J is greater than the number in K, (2)
the number in J is equal to the number in K, or (3) the number in J is less than
the number in K. The C M P instruction does not alter the contents of J or K.
The BGT (for Branch if Greater Than) causes the processor to branch if the first
operand of the compare instruction (in this example, J) is greater than the se
cond operand (in this example, K). Numbers are interpreted to be signed
numbers in the two's complement number system and are compared in the nor
mal algebraic manner.

Machine Language Translation
of the C M P Instruction

The machine language translation of the C M P instruction is straightforward. If
the C M P instruction, J, and K are located at addresses 001006, 002000, and
003000, respectively, then the assembly language statement:

CMP J,K

would be translated into:

Address
001006
001010
001012

Contents
023737
002000
003000

Comment
The C M P operation code
Address of the first number
Address of the second number

C M P belongs to the double-operand family of instructions that includes such
instructions as MOV, ADD, and SUB. Instructions in this family can be iden-

tified by the fact that the second octal digit from the left is not equal to 0. (For
example, the operation code 043737 has not been discussed. However, the
presence of the 04 indicates that this is a double-operand instruction.)

Signed Conditional Branches

The BGT (for Branch if Greater Than) instruction belongs to a family of four
signed branch instructions. The complete family is as follows:

Symbolic
Operation

Code

B G T

B G E

B L T

B L E

Numerical
Operation

Code

003000-003377

002000-002377

002400-002777

003400-003777

Description

Branch if the first operand
is Greater Than the second

Branch if the first operand
is Greater than or Equal to
the second

Branch if the first operand
is Less Than the second

Branch if the first operand
is Less than or Equal to
the second

The machine language translation of each of these instructions is similar to that
of the BR instruction. The 16-bit binary instruction consists of an 8-bit opera
tion code and an 8-bit displacement. As a result, it is only possible to branch
backward 127 memory words or forward 128.

The preceding four branch instructions can be used after arithmetic in
structions such as ADD, INC, TST, and so on. In such cases, the result is com
pared to 0. For example, the instruction sequence:

T S T X

B G T A L P H A

will cause a branch to A L P H A if the number in memory cell X is greater than 0.
Similarly, the BEQ and BNE instructions can be used with the C M P in

struction to test if the operands of the C M P are equal or not equal. Thus:

C M P A , B

B E Q A L P H A

will cause a branch to A L P H A if the contents of A and B are equal.
In addition, several branch instructions can follow a single C M P instruc-

tion. For example, the statements:

CMP J f K
BLT ALPHA
BGT BETA
BR GAMMA

will cause the processor to branch to A L P H A , BETA, or GAMMA, depending
on whether the number in memory cell J is less than, greater than, or equal to
the number in memory cell K, respectively. Notice that the last instruction is a
BR instruction. It should be obvious that changing the BR instruction to a BEQ
instruction will not affect the result. The choice is really a question of program
ming style.

Long Branches

For a long branch, a J M P instruction must be used. Assume that the program
mer wishes to branch to statement LOWER if the number in memory cell A is
less than the number in memory cell B. The programmer would normally write:

CMP A, B
BLT LOWER

If the memory cell LOWER is too far away, these statements would have to be
rewritten as:

CMP A,B
BGE NOTLO
JMP LOWER

NOTLO: . . .

Notice that BGE (not BGT) is the opposite of BLT. BGT is the opposite of
BLE.

Order of Comparison

The order of the operands in the C M P instruction is important . That is, the ef
fect of the instructions:

CMP A, B
BGT ALPHA

is very different from the effect of:

CMP B,A
BGT ALPHA

The first pair of instructions branches when the number in memory cell A is

greater than the number in memory cell B, while the second pair branches when
the number in B is greater than the number in A.

Number signs (#) may be used with the C M P instruction. For example:

CMP
BLT

2 1 , A
ALPHA

will branch to A L P H A if the number 000021 is less than the contents of
memory cell A. The presence of the number sign changes the operation code
from 023737 to 022737. The number sign may also be used on the second
operand. For example, the instruction:

CMP
BGT

WAGE,#1000
GETTAX

will branch to GETTAX if the number in memory cell WAGE is greater than
001000. In this case, the operation code becomes 023727.

These operation codes exhibit an obvious pattern. The presence of a
number sign on the first operand changes the middle two digits from 37 to 27.
(The compare operation code is changed from 023737 to 022737). The presence
of the number sign on the second operand changes the last two digits from 37 to
27. (The operation code 023737 becomes 023727).

5.6 M A C H I N E L A N G U A G E
O P E R A T I O N C O D E S

Operand Codes

In point of fact, the different forms of the C M P instruction bring to light a very
important fact about machine language codes for single- and double-operand
instructions in the PDP-11 computer. The reality is that there is only one C M P
instruction. Its machine language representation is 02ssdd. The letters ss (for
source operand) represent two octal digits that indicate where the first or source
operand can be found. The letters dd (for destination operand) represent two
octal digits that specify where the second or destination operand can be found.

The ss and dd values tell the processor how to interpret the contents of the
memory cells that follow the operation code. For example, assume that the
following C M P instruction begins in memory cell 001006:

Address
001006
001010
001012

Contents
02ssdd
002000
003000

Sec. 5.6 Machine Language Operation Codes 103
If ss is 27, the processor treats the contents of 001010 as the number 002000.
This is called an immediate operand because it is fetched immediately as part of
the instruction. If ss is 37, then the contents of 001010 is treated as an address,
and the contents of memory cell 002000 is fetched. In a similar manner, the
numbers substituted for dd (27 or 37) tell the processor whether to interpret the
contents of 001012 as a number (dd replaced with 27) or the address of a
number (dd replaced with 37).

Application to Other Instructions

This same coding applies to other instructions as well. For example, the MOV
operation code is represented as 01ssdd, and the CLR operation code is 0050dd.
It is important to realize that a number of useless instructions can be generated.
For example, the assembly language statement:

CMP #20 ,#15

will generate the following machine language instruction:

Address Contents
001006 022727
001010 000020
001012 000015

This is a useless instruction in the sense that the constant 000020 is always
greater than the constant 000015.

Other examples of silly instructions include:
MOV X,#24
ADD #5 ,#102
INC #1000

Neither the assembler nor the processor treats these silly instructions as errors.

Operand Order

In fact, for all of the instructions discussed so far, except C M P , it usually
makes no sense to put a number sign on the second or destination argument.
The effect would simply be to store the result on top of the number. On the
other hand, when a compare instruction is used with an immediate operand, it
may be preferable to make the immediate operand the second (destination)
operand. For example, assume that we wish to branch to memory location
A L P H A if the number in memory cell X is less than 000020. There are two

methods for coding this sequence:

Method One Method Two

CMP X,#20 CMP #20, X
BLT ALPHA BGT ALPHA

The first method branches to A L P H A if the number in memory cell X is less
than 20. The second method branches to A L P H A if 20 is greater than the
number in X. Obviously, the effect of the two methods is identical. However, it
has been the author 's experience that fewer errors are made when the first
method is used.

While the loop structure shown in Figure 5.3 is very simple, and perhaps
the commonest in the PDP-11 , there are some disadvantages. The main disad
vantage is that the loop is controlled by a counter that counts backward from N
to 0. Often it is necessary to have a variable that increases in value. While this
can always be accommodated by adding an extra variable, it may be desirable to
write a program in a way that closely mimics the BASIC or FORTRAN FOR
or DO loops.

The structure in Figure 5.5 shows how the FOR or DO loop could be
mimicked. Note that assembly language does not have the complex loop struc
tures of the higher-level languages. Loops must be constructed with the simple
instructions already described.

Figure 5 . 5 Forward-Counting Loop Structure
BASIC FORTRAN MACRO

30 FOR 1=1 TO 20 DO 70 1=1,20 MOV # 1 , 1
LOOP:

70 NEXT I 70 CONTINUE INC I
CMP I , # 2 4
BLE LOOP

E X E R C I S E SET 1

1 Hand assemble each of the following statements. In each case, the resulting
machine language instruction should begin in address 001000. Assume that
the symbol table entries for the symbolic addresses ALPHA, BETA, and
DELTA are 001004, 002000, and 003000, respectively.

(a) TST DELTA (b) CLR BETA

(c) INC DELTA (d) BR ALPHA

(e) BNE ALPHA (0 BGT ALPHA

(g) JMP DELTA (h) CMP BETA,DELTA

(i) CMP #20,BETA (J) CMP BETA,#20

2 How many memory fetches and stores are required to execute each of the in
structions in (1)? Remember to include the fetches required to fetch the
instruction.

3 Extend the entries in Figure 5.4 to show the 8-bit displacements required to
branch backward from 3 (decimal) memory words to 20 (decimal) memory
words.

4 The following program will compute the sum of the integers from 1 through
8. Hand assemble the program beginning at memory cell 000000 and then
relocate the program to memory cell 001000.

BEGIN:

LOOP:

SUM:
COUNT:

.TITLE SUM

.ENABL AMA
MOV #10,COUNT
CLR SUM
ADD COUNT,SUM
DEC COUNT
BNE LOOP
HALT
.BLKW 1
.BLKW 1
.END BEGIN

5.7 P R O C E S S O R REGISTERS

Definition

In the previous sections, we have discussed memory as consisting of a large
number of locations where data could be stored. In addition to memory, vir
tually every computer has a few special locations for storing data. These loca
tions are usually an integral part of the processor, and are called processor
registers.

Some of the processor registers may perform functions that are not ap
parent to the programmer, such as temporarily holding data or addresses as
they are transmitted to or from memory. Other registers may be accessible to
the computer program and used for various purposes. In particular, the
PDP-11 has eight processor registers that are designated register 0 through
register 7. While registers 6 and 7 serve special purposes, the other six registers,
0 through 5, are for general use and can be used just like memory locations to
hold 16-bit binary numbers.

Applications

In later chapters we will see some other uses for the processor registers, but for
now we will examine their use as extra places to put data. One might ask at this

point what the need is for six extra places to put data when even the smallest
PDP-11 memories allow for thousands of locations. The answer is that there is
a considerable advantage of using processor registers instead of memory.

The first advantage is that processor registers are much faster. Since they
are an integral part of the processor, data can be accessed from them as much as
10 times as fast as from memory.

The second advantage is that since there are only a few processor registers,
you do not need a 16-bit address to identify which register you are referencing.
Instead, registers can be identified by modification of the operation codes. As a
result, while the instruction to move the contents of memory location A to
memory location B takes three words, a move from one register to another can
be done with a cwe-word instruction.

There are two benefits from the shorter instruction size. First your pro
gram uses less memory. This may be important for large programs. Second
there are fewer memory fetches needed to access the shorter instruction. This
gives a further enhancement of the speed advantage. The result is that register-
to-register instructions are about four times faster (overall) than memory-to-
memory instructions.

Processor Register Instructions

All of the data-handling instructions that we have used so far can be used with
processor registers as well as with memory. These instructions are MOV, ADD,
SUB, INC, DEC, CLR, TST, and C M P . Recalling the discussion of operands
on page 102, these instructions use the code 27 for immediate data, and 37 for
an addressed location in memory. Similarly, the code On refers to the contents
of register n. For example, 03 would refer to register 3. (Note that since one
octal digit is used to specify the register, it is possible to choose any of the eight
registers.)

Recall that the MOV operation code is represented as Olssdd. Thus, the
operation code 010203 would move the contents of register 2 to register 3. (Note
that all registers contain full 16-bit words. Therefore, odd-numbered registers
can be used, whereas odd-numbered memory addresses cannot.) To see this ex
ample more clearly, let us compare the register move to the memory move:

Note that since the register move does not refer to any memory addresses, it re
quires only one word instead of three.

Register-to-Register Move

010203

Memory-to-Memory Move

013737

002000

003000

Assembly Language Notat ion

The question that arises at this point is how to designate register operations in
assembly language. The answer is that a special character, namely the percent
sign (%), is used to designate registers. In other words, %0 means register 0,
%1 means register 1, and so on. Therefore, to designate the previous register
move, we would use the assembly language statement:

MOV %2,%3

Following this scheme, we can see what the revised program of Figure 5.2
would look like if processor registers 0 and 1 were used instead of memory cells
J and K. Figure 5.6 shows the comparison. When this program was originally
introduced, we remarked that we had compressed it to 11 words of machine
language. By using registers for data instead of memory, the program is re
duced to six words of machine language and will execute much faster.

Figure 5.6 Simple Loop Using Registers
Memory Format

LOOP:

CLR
MOV
ADD
DEC
BNE

K
#12, J
J,K
J
LOOP

LOOP:

Register Format

CLR
MOV
ADD
DEC
BNE

%1
#12,%0
%0,%1

%0
LOOP

A particular point to notice is that the second instruction, MOV #12,%0,
combines an immediate operand with a register operand. This is permissible in
virtually every meaningful combination. If this instruction were translated into
machine language beginning at address 001200, the result would be as follows:

Machine Language

Address Contents

001200 012700
001202 000012

Assembly Language

Op Code Operand

MOV #12,%0

The source operand code, 27, indicates an immediate operand. The destination
operand code, 00, indicates register 0. This is a two-word instruction because a
word is needed for the immediate operand. In general, instructions require
three, two, or one word(s) if there are two, one, or no memory addresses or im
mediate operands. The examples in Figure 5.7 illustrate the mixing of different
kinds of operands, and how many words each instruction required.

Figure 5.7 Various Operand Combinations

MOV A,B Three words
ADD #12,%0 Two words
SUB A,%3 Two words
MOV %0,B Two words
CMP %,%4 One word
CMP %1,#23 Two words

Standard Notat ion

A final point to note about register notation is that the use of the percent sign
makes the program look a little strange. The reason is probably psychological,
but the use of the percent sign seems to make programs confusing and hard to
read. Things would be much more understandable if symbols such as RO, R l ,
R2, and so on were used to indicate the registers. To show this, the example of
Figure 5.6 is reshown in Figure 5.8 using these symbols instead of the percent
sign symbols.

Figure 5.8 Simple Loop with R Symbols

Percent Signs

CLR %1
MOV #12,%0

LOOP: ADD %0,%1
DEC %0
BNE LOOP

Letters

CLR R1
MOV #12,R0

LOOP: ADD R0.R1
DEC R0
BNE LOOP

The problem with this is that symbols such as RO and Rl are just ordinary
symbols; so the assembler would normally assume they referred to addresses.
There is, however, a means of equating these symbols to the registers. At the
beginning of the program (or at least before any reference to the symbols), the
following lines must appear:

R0 = %0
R1=%1
R2=%2

and so on for whichever registers your program uses. These lines are typed just
as they appear, beginning, normally, in column 1. Some assemblers on other
computers employ an assembly directive such as EQU to accomplish the task of
equating symbols. If you are using the RT-11 operating system, all eight reg
isters can be given symbolic names with the following two lines:

.MCALL .REGDEF

.REGDEF

.MCALL is an assembly directive that fetches packages of code, called
macros, from the system library. .REGDEF is a package of eight lines of code
that contains the symbol definitions R0 = % 0 , R1 = %1, and so on. The second
line, which is simply .REGDEF, actually causes the fetched code to be inserted
into the program. In later versions of the assembler, the symbols R0, R 1 , and so
on, are predefined to refer to the processor registers. Therefore, with these
assemblers, there is no need either to define the register symbols or to invoke the
.REGDEF macro.

Register 6

Previously we stated that while there are eight processor registers, only the first
six are normally put to general use. The reason is that registers 6 and 7 serve
special purposes. Casual modification of either of these registers is likely to
cause the PDP-11 to produce unforeseen results or even to stop functioning.
Although the exact use of these registers is complex and is discussed later in this
text, they are introduced here to complete the discussion on registers.

Registers 6 and 7 are both used by the PDP-11 computer as pointers into
special areas of memory. Register 6 points into an area of memory called the
stack. Certain operations in the computer require saving data temporarily.
Many of these operations automatically store the data in the stack area. For ex
ample, the instruction JSR (which we will see in the next section) saves the
return address in the stack. Since the stack is not a fixed area of memory but is
under the programmer 's control, there must be some way of indicating where
the stack is. Register 6 is used for this purpose.

When using the RT-11 operating system, the stack is normally located in
the area of memory preceding 001000. That is one reason why RT-11 usually
relocates programs to start at 001000 rather than 000000. If you are not using an
operating system, it may be necessary for you to set aside your own area for the
stack. You would then have to move the stack address into register 6.

Obviously, it would be a very bad idea to place random data in register 6.
The next time the system tried to use the stack, it might end up writing data over
your program; or worse yet, if register 6 contained an odd number, the system
might try to place a word at an odd address. Such an addressing error usually
causes a transfer of control to an error routine. However, the transfer of con
trol causes words to be placed in the stack which would cause another address
ing error. Therefore, if register 6 is odd, the machine will just halt.

Because of the special use for register 6, it is not normally designated R6
but rather SP for stack pointer. This is simply done by the line of code SP = %6.
Recall that the names R0, R1 , and so on are just ordinary symbolic names, as is
SP.

Register 7: The Program Counter

Register 7 is also used as a pointer in memory. However, register 7 is even more
important than the SP because register 7 is the program counter. Since register 7
is special, it is not normally referred to as R7 but by the symbol PC (for pro
gram counter). To do this, the line PC = %7 would have to appear in your
program.

Because of its use, the value of the PC must never be haphazardly changed.
Any modification of the P C will have the effect of a program jump. In fact, the
effect of the instruction MOV #A,PC is exactly the same as JMP A. The latter is
preferred, however, because it is more straightforward and therefore less likely
to be misunderstood and perhaps lead to strange errors.

The fact that the program counter is accessible as a processor register is
quite useful to PDP-11 programming. This will be seen more clearly in later
chapters. An example of this is the fact that operand codes 27 and 37 are used
for immediate operands and directly addressed operands. In fact, the 7 in each
of these codes refers to register 7, the P C . This is because the PC is "po in t ing"
to the word where the data or address is located. This is explained in more detail
in Chapter 7.

E X E R C I S E SET 2

1 Hand assemble each of the following statements. In each case the resulting
machine language instruction should begin at address 001000. Assume that
the symbol table entry for the symbolic address BETA is 002000.
(a) CMP R2,R4 (b)CMP R3,BETA

(c) MOV BETA,R5 (d)TST R4

(e) CLR R3 (f) INC R0

(g) DEC BETA (h) SUB #20,R2

(i) ADD R3 ,R1 (j) ADD R4,BETA

2 How many memory fetches and stores are required to execute each of the in
structions in Exercise 1? Remember to include the fetches required to fetch
the instruction.

3 The following program will also compute the sum of the integers from 1
through 8. Hand assemble this program beginning at memory cell 000000
and then relocate it to memory cell 001000.

.TITLE SUM

.ENABL AMA
R0=%0
R1=%1

BEGIN: MOV
CLR

LOOP: ADD
DEC
B>IE
MOV
HALT

SUM: .BLKW
.END

#10,RO
R1
R0.R1
RO
LOOP
R1,SUM

1
BEGIN

5.8 S U B R O U T I N E S

Calling and Returning

The whole topic of subroutines is covered in considerable detail in Chapter 10.
However, subroutines are being introduced at this point for two purposes.
First, subroutines are important for the proper structure of programs, and what
follows will enable the reader to write some simple subroutines. Second, Ap
pendix B shows some input /output subroutines that can be incorporated in pro
grams. Using these subroutines will allow the reader to start writing some more
sophisticated programs.

There are two problems with subroutines. First, there must be some means
of jumping to the subroutine. Second, there must be a means of jumping back
to the calling program. In FORTRAN or BASIC, these operations are achieved
by the CALL or GOSUB and the RETURN statements, which are translated
into the following PDP-11 instructions. To call the subroutine whose name is
SUB, the PDP-11 instruction JSR PC,SUB is used. To return, the instruction is
RTS P C . (These instructions could be written as JSR % 7 , SUB and RTS %7.)

The mnemonics JSR and RTS stand for Jump to SubRoutine and ReTurn
from Subroutine. The symbol P C stands for the program counter as described
in the previous section. As noted there, the line P C = %7 must appear in your
program before either JSR PC,SUB or RTS P C is used, unless your version of
the assembler has P C predefined.

Input and Output

Appendix B contains some input /output subroutines called RNUM and
P N U M . Two versions of each subroutine are given. The choice depends upon
the operating system being used. RNUM reads one octal number and returns
with the 16-bit value in R0. P N U M prints out the octal value of the contents of
R0. Therefore, to read a number and store its value in X, execute the instruc
tions:

JSR PC,RNUM
MOV RO,X

To print out the value of X:

MOV X , R 0

JSR PC,PNUM

Of course, the subroutine RNUM and P N U M must be copied from Appendix B
and be included as part of your program.

Calling a subroutine is analogous to taking a temporary detour. For exam
ple, the following main program segment is designed to read two numbers and
place the sum in memory cell SUM:

When the processor executes the first JSR instruction, the processor tem
porarily stops executing the main program and transfers control to subroutine
RNUM (see the arrow labeled A). When the processor reaches the RTS instruc
tion at the end of RNUM, control is automatically transferred to the instruction
following the JSR instruction, which in this case is a MOV instruction (see
arrow B). When the processor executes the second JSR instruction, control is
again transferred to subroutine RNUM (see arrow C). Finally the RTS instruc
tion at the end of RNUM transfers control back to the A D D instruction in the
main program (arrow D).

The JSR instruction, like the J M P instruction, causes a transfer of control.
However, the JSR instruction also provides a mechanism for returning, at some
later time, to the statement immediately following the JSR instruction. [As we
shall see in Chapter 9, the JSR instruction actually uses the stack pointer
(register 6) to save a copy of the program counter (register 7) in the area of
memory called the stack.] The RTS instruction uses the information saved by
the JSR in order to return.

It is possible for subroutines to be nested. For example, a main program
could JSR to a subroutine called SUBA which in turn could JSR to a subroutine
called SUBB. The RTS instruction at the end of SUBB will return control to
SUBA. In turn, the RTS instruction at the end of SUBA will return control to
the main program.

Subroutines represent a powerful technique for breaking a large program
into more manageable parts . If misused, however, they can lead to errors that
are difficult to detect. Assume, for example, that the programmer used the
statement J M P RNUM instead of JSR P C , R N U M to transfer control to
subroutine RNUM. The subroutine would execute properly until the RTS PC
instruction at the end of the subroutine was reached. The RTS instruction
assumes that a previous JSR instruction has saved the return address. Because
no such address was saved, the RTS instruction will return control to a garbage
address, producing unpredictable results. A similar result may occur if the pro
grammer forgets to put a H A L T instruction at the end of the main program and
drops through the main program into the subroutine.

Subroutine Example

As an example of how to use RNUM and P N U M , and how you might write
your own subroutine, let us look at the following problem. The problem is to
read in three numbers and print out the largest. Although our method for solv
ing this problem may seem far-fetched or overcomplicated, it is a generalizable
technique that will actually simplify larger problems.

From what we have seen previously, we already have subroutines for
reading and printing. In addition, we will write a subroutine that finds the
larger of two numbers. We will call the subroutine MAX. When MAX is called,
it will compare the value of RO with R l , and put the larger number in RO. Figure
5.9 shows this subroutine. Now, the main program can call RNUM, MAX, and

Figure 5.9 Subroutine to Find the Maximum of Two Numbers

;SUBROUTINE MAX SETS RO TO THE MAXIMUM OF RO AND R1

MAX: CMP R0,R1 ; I S R0 GREATER THAN R1?
BGE MAXR ;YES, RETURN R0 AS MAX
MOV R1,R0 ;N0, THEN R1 IS MAX

MAXR: RTS PC ;RETURN TO MAIN PROGRAM

P N U M to read in three numbers and print the largest. Figure 5.10 shows what
the main program would look like.

Figure 5.10 Main Program for Finding the Largest of Three Numbers

;THIS MAIN PROGRAM READS THREE OCTAL NUMBERS
;AND PRINTS THE LARGEST.

START: JSR PC, RNUM ;READ A
MOV RO, R2 ;PUT A IN R2
JSR PC, RNUM ;READ B
MOV RO, R1 ;PUT B IN R1
JSR PC, RNUM ;READ C INTO RO
JSR PC,MAX ;R0=MAX(B,C)
MOV R2.R1 ;PUT A IN R1
JSR PC,MAX ;R0=MAX(A,R0)
JSR PC,PNUM ;PRINT RO
HALT ;STOP (SEE NEXT SECTION)

Finally, Figure 5.11 shows how the main program and the subroutines can
be combined to form a single program. Notice that there is only one .END
assembly directive and that it is placed after the last subroutine. For the time
being, we will combine the main program and its subroutines into a single
assembly language program. Later, in Chapter 10, we will see how assembly
language programs that are independently assembled can be combined and
even included with independently compiled FORTRAN programs.

Figure 5. / / Complete Program for Finding the Largest of Three Numbers

.TITLE LARGEST OF THREE

.ENABL AMA
R0 =%0 ;DEFINE REGISTER SYMBOLS
R1 =% 1 ;THESE ARE THE ONLY ONES
R2=%2 ;NEEDED BY THIS
SP=%6 ;PROGRAM
PC=%7

;THIS MAIN PROGRAM READS THREE OCTAL NUMBERS
;AND PRINTS THE LARGEST.
;THIS MAIN PROGRAM READS THREE OCTAL NUMBERS
;AND PRINTS THE LARGEST.

START : JSR PC, RNUM ;READ A
MOV R0,R2 ;PUT A IN R2
JSR PC,RNUM ;READ B
MOV RO.R1 ;PUT B IN R1
JSR PC,RNUM ;READ C INTO RO
JSR PC,MAX ;RO=MAX(B,C)
MOV R2 f R1 ;PUT A IN R1
JSR PC,MAX ;RO=MAX(A,RO)
JSR PC,PNUM ;PRINT RO
HALT ;STOP (SEE NEXT SECTION)

Sec. 5.9 Stopping Your Program If Using RT-11 115
Figure 5. / / (continued)

;SUBROUTINE MAX SETS RO TO THE MAXIMUM OF RO AND R1

MAX: CMP R0.R1 ; I S RO GREATER THAN R1?
BGE MAXR ;YES, RETURN RO AS MAX
MOV R1.RO ;NO, THEN R1 IS MAX

MAXR: RTS PC ;RETURN TO MAIN PROGRAM

RNUM:
INSERT THE CODE FOR RNUM FROM APPENDIX B

PNUM:

INSERT THE CODE FOR PNUM FROM APPENDIX B

.END START ;END OF PROGRAM

5.9 S T O P P I N G Y O U R P R O G R A M
IF U S I N G RT-11 (Optional Section)

In previous examples, when a program ended, the H A L T instruction was used.
This instruction does, in fact, stop all action on the PDP-11 . If you are using an
operating system such as RT-11, it is not usually a good idea to stop the com
puter because subsequent use of the computer then usually requires reloading
the whole operating system, reentering the date and time, and other bothersome
manual operations. To solve this problem, there is a package of code called
.EXIT which should be placed in your program instead of the H A L T instruc
tion. This returns the PDP-11 to control of the operating system.

This package of code can be accessed like .REGDEF by using the .MCALL
directive (see page 109). Then all H A L T instructions should be replaced with
.EXIT. Figure 5.12 shows how the program in Figure 5.11 could be rewritten to
use the RT-11 system properly. The program consists of a main program and
the subroutines MAX, RNUM, and P N U M . RNUM and P N U M contain in
structions that have not yet been described. The material in Chapter 8 is re
quired to understand the internal operation of these subroutines. However,
RNUM and P N U M may be used without understanding their internal
operation.

Figure 5.12 Complete RT-11 Program for Finding the Largest of Three Numbers

.TITLE LARGEST OF THREE

.ENABL AMA

.MCALL .REGDEF,.EXIT ;OBTAINS MACROS

.REGDEF ;DEFINES REGISTERS

;THIS MAIN PROGRAM READS THREE OCTAL NUMBERS
;AND PRINTS THE LARGEST.

START: JSR PC, RNUM ;READ A
MOV R 0 , R 2 ;PUT A IN R2
JSR PC, RNUM ;READ B
MOV R 0 . R 1 ;PUT B IN R1
JSR PC,RNUM ;READ C INTO RO
JSR PC,MAX ;RO=MAX(B,C)
MOV R 2 . R 1 ;PUT A IN R1
JSR PC,MAX ;R0=MAX(A,R0)
JSR PC.PNUM ;PRINT RO
.EXIT ;EXIT TO R T - 1 1 SYSTEM

;SUBR0UTINE MAX SETS RO TO THE MAXIMUM OF RO AND R1

MAX: CMP R 0 . R 1 ; I S RO GREATER THAN R 1 ?
BGE MAXR ;YES, RETURN RO AS MAX
MOV R1.RO ;N0 , THEN R1 IS MAX

MAXR: RTS PC ;RETURN TO MAIN PROGRAM

;SUBR0UTINE RNUM READS AN OCTAL NUMBER, LEAVING ITS
;BINARY VALUE IN RO

•
.MCALL .TTYIN,.TTYOUT ;GET THE MACRO .TTYIN AND .TTYOUT

RNUM: MOV R 1 , - (S P) ;SAVE R1 ON THE STACK
CLR R1 ;CLEAR ACCUMULATED RESULT
.TTYOUT y/52 ;TYPE * AS A PROMPT

RNUML: .TTYIN ;READ CHARACTER INTO RO
CMPB R 0 , / / 1 5 ;WAS IT CARRIAGE RETURN?
•BEQ RNUME ;YES, EXIT
BIC / / 1 7 7 7 6 0 , R 0 ;NO, CHANGE CHARACTER TO DIGIT
ASL R1 ;MULTIPLY ACCUMULATION BY 2
ASL R1 ;AND 2 MORE = 4
ASL R1 ;AND 2 MORE = 8 (DECIMAL)
ADD R 0 , R 1 ;ADD NEW DIGIT TO 8 * ACCUMULATION
BR RNUML ;LOOP UNTIL END OF NUMBER

RNUME: .TTYIN ;DUMMY READ OF LINE FEED
MOV R 1 , R 0 ;PUT RESULT IN RO
MOV (S P) + , R 1 ;RESTORE R1
RTS PC ;RETURN

Exercise Set 3 117
Figure 5.12 (continued)

;SUBROUTINE PNUM PRINTS OUT THE CONTENTS OF RO IN OCTAL

.MCALL .TTYOUT ;GET THE MACRO .TTYOUT
PNUM: MOV RO f - (SP) ;SAVE RO ON THE STACK

MOV R 1 , - (S P) ;SAVE R1 ON THE STACK
MOV R 2 , - (S P) ;SAVE R2 ON THE STACK
MOV R0, R1 ;R1 HOLDS NUMBER BEING PRINTED
MOV #6,R2 ;R2 COUNTS DIGITS
MOV #30,RO ;R0 GETS 6 ASCII CODE BITS
BR PNUMM ;FIRST DIGIT HAS ONLY ONE BIT

PNUML: MOV #6,R0 ;RO GETS 4 ASCII CODE BITS
ASL R1 ;SHIFT R1 LEFT WITH HIGH BIT
ROL R0 ; GOING TO C BIT AND THEN TO
ASL R1 ;GET THE SECOND BIT
ROL R0

PNUMM: ASL R1 ;GET THE THIRD BIT
ROL R0
.TTYOUT ;PRINT THE OCTAL DIGIT
DEC R2 ;DECREMENT CHARACTER COUNT
BNE PNUML ;AND LOOP SIX TIMES
.TTYOUT #15 ;THEN OUTPUT CARRIAGE RETURN
.TTYOUT #12 ;AND LINE FEED
MOV (SP)+,R2 ;RESTORE ALL THREE REGISTERS
MOV (SP)+,R1 ;FROM STACK
MOV (SP)+,R0
RTS PC ;AND RETURN

.END START ;END OF PROGRAM

E X E R C I S E SET 3

1 Write an assembly language program that reads 20 numbers and prints out
the sum of the 20 numbers. Use the read and print routines shown in Appen
dix B for doing the exercise.

2 (a) Write an assembly language program that reads three numbers. The
program then prints out:

0 if all three numbers are different

1 if any two of the three are the same

2 if all three numbers are the same

(b) Write the program so that it loops 20 times printing out the result for
20 sets of 3 numbers.

(c) Write the program so that it reads N, the number of sets of three
numbers, and then loops N times.

3 Write an assembly language program that reads three numbers and prints
them out in ascending order.

4 Write a program for exercise 3 using a subroutine that takes the number in
R0 and R1 and swaps them if necessary so that the contents of RO will be less
than or equal to the contents of Rl upon exit.

5 Write an assembly language program that reads 20 numbers and prints out
the largest. Use the subroutine MAX shown in Figure 5.9. Rewrite the pro
gram so that it reads N, the number of numbers, and then finds the largest
of the N numbers.

6 An inventor constructs a robot whose sole purpose is to construct more
robots just like itself. The way that the robot functions is that it spends two
days collecting enough raw materials to build three robots. It spends the
next three days producing robots, one per day. It then becomes inactive and
does nothing more. Each new robot is immediately activated and goes
through the five-day building cycle as did the original. Write a PDP-11
assembly language program that prints out the number of robots in exis
tence at the end of each day for 20 days from the activation of the first
robot . (Hint: Robots behave differently depending upon their age. Keep a
tally of how many robots there are in each age group.)

CHAPTER 6

PDP-11 ARITHMETIC

6.1 I N T R O D U C T I O N

In previous chapters, we have seen how to add and subtract signed and un
signed numbers, and how to test and compare signed numbers. In this chapter,
we will look at more of the properties of signed and unsigned numbers, as well
as dealing with overflow, multiplication, division, and multiple precision. We
will see more instructions, and see how they can simplify programming. We will
also further examine the TST, C M P , and branch instructions and see how they
operate.

6.2 S I G N E D A N D U N S I G N E D N U M B E R S

Operation and Interpretation

One of the advantages of the two's complement number system is that the same
addition and subtraction algorithms can be used for both signed and unsigned
numbers. (This is not true of some other signed number systems used in various
computers.) Although this result may seem remarkable, it can be illustrated
quite easily. For this purpose, it is convenient to use 4-bit numbers rather than
16-bit numbers because the number of combinations is so much smaller.

Figure 6.1 Unsigned Arithmetic

Four bits can be arranged in 2 4 or 16 ways. As shown in Figure 6.1, the 16
combinations can be arranged in a circular pattern to produce something that
resembles the face of a 16-hour clock with the binary number 0000 at the 12
o'clock position. A pointer is used to designate one of the 16 binary numbers.
Adding 1 to a number is defined as moving the pointer ahead one position. Sub
tracting 1 is defined as moving the pointer backward one position.*

If a 1 is added 16 times in succession, the pointer will make a complete cir
cle and return to its starting position. Mathematicians would call this a modulo
16 counting system. However, we will call this an error because X plus 16 is ob
viously not equal to X. In order to make this counting system consistent, it is
necessary to agree on an error point somewhere around the clock dial.

For example, it is possible to locate the error point between 1111 and 0000.
Whenever 1 is added to 1111 or 1 is subtracted from 0000, an error called un
signed overflow has occurred. With the error point specified, the various binary
patterns can be given decimal interpretations. If the binary pattern 0000
represents the decimal number 0, it will be found that the pattern 1111 must
represent decimal 15. The result is, of course, the unsigned number system.

However, it is possible to place the error point at some other position on
the clock face. In particular, the error point can be placed between 0111 and
1000 as shown in Figure 6.2. If 1 is added to 0111 or one is subtracted from
1000, an error called signed overflow has occurred. If the binary patterns are
now given a decimal interpretation, it is found that the patterns now represent
decimal numbers between - 8 and + 7. (Note that if the binary pattern 0000
represents 0, we are compelled by the definition of subtraction to interpret the
pattern 1111 as - 1.) The result is, of course, the familiar two's complement
number system.

*Note that the clock analogy assumes that positive numbers are being added or sub
tracted.

Figure 6.2 Signed Arithmetic

Binary numbers on the PDP-11 computer are interpreted in exactly the
same way except that 16 bits are used instead of 4. The error point for unsigned
overflow is between 177777 and 000000 (octal) and the error point for signed
overflow is between 077777 and 100000 (octal).

The reasons a programmer would choose one system over the other depend
on the needs of that particular part of the problem. For example, if addresses
are being dealt with, the values may go higher than 32767, but are never
negative. Therefore, unsigned numbers should be used. On the other hand, if
negative numbers could possibly be generated, then signed numbers should be
used.

Detecting Overflow

In order for the programmer to detect the two kinds of overflow, there are two
condition switches located in the processor. These are called the C bit and the V
bit. The C bit is set (to 1) whenever a Carry is produced out of the high order bit
of a word during an arithmetic operation. This is the same as unsigned overflow
as shown in Figure 6 .1 . The C bit is cleared (to 0) if no carry (or unsigned
overflow) occurred. The V bit is set if signed overflow occurs as shown in
Figure 6.2, and is cleared if no signed overflow occurs.

In order for the C and V bits to be useful, there must be a means of testing
their state. There are four instructions for doing this:

BCS Branch if C is Set (if C = 1)

BCC Branch if C is Clear (if C = 0)

BVS Branch if V is Set (if V = 1)

B VC Branch if V is Clear (if V = 0)

As an example of how these bits are used, the following program segment
adds two signed numbers, and then branches to ERROR if the result over
flowed, for example, if it was less than - 3 2 , 7 6 8 or greater than +32,767.

ADD A, B ;ADD A AND B
BVS ERROR ;EXIT ON OVERFLOW

ERROR: . ;PRINT ERROR MESSAGE

Note that these four branch instructions are like the other branch instruc
tions and have a limited range of locations to which they can branch, that is,
127 words before the branch or 128 words after. If ERROR were more than 128
words from the BVS instruction, a J M P instruction would be needed. For
example:

ADD A, B ;ADD A AND B
BVC OK ; IF NO OVERFLOW, CONTINUE
JMP ERROR ;EXIT ON OVERFLOW

OK:

ERROR: . ;PRINT ERROR MESSAGE

Other Condit ion Switches

We have already seen the use of two condition switches, the C bit and the V bit.
There are two other condition switches (collectively known as condition codes
in the PDP-11): the N bit and the Z bit. The purpose for the N and Z bits is to
simplify testing the conditions that result whenever an arithmetic operation is
performed. In Chapter 5, we discussed testing and comparing. The following
material shows what was really happening with the conditional branches.

The N bit is set whenever the result of an operation is negative. This is true
even for such simple operations as MOV. After a MOV instruction, the N bit
will be set if the number being moved is negative. The N bit will be cleared if the
number was positive. In effect, the N bit will always be the same as the sign bit,
or most significant bit of the result. (Recall that 1 means negative, 0 means
positive.)

The Z bit is somewhat similar. The Z bit will be set if the result of an opera
tion is zero. It will be cleared if the result is not zero. As for the other condition
code bits, the N and Z bits can be tested by branch instructions. One slight dif
ference is that the mnemonic operation codes reflect the use of the conditional
branch instruction rather than the name of the condition code. The following
four instructions complete the list of single-condition code branches:

BNE Branch if previous result is not equal
to zero, that is, if Z is clear

BEQ Branch if previous result is equal to
zero, that is, if Z is set

BPL Branch if previous result is plus
that is, if N is clear

BMI Branch if previous result is minus
that is, if N is set

Note that the BNE and BEQ are the same instructions that were discussed in
Chapter 5.

Data-Handling Instructions

With only a few exceptions,* the data-handling instructions cause the condition
code bits to be set and cleared according to what is appropriate for the result of
the data operation. This is what was referred to as testing in Chapter 5. Data-
handling instructions are those which deal with data, such as MOV, A D D ,
SUB, and so on. These are opposed to control instructions such as J M P , BR,
BNE, and so on, which may examine the condition code bits, but do not deal
with data, and therefore do not set or clear condition code bits.

Among the data-handling instructions, there are two odd ones, TST and
C M P . While these were described partially in Chapter 5, the details of how they
work center around the condition codes. TST picks up a piece of data, looks at
it, sets condition codes appropriately, and then does nothing else. The data
looked at is not modified or used in any other way. The TST instruction will
always clear both V and C bits because looking at a number cannot cause either
kind of overflow. The N and Z bits will be set appropriately, depending on
whether the data looked at are negative or zero.

The C M P instruction is similar. This instruction looks at two pieces of
data. That is, the instruction C M P A,B causes B to be subtracted from A. The
result is looked at for the purpose of setting condition code bits, and then the
result is thrown away. The result is not stored anywhere, and neither A nor B is
modified. Of course, this allows the C M P instruction to be used in exactly the
way it was used in earlier chapters. For example:

CMP A, B
BEQ OUT

*There are a number of instructions that do not affect the C bit, thus allowing the test of a
previous operation: INC, DEC, MOV, BIT, BIC, BIS, and their byte counterparts.
Among extended instructions for the 11/03, 11/34, 11/40, and so on, there are XOR,
MFPS, and SXT. SXT also ignores the N bit. Floating point instructions clear both V
and C, and SOB does not affect any condition code bits.

Here A - B is computed. If the contents of A = the contents of B, then
A - B = 0 and the Z bit is set. The BEQ instruction causes a branch if the Z
bit is set. If A B, then A - B ^ 0 and Z will be clear and no branch occurs.

It is now possible to look in detail at the BLT, BLE, BGE, and BGT in
structions. As an example, consider the following BLT instruction:

CMP A,B
BLT INS

It is desired to branch to INS if A < B. The C M P instruction computes A - B,
and if A < B, then A - B < 0. Thus the result A - B must be negative. Our first
inclination might be that BLT is really the same thing as BMI. However, there is
a catch. Overflow may have occurred. Do not forget that A and B are signed,
and may in fact have different signs. If A is positive and B is negative, or vice
versa, the computation of A - B involves addition, which could result in
overflow. When overflow occurs with signed numbers, the sign of the result is
reversed. Thus, if overflow occurs, the test should be reversed. Consequently,
the BLT instruction is designed to operate as follows:

Branch if and only if N is set and V is clear

or N is clear and V is set.

The following examples show how this operates:

CMP #3 ,#5
000003

- 000005
177776 Negative result,

no overflow: 3 < 5

CMP # 3 .
000003

- (- 0 0 0 0 0 5)
000010 Positive result.

no overflow: 3 > - 5

CMP #75462,#72531
075462

- 072531
002731 Positive result,

no overflow: 75462 > 72531

CMP #75462 ,# -72531
075462

- (- 072531)
170213 Negative result,

with overflow: 75462 > - 7 2 5 3 1

CMP #-75462 ,#72531
- 075462
- 072531
- 170213 = 007565

Positive result
with overflow: - 7 5 4 6 2 < 72531

Figure 6.3 shows how all four of these instructions deal with the condition
codes.

Figure 6.3 The Signed Conditional Branches

Instruction Condition for Branching
BLT (N = l and V = 0) or (N=0and V = l)
BLE Z = l or (N = l and V = 0) or (N = 0and V = l)
BGE (N = 1 and V = l) or (N=0and V = 0)
BGT Z = 0 and [(N = landV = l) or (N = 0andV=0)J

Note that these instructions should not be used with unsigned numbers.
For example, the address 105732 is higher than address 067414; however, a
comparison followed by BGT will tell you the opposite because 105732 will be
considered a negative number. To solve this, four unsigned conditional branch
instructions are provided:

BHI Branch if High

BHIS Branch if High or Same

BL0S Branch if LOw or Same

BLO Branch if LOw

These four instructions only make sense if used in conjunction with a
compare instruction; therefore, the following instructions could be used in
order to branch to A L P H A if A is higher than (greater than in an unsigned
sense) B:

CMP A, B
BHI ALPHA

A curious thing to note is that the BLO instruction is identical to the BCS
instruction. The assembler uses the same operation code for both, namely
103400 through 103777. It is left as an exercise for the reader to explain why this
works.

Additional Arithmetic Instructions

At this point, three additional instructions are discussed: NEG, which is a new
instruction, as well as INC and DEC, which were discussed in Chapter 5. INC

and DEC are discussed here because their effect on the condition codes is
unusual. A description of three instructions follows:

NEG—This instruction computes the negative value of its operand.
Thus, the instruction NEG A causes A to be replaced with - A. It is
computed much the same as if A were subtracted from 0, and pro
duces the two's complement negative.

INC—This instruction causes 1 to be added to the operand.

DEC—This instruction causes 1 to be subtracted from the operand.

The INC and DEC instructions can be used with either signed or unsigned
numbers. However, one caution must be remembered. These instructions do
not affect the C bit. The reason for this is to simplify looping with instructions
that use the C bit in the main part of the loop. But because of this, the C bit can
not be used for determining if an INC or DEC caused unsigned overflow. This
is not all that bad since there are other simple methods that can be used. For ex
ample, if unsigned overflow occurs with INC, the result must be 0. Figure 6.4
shows a list of the appropriate instructions to use with signed and unsigned
numbers . Note that in most cases the same instructions are applicable to both
kinds of numbers.

Figure 6.4 Signed versus Unsigned Instructions

Signed Unsigned
ADD INC ADD INC* Addition
SUB DEC SUB DEC* Subtraction
NEG none Sign change
CMP TST CMP TST Comparison and testing
CLR CLR Producing zero
BEQ BNE BEQ BNE Equality or zero test
BPL BMI none Sign test
BVS BVC BCS BCC Overflow test
BLT BLE BLO BLOS / Relative magnitude
BGE BGT BHIS BHI

/ Relative magnitude

T h e s e instructions do not modify the C bit.

Guidelines for Conditional Branch Instructions

A large number of instructions modify the condition code bits in a variety of
ways. In addition, it is easy for beginning programmers to confuse conditional
branch instructions that sound similar, such as BPL, BGE, and BHIS. Unfor
tunately, selecting an incorrect conditional branch instruction can produce er
rors that are difficult to find. The following guidelines are useful in most
situations.

1. A number should be treated consistently. That is, the contents of a given
memory cell should not be treated as an unsigned number at one point and
a signed number at another point.

2. The six conditional branch instructions that examine the C bit should not
be used with signed numbers. The eight conditional branch instructions
that examine the N or V bits should not be used with unsigned numbers.
The only conditional branch instructions that do not examine the C, N, or
V bits are BEQ and BNE which, of course, test the Z bit. Hence, BEQ and
BNE are the only instructions that should be used with both signed and un
signed numbers.

3. The only conditional branch instructions that should be used after a C M P
instruction are the four signed conditional branches (BGE, BLT, BGT,
BLE), the four unsigned conditional branches (BHI, BLOS, BHIS, BLO),
BEQ, and BNE. In addition, the unsigned conditional branches (BHI,
BLOS, BHIS, BLO) should only be used after a C M P instruction.

4. The MOV and TST instructions cannot cause either signed or unsigned
overflow. One might conclude that conditional branch instructions that ex
amine the C or V bit would not be useful with MOV or TST. This would
leave only BNE, BEQ, BPL, and BMI. However, the designers of the
PDP-11 cleverly specified that MOV and TST would set the V bit to 0. As a
result, the signed conditional branch instructions (BGE, BLT, BGT, BLE)
may also be used. Because the V bit is 0, BGE has the same effect as BPL,
and that BLT has the same effect as BMI.

5. When overflow is possible as the result of an A D D , INC, SUB, DEC, or
NEG instruction, the programmer should carefully consider the effect of
overflow on the behavior of the program. This is particularly true when the
signed conditional branch instructions (BGE, BLT, BGT, BLE) are used.
As long as signed overflow does not occur, the effect of these instructions is
easy to predict. For example, BGE has the same effect as BPL. However,
when signed overflow does occur, the situation is more complicated. For
example, BGE is then the opposite of BPL. To avoid these problems, it is
frequently better to test for overflow directly with a BVS instruction.

6. Addresses should be treated as unsigned numbers. Violating this rule can
produce serious errors. For example, it is possible for a program that has
run reliably for years to suddenly bomb when it is relocated to a different
area of memory.

As long as these guidelines are followed, the effect of the conditional branch in
structions is straightforward. However, there are situations where it makes
sense to violate these guidelines. In such cases, the programmer should exercise
a greater degree of caution.

E X E R C I S E SET 1

1 Show the decimal equivalents of the following octal numbers interpreted
both as unsigned numbers, and as 16-bit two's complement, signed
numbers:
(a) 000375 (b) 177775 (c) 077777

(d) 173426 (e) 100000 (0 100001

(g) 100375 (h) 073125 (i) 067357

2 Show the PDP-11 two's complement negative of each of the numbers in ex
ercise 1. (If there is no answer, state so, and why.)

3 When added, which of the following pairs of octal numbers cause unsigned
overflow (carry)? Which cause signed overflow? Show the sums as 16-bit
binary numbers expressed in octal.

(a) 000375 (b) 077754 (c) 177753
000432 065132 067135

(d) 177777 (e) 100001 (0 066770
177777 077777 153667

4 Show what results would occur in the problems of exercise 3, if instead of
adding, the second number is subtracted from the first.

5 Show that when signed two's complement overflow occurs, the sign of the
result is the opposite of what it should be.

6 Explain why the BLO instruction is the same as BCS. Which unsigned
branch instruction is the same as BCC? Explain.

7 Given the following list of possible contents for R0, give the values for the
N, C, V, and Z bits after executing the instructions ADD #1, R0, SUB #1,
R0, INC R0, and DEC R0. If the value is not knowable from the informa
tion given, state why, and what information is needed.

R0 contents:

(a) 077777 (b) 100000 (c) 177777

(d) 000000 (e) 000001 (0 100001

*8 Write a subroutine that prints out four numbers, which are either 000000 or
000001, indicating the values of N, C, V, and Z bits. (Note, the JSR instruc
tion does not affect the condition codes, nor does any branch or jump.
However instructions such as MOV do change them.) Then write a main
program that tests this subroutine by doing various calculations and then
calling the subroutine after each.

6.3 M U L T I P L I C A T I O N A N D DIVISION

Repeated Addit ion and Subtraction

Unless you have a PDP-11 with the extended instruction set option (EIS), there
are no multiplication or division instructions in the PDP-11 . Multiplication and
division can be thought of in several ways, including repeated addition or sub
traction, shifting operations, or a combination of the two. This is true even if
the extended instructions are available. It just means that the shifting and
repeated operations are built into the hardware. For this reason, we will spend
some time examining how software multiplication operates using more
primitive instructions.

The basic mathematical definition of multiplication is based on the idea of
repeated addition. Five times 3 means add 3 to 0 five times. Using this notion, it
is simple to write a subroutine that multiples A times B and puts the answer in
RO. Multiplication of signed numbers must be treated differently from multipli
cation of unsigned numbers. We will, therefore, restrict our operations to un
signed numbers for the time being. The subroutine shown in Figure 6.5 sets RO
equal to the product of A times B using repeated addition.

Note that the program in Figure 6.5 makes no test for overflow. Note also
that the program may take a very long time if A is large. Efficiency could be
added to the program by interchanging A and B if B is smaller.

Figure 6.5 Multiplication Program #1

;SUBROUTINE MULT SETS RO EQUAL TO A TIMES B
MULT:

LOOP:

DONE:
COUNT:

CLR
MOV
BEQ
ADD
DEC
BNE
RTS
.BLKW

R0
A,COUNT
DONE
B, R0
COUNT
LOOP
PC
1

;R0=0
;COUNT=A
;SKIP OUT IF A.EQ.0
;ADD B TO RO
-.DECREMENT COUNT
;LOOP UNTIL COUNT.EQ.0
;RETURN

A similar method can be used with division. The quotient can be defined as
the number of times that the divisor can be subtracted from the dividend
without the result becoming negative. Whatever is left after all these subtrac
tions is the remainder. Figure 6.6 shows a subroutine that performs division by
repeated subtraction. A is divided by B. The quotient is placed in register RO,
the remainder is placed in R l . Note that 1 is added to RO every time B is sub
tracted from R l . R l starts out as the dividend when the instruction MOV A,R1
is executed. After repeated subtractions, R l will be the remainder.

Figure 6.6 Division Program #1

;SUBROUTINE DIVD DIVIDES A BY B LEAVING THE QUOTIENT
;IN RO AND THE REMAINDER IN R1
;DIVISION BY ZERO WILL CAUSE THE SUBROUTINE TO HALT
DIVD: MOV A,R1 ; INITIALLY R1=A

CLR RO ; R O = 0
TST B ;IF B.EQ.O
BEQ ERROR ; THERE IS AN ERROR

LOOP: CMP R1 ,B ;IF REMAINDER IS LESS
BLO DONE ; THAN DIVISOR, WE ARE DONE
SUB B,R1 ;OTHERWISE REM=REM-B
INC RO ;QUO=NUMBER OF SUBTRACTIONS
BR LOOP ;LOOP AND TEST AGAIN

DONE: RTS PC ;WE ARE DONE
ERROR: HALT

Multiplication and Division by Shifting

What the programs in Figures 6.5 and 6.6 have in simplicity is lost in their poor
efficiency, especially when dealing with large numbers. Efficiency can often be
gained by shifting as a method for multiplying or dividing. If a number is
shifted to the left, it is in effect multiplied by the base of the number system. For
example, in the decimal system, 593 times 10 is 5930. Since the PDP-11 is a
binary computer, a left shift has the effect of multiplying a number by 2.
Similarly, right shifts can have the effect of dividing a number by 2.

When we look at the shift operations in the PDP-11 , it becomes apparent
that the PDP-11 is a binary machine and not an octal machine. Twice 000532 is
001264. There is no apparent sense of shifting here unless we look at the binary
representations. For example:

000532 in binary is 0000000101011010

001264 in binary is 0000001010110100

There are four shift instructions in the PDP-11 . Each is a single-operand
instruction, and each instruction uses the C bit along with the operand almost
as if they combined to be a 17-bit register. This will be clearer as each instruc
tion is described as follows:

ASL—Arithmetic Shift Left. The instruction ASL X causes each bit of X
to be shifted left one place. A zero is brought into the least significant bit of X
and the most significant bit of X is shifted into the C bit. The ASL instruction
effectively multiplies by 2. It works for both signed and unsigned numbers.
Since the result is usually larger than the original operand, overflow is possible
with either kind of number. The V and C bits operate normally for detecting
either kind of overflow. The following example illustrates the arithmetic shift
left:

Binary Octal Signed Unsigned
Decimal Decimal

Original
Number 0 000 111 000 111 000 007070 3640 3640
Shifted
Number 0 001 110 001 110 000 016160 7280 7280

In this case, the unsigned and signed interpretations are the same. In the follow
ing example, the unsigned and signed interpretations are different. The shift
correctly multiplies the signed number by 2 but produces overflow with the un
signed interpretation.

Binary Octal Signed Unsigned
Decimal Decimal

Original
Number 1 111 111 000 111 000 177070 - 4 5 6 65080

Shifted
Number 1 111 110 001 110 000 176160 - 912 64624

(Overflow
C bit set)

ASR—Arithmetic Shift Right. The instruction ASR X is intended to
divide X by 2, where X is a signed integer. (The instruction does not always
work with unsigned numbers.) Every bit of X is shifted right one place. The bit
that would otherwise be lost off the right end of X is saved in the C bit. (The C
bit is not needed for overflow because with a right shift, overflow cannot hap
pen.) The most significant bit of X is not changed, but retains its original value.
This bit is the sign bit, and a negative number divided by 2 would still be
negative, as the following example indicates:

Binary Octal Signed
Decimal

Original
Number 1 000 111 000 111 000 107070 - 2 9 1 2 8

Shifted
Number 1 100 011 100 011 100 143434 - 1 4 5 6 4

Rounding Off with Division

It is worth noting, at this point, what happens if X is not evenly divisible by 2.
One thing that happens is that the low-order bit of X is 1 and this will be shifted
into the C bit. Therefore, the C bit contains the remainder of the division.
However, another question is, What happens to the quotient? Is it rounded up?

or down? or what? The answer can be seen by looking at some examples. First
divide 5 by 2 as follows:

000005 is 0000000000000101 shifted right this is

0000000000000010 which is 2

Clearly, fractions seem to be truncated, FORTRAN style. However, before
generalizing too far, let us look at another example, - 5 :

- 5 is 177773 or 1111111111111011 shifted right this is

1111111111111101 which is 177775

but this is - 3 !
What we have then is not truncation of fractions, but rounding down (in

the algebraic sense). The next smaller integer from — 2? is - 3. Note what hap
pens when - 1 is divided by 2: the result is - 1!

The following subroutine could be used if truncation were desired for both
positive and negative numbers:

;SUBROUTINE TO DIVIDE R0 BY 2 WITH TRUNCATION
HALVE: ASR R0 ;DIVIDE BY 2

BPL OK ;POSITIVE NUMBERS ARE OK
BCC OK ;S0 ARE EVEN NEGATIVES
INC R0 ;ADD 1 TO ODD NEGATIVES

OK: RTS PC

Rotate Instructions

The remaining two shift instructions are:

ROL - Rotate Left

and

ROR - Rotate Right.

Both of these instructions treat the 16-bit operand and C bit as a 17-bit
ring. The bits are either shifted left or right one position around the ring. More
specifically, the ROL shifts bit 0 to bit 1, bit 1 to bit 2, and so on, and bit 15 to
the C bit, and the original C bit to bit 0 of the operand. The ROR instruction
operates in exactly the reverse direction. Figure 6.7 illustrates how these instruc
tions operate. The primary use for the ROR and ROL instructions is in
multiple-precision arithmetic, which will be discussed later.

Figure 6.7 ROL and ROR Instructions

Efficient Multiplication

Let us now look at an improved algorithm for performing multiplication. The
method shown here was allegedly used by a tribe of primitive people. These
people knew how to multiply and divide by 2 (presumably by pairing off piles of
stones). However, any other numbers required this algorithm. Representations
of the two numbers to be multiplied were placed side by side. Then columns
were formed by successively dividing the number on the left by 2 and multiply
ing the number on the right by 2. Fractions are truncated (presumably the tribe
did not understand fractions). The process stops when the number on the left
has finally been reduced to 1. Figure 6.8 shows how this would operate with the
numbers 26 and 36. Now since even numbers on the left contain evil spirits, we
cross them out along with the matching number on the right. Finally, summing
up the remaining numbers in the right column, we have the product . See Figure
6.9. The product of 26 times 36 is 936.

Figure 6.8 Columns Formed by Halving and Doubling
26 36
13 72
6 144
3 288
1 576

Figure 6.9 Primitive Multiplication Algorithm
26 36

13 72
6 144

3 288
1 576

936

This algorithm looks quite mysterious and magical unless you write the
numbers down in binary. When you do this, the multiplying and dividing by 2
simply represent left and right shifts. Figures 6.10 and 6.11 shows 26 times 36 in
binary, performed both in the method just described and in the form resem
bling decimal multiplication.

Figure 6.10 Primitive Multiplication in Binary
11010 100100

1101 1001000
110 10010000

11 100100000
1 1001000000

1110101000 = (936) 1 0

Figure 6.11 Binary Multiplication
100100
11010

000000
100100

000000
100100

100100
1110101000

Now let us write a program for the PDP-11 to implement the primitive
multiplication algorithm. Figure 6.12 shows a flowchart of this program and
Figure 6.13 shows the assembly language. This program assumes that unsigned
numbers are used, and that the result does not overflow 16 bits. This program is
clearly much better than multiplication program #\ in Figure 6.6 as far as speed
is concerned. In the worst case, the six instruction loop starting with LOOP will
be executed 16 times. This adds up to 96 instruction executions. On the other
hand, program #1 may go through its three instruction loop as many as 65,535
times, or 196,605 instruction executions, thus taking nearly 2,000 times as long
to execute.

Efficient Division

The same techniques used to improve the multiplication algorithm can be used
in reverse to obtain a good division algorithm. Division program #1 subtracted
the divisor from the dividend as often as it could until all that was left was the
remainder. If we shift the divisor left, we multiply it by 2. Then each subtrac
tion would be like two subtractions and our program could run faster. If we
shift left more often, each subtraction would have the effect of 4, 8, 16, 32, . . .
subtractions. The technique in our new algorithm will be to shift the divisor left
until it is as big as the dividend. Then we use a process of subtracting and shift-

Figure 6.12 Flowchart of Multiplication Algorithm

Figure 6.13 Multiplication Program #2

;SUBROUTINE MULT SETS RO EQUAL TO A TIMES B
MULT: MOV A,TEMP1 ;SAVE A AND B BY WORKING

MOV B.TEMP2 ; WITH TEMPI AND TEMP2
CLR R0 ;CLEAR I N I T I A L SUM

LOOP: ASR TEMP1 ;DIVIDE BY 2
BCC NOADD ;NO ADD I F C I S CLEAR
ADD TEMP2,R0 ;OTHERWISE ADD TEMP2 TO SUM

NOADD: ASL TEMP2 ;MULTIPLY BY 2
TST TEMP1 ;LOOP UNLESS
BNE LOOP ; TEMPI.EQ.O
RTS PC ;RETURN

TEMP1: . BLKW 1
TEMP2: . BLKW 1

ing right in the form of a reverse multiplication. Figures 6.14 and 6.15 show a
flowchart and assembly language for this program.

The way this program works, it would be nice if T E M P were a 17-bit
register. Since this is not possible in the PDP-11, the program will fail if the
dividend (A) is too large. Fixing this problem is not difficult, but it involves a

Figure 6.14 Flowchart for Unsigned Division Algorithm

Figure 6.15 Unsigned Division Program #2

;SUBROUTINE DIVD DIVIDES A BY B LEAVING THE QUOTIENT
;IN R0 AND THE REMAINDER IN R1
;DIVISION BY ZERO WILL CAUSE THE SUBROUTINE TO HALT
DIVD: MOV A, R1 ;DIVIDEND IS INITIAL REMAINDER

MOV B,TEMP ;DIVISOR IN TEMP
CLR R0 ;QUO=0
CLR SHIFT ;SHIFT=0

LOOP1: CMP TEMP,R1 ;LOOP UNTIL
BHIS PART2 ; TEMP.GE.REM
ASL TEMP ;KEEP SHIFTING LEFT
INC SHIFT ;COUNT SHIFTS
CMP SHIFT,#20 ;ERROR IF 16 SHIFTS *
BLT L00P1 OTHERWISE LOOP
JMP ERROR ;POSSIBLE DIVIDE BY ZERO

PART2: CMP TEMP,R1 ; IF TEMP.LE.REM
BLOS SUBTR ; SUBTRACT
ASL RO -.OTHERWISE JUST
BR LPEND ; DOUBLE QUOTIENT

SUBTR: SUB TEMP,R1 ; REM=REM-TEMP
ASL R0 ;DOUBLE QUOTIENT
INC R\0 ; AND ADD ONE

LPEND: ASR TEMP ;HALVE DIVISOR *
DEC SHIFT DECREMENT LOOP COUNT
BGE PART2 ;LOOP UNTIL NEGATIVE
RTS PC .RETURN

ERROR: HALT ;HALT ON ERROR
TEMP: . BLKW 1
SHIFT: . BKKW 1

These instructions may not work if A is initially too large. Fixing this is an exercise for
the reader.

thorough understanding of what happens with overflow. This problem is
therefore left to the reader to solve.

6.4 M U L T I P L E - P R E C I S I O N A R I T H M E T I C

Double-Precision Representation

As mentioned several times earlier, the word size on the PDP-11 computer
places a restriction on the magnitudes of the numbers that can be dealt with.
Unsigned numbers can be no greater than 65535, and signed numbers may be
no greater than +32767 and no less than - 3 2 7 6 8 . Clearly, these magnitudes
are relatively small and many scientific and business applications require the
use of larger numbers or numbers with more significant digits.

There is only one way to represent a number that will not fit in a single
location. That is to use several locations to store the number. The obvious step
in this direction is use two locations for a number. This is called double
precision.

A double-precision number can simply be thought of as a 32-bit number.
The 32-bit number can be stored in two words with the upper 16 bits in one
word and the lower 16 bits in the second word. It is often easiest to think of this
pair of 16-bit words as a single 32-bit word. In doing so, it becomes apparent
that both signed and unsigned 32-bit numbers can be represented. All that is
necessary is to generalize the concept of two's complement arithmetic to apply
to 32 rather than 16 bits. As before, the leftmost bit of the entire number is the
sign. This would be the sign bit of the most significant 16-bit word of the pair of
words used for representing the number. (Note that the sign bit of the less
significant 16-bit word is simply a bit in the middle of the number, and is not
related to the sign of the overall number.)

Double-Precis ion Addit ion and Subtraction

Of course, the ability to store double-precision numbers is of little use unless it
is also possible to perform arithmetic with these larger numbers. Actually, the
basic arithmetic processes can be implemented quite simply as can be seen from
the following examples. In order to keep these examples simple, we will assume
that we are dealing with 6-digit decimal numbers in a machine that has 3-digit
decimal words.

Now consider the following addition:

Here we see that the right half of the sum is equal to the sum of the right halves
of the numbers being added. Similarly, the left half of the sum is the sum of the
left halves.

It should be noted, however, that this is not a general solution, because un
signed overflow can occur when the right halves of the numbers are added
together. For example:

What has to be done here is to add the overflow carry to the sum of the left
halves.

A similar process is used for subtraction:

Here an unsigned overflow occurs when you try to subtract 566 from 355
because an unsigned number cannot be negative. Because of that overflow, a 1
has to be borrowed from the difference of the most significant halves.

Add and Subtract Carry Instructions

The same methods as just described work when using binary arithmetic with
16-bit registers. In the PDP-11 , the C bit indicates the presence of overflow
when you add (or subtract) the least significant halves. Therefore all that has to
be done is to add (or subtract) the C bit to (or from) the most significant half of
the result. You could of course do this by testing the C bit and then either in
crementing or decrementing the result register. However, the PDP-11 manufac
turers thought that multiple-precision arithmetic was important enough that
they provided instructions for the purpose. For addition:

ADC Add Carry

This instruction adds the C bit to the destination. For subtraction:

SBC Subtract Carry

This subtracts the C bit from the destination.
These two instructions could be used along with the other arithmetic in

structions to add the 32-bit number A to the 32-bit number B. The numbers A
and B will be contained in PDP-11 registers AL, AR, BL, and BR for the left
and right halves, respectively. The code for double precision is:

ADD AR.BR
ADC BL
ADD AL,BL

Similarly, A can be subtracted from B by the following code:

SUB AR,BR
SBC BL
SUB AL,BL

Either of these programs can be extended to work with triple precision for
48-bit numbers, or even higher precision. However, care must be taken at the
next step since either the A D D or the ADC can cause a carry that must be prop
agated. The same is true of the SUB and SBC.

Multiple-Precision Shifting

Shifting multiple-precision numbers can easily be accomplished using the ROL
and ROR instructions along with the ASL and ASR instructions. Recall that
ASL and ASR cause the bit that is being shifted out to be saved in the C bit. The
ROL and ROR can cause this bit to be picked up in the next portion of the
number. As an example of this, see Figure. 6.16

Figure 6.16 Multiple-Precision Shifts

Clearly, all that is needed for shifting multiple-precision numbers is an
ASR followed by a succession of ROR's or an ASL followed by a succession of
ROL ' s . Note that Figure 6.16 shows that for a right shift, you must start at the
most significant end of the numbers, whereas with a left shift, you must start by
shifting the least significant end.

E X E R C I S E SET 2

1 Multiply the following pairs of octal numbers and show the results as
signed and unsigned numbers. Indicate which would result in signed or un-

signed overflow with a 16-bit result.

(a) 000024 (b) 000374 (c) 177777
000057 000210 000001

(d) 177777 (e) 177777 (0 000001
000002 177777 177777

2 Divide the following pairs of octal numbers and show the quotient and
result as signed and unsigned numbers. Indicate any invalid operations.
Show the signed remainders with the same sign as the expected quotient.

(a) 000054)006713 (b) 073426)000543

(c) 000000)005614 (d) 005614)000000

(e) 177773)177770 (f) 177775)000144

3 Write a subroutine that multiplies two signed numbers using repeated ad
dition. The result should be a signed 16-bit number following the normal
rules of algebra. Your program should exit or stop if the magnitude of the
result is too high. Also, write a main program that calls the subroutine
several times with a selection of operands, and prints the results.

4 As for exercise 3, write and test a subroutine that performs division of
signed numbers by repeated subtraction. There should be two 16-bit
results, a signed quotient, and signed remainder. The sign of the remainder
should be the same as the expected sign of the quotient. Your program
should exit or halt if it cannot compute a valid result. (What are these
cases?)

5 Write and test a subroutine as for exercise 3, but make the multiplication
more efficient by using shifting, as appropriate.

6 Write and test a subroutine as for exercise 4, but make the division more ef
ficient by using shifting, as appropriate.

7 The programs shown in Figure 6.13 and 6.15 may have some problems
when one or more of the operands are too large. Aside from overflow,
there may be cases when the result could be stored in a 16-bit word, but the
program does not function properly. (For example, a one in the sign bit
would fail to shift out on a right shift.) Study these programs carefully,
and rewrite them if necessary so that they will operate properly for any pair
of unsigned operands that produce a result which fits in 16 bits as an un
signed number. Write a main program that tests your modified subroutine
for some extreme cases.

8 Write a subroutine that multiplies two 16-bit, unsigned numbers, and pro
duces a 32-bit, double-precision result. Because no overflow is possible,
your program should work for all combinations of input operands. Write
and run a main program that tests your subroutine.

9 Write and test a subroutine as for exercise 8 except that it multiplies two
16-bit signed numbers, and produces a 32-bit signed (two's complement)
result.

10 Write a subroutine that divides a 32-bit, double-precision, unsigned
number by a 16-bit, unsigned number, if possible, to produce a 16-bit quo
tient and 16-bit remainder. Write and run a main test program for this
routine.

11 Do as for exercise 10, except that all numbers are signed, two's comple
ment numbers.

CHAPTER 7

ARRAYS

7.1 I N T R O D U C T I O N A N D REVIEW

Most readers are already familiar with the concept of an array as used in high-
level languages such as FORTRAN or BASIC. The programmer has a collec
tion of data that is to be processed in some related way. Furthermore, the
programmer wishes to have the entire collection of data in memory at the same
time.

A n Example with Sorting

An example of such a problem is sorting a list of numbers or printing them out
in increasing order. Since we (supposedly) do not know the actual order of the
numbers being input, we cannot print a single number until all of the numbers
have been read in. After all, the last number read in could be the smallest, and
therefore, the first to be printed out. Figures 7.1a and 7.1b show an example of
just such a program written in FORTRAN, and BASIC, respectively. The pro
gram reads a list of 20 numbers, sorts them so that they are now rearranged in
increasing order, and finally prints the rearranged list. Notice that this program
performs three processes: reading, sorting, and printing. These three areas are
identified by the comment and remark lines in the programs. The sorting
method used in this program is one version of the popular selection sorting
technique. If the reader is not already familiar with this method of sorting, it is
suggested that the program be examined step by step as an exercise.

Figure 7. / Sorting Program

INTEGER L I S T (2 0) , J , K , L , L P 1 , M
C READ UNSORTED NUMBERS

DO 10 J = 1 , 2 0
READ 100, LIST(J)

10 CONTINUE
C SORT NUMBERS

DO 30 L=1,19
LP1=L+1
DO 20 K=LP1,20

IF (LIST(L) .LE .LIST(K)) GO TO 20
M=LIST(L)
LIST(L)=LIST(K)
LIST(K)=M

20 CONTINUE
30 CONTINUE

C PRINT SORTED NUMBERS
DO 40 J = 1 , 2 0

PRINT 200, LIST(J)
40 CONTINUE

STOP
100 FORMATU6)
200 FORMAT(1X,I6)

END

(a) FORTRAN

100 DIM T(20)
110 REM - READ UNSORTED NUMBERS
120 FOR J=1 TO 20
130 INPUT T (J)
140 NEXT J
150 REM - SORT NUMBERS
160 FOR L=1 TO 19
170 LET P=L+1
180 FOR K=P TO 20
190 IF T(L)<=T(K) THEN 230
200 LET M=T(L)
210 LET T(L)=T(K)
220 LET T(K)=M
230 NEXT K
240 NEXT L
250 REM - PRINT SORTED NUMBERS
260 FOR J=1 TO 20
270 PRINT T (J)
280 NEXT J
290 STOP

(b) BASIC

Sec. 7.1 Introduction and Review 145
Of special note in both versions of this program is the first statement. This

statement is nonexecutable. It simply informs the compiler about the number of
memory locations that must be set aside for the array list.

As we have already seen, in assembly language programs, we must make an
allocation of every location that is being used for data. This was usually done
with the .BLKW 1 assembly directive. In the next section, we will see how loca
tions are allocated for arrays.

Another point to note about these FORTRAN and BASIC programs is
that in the various operations in the executable part of the program, the
variable identifier LIST or T is used with a subscript or index which points to
the specific location of the array. This is required because we were always refer
ring to a single location and not a whole array. This is usually the case in
assembly language. Although there are some machines that have instructions
which are capable of moving a whole array, most machine-level operations deal
with a single location at a time. Therefore, a means is needed for identifying a
single location out of an array. This will be shown in the section on indexing,
starting on page 146.

Storage Allocation

As we just saw, some means is needed to allocate or set aside a number of loca
tions when dealing with an array. Although it might be possible to do this in
many quite arbitrary ways, the simplest method is to use a contiguous block of
memory locations. Successive locations in the block correspond to successive
locations in the array.

The way of allocating a block of memory in the PDP-11 assembly language
is to use the directive .BLKW. However, as used previously, .BLKW always
had 1 in the operand field, indicating the assignment of one word. For an array,
a larger number can be used indicating a larger block of memory. The
assembler then assigns that number of words at that point in the program. For
example, .BLKW 12 would have the effect of allocating 10 words that are
placed one after the other (see Figure 7.2). Note that the PDP-11 assembly
language normally treats such numbers as octal. Therefore, the number 12
causes ten words of memory to be allocated.

Figure 7.2 .BLKW Directive

XYZ: . BLKW 12

This directive produces the
allocation on the right.

XYZ: XYZ(1)
XYZ(2)
XYZ(3)
XYZ(4)
XYZ(5)
XYZ(6)
XYZ(7)
XYZ(8)
XYZ(9)
XYZC10)

Now, in order to be able to refer to the array, there must be a symbolic
name. This can be accomplished by placing a label on the .BLKW directive.
This causes an entry to be made in the symbol table with the label assigned to
the first word of the array.

7.2 I N D E X I N G

Address Expressions

Now that we have allocated space for an array, we are confronted with the
problem of accessing a specific location in an array. The first location of the ar
ray is really no problem because the name of the array is assigned to the first
location. Therefore, we could clear the first location of the array XYZ by ex
ecuting the instruction CLR XYZ. However, this does not solve the problem of
how to access other locations in the array, such as the second, third, or fourth
locations.

One solution is through the use of address expressions. The address of the
second location of the array XYZ is two higher than the address of XYZ.
Similarly, the third and fourth locations of XYZ have addresses four and six
higher than the address of XYZ. Therefore, we can refer to these addresses
symbolically as X Y Z + 2, X Y Z + 4, and X Y Z + 6. And we could thus clear the
first four locations of the array XYZ with the following instructions:

Note that in assembly language expressions, the symbol XYZ always refers to
the address of XYZ and never its contents. This is very important when we con
sider an instruction like MOV XYZ + 2,A. At first glance, this might seem
analogous to the FORTRAN or BASIC statement A = XYZ + 2. However, this
is clearly wrong, because we do not mean the contents of XYZ with two added;
we mean the contents of the location two higher than XYZ. Thus, the
analogous FORTRAN or BASIC statement would be A = XYZ(2).

Note that address expressions can be used in assembly language just about
anywhere an ordinary symbol or number can be used. The expression can be
quite complex, but it must be meaningful as an address or a number. This will
be covered in more detail in Chapter 10, for the time being, we will just limit
ourselves to the most usual case of an address plus or minus a number.

Although the use of address expressions is very important when dealing
with arrays, there is a serious limitation. These expressions are evaluated at
assembly time, and therefore cannot involve any numbers that would change
during execution. This means that although we can refer to specific locations in

CLR XYZ
CLR XYZ+2
CLR XYZ+4
CLR XYZ+6

Sec. 7.2 Indexing 147
an array such as XYZ(l) , XYZ(2), and so on, we cannot refer to a variable or
arbitrary location in an array such as XYZ(J) . Consequently, although we
could clear out an array with a succession of CLR instructions, we do not yet
have a means of writing a loop that would do that .

Index Registers

What is needed is a means of producing the effect of an address expression
which is computed at the time that the program is being executed. In order to
facilitate this, most modern computers have a special instruction mode. A
special register called an index register is automatically combined with an array
address to form an effective address that corresponds to a specific location in
the array. These effective addresses operate at execution time in much the same
way that address expressions operate at assembly time.

In the PDP-11 , the eight general-purpose registers, R0, R 1 , R2, R3, R4,
R5, SP, and P C can all be used as index registers. (Because of the special func
tions of the SP and P C , their use as index registers is usually inadvisable.)

When an instruction such as CLR is used in the index register mode, there
is a reference to a base address and an index register in the syntax of assembly
language which appears as CLR XYZ(R3). Here, XYZ is the base address and
R3 is the index register. An effective address is computed by adding the value of
the base address to the contents of the index register. The instruction then
operates on the location in memory referred to by the effective address.

Examples of Indexing

As an example, let us see how the instruction CLR XYZ(R3) functions at the
machine language level. First the translation of the instruction will require two
words, one for the operation code, and the other for the base address, XYZ.
(Let us assume that the address XYZ happens to be the location 001500.) The
instruction will then assemble as:

005063
001500

The operation code 005063 is really in two parts . First, 0050 is the operation
code for CLR. Second, 63 indicates the addressing mode. The 6 is for index
register mode, and the 3 indicates that R3 is to be used.

Now, before we can say what this instruction does, we must know the con
tents of R3. Let us suppose at the time that the PDP-11 is about to execute this
instruction, that R3 contains 000014. Then, an effective address is computed by
adding the base address, 001500, with the contents of the index register, 000014.
The result is 001514. Therefore, the CLR instruction operates on this location,
and the contents of location 001514 is cleared to 0.

Note that the computation of effective addresses is performed by the in
dexing unit inside the processor. Neither R3 nor the instruction itself are modi
fied by the effective-address computat ion. The only location to be modified is
memory location 001514. The instruction locations will still contain 005063 and
001500, and R3 will still contain 000014.

Figure 7.3 shows an example of a program segment that clears an entire ar
ray of 50 locations. Several things to note are:

1. The index register starts at 0 as opposed to FORTRAN or BASIC where in
dices start at 1.

2. Incrementing is by 2 because of even addresses.
3. Similarly, the final value of the index register will be twice the value of the

array size.

Figure 7.3 Indexing Example

CLR R0 ;RO IS THE INDEX REGISTER
LOOP: CLR XYZ(R0) ;CLEAR ARRAY LOCATION

ADD #2 fRO INCREMENT INDEX
CMP R0,#144 ;TEST FOR FINAL VALUE
BLT LOOP ;LOOP UNTIL REACHED

XYZ: .BLKW 62 ;ARRAY LOCATION ;ARRAY LOCATION

As a final example in this section, the program in Figure 7.1 might be
rewritten in assembly language as shown in Figure 7.4. The example does not in
clude input or output , but just the sorting portion in the sixth through fifteenth
lines of Figure 7 .1 .

The style of programming in the example given in Figure 7.4 is essentially
the same as that used in Figure 7.3. Consequently, the points to note are essen
tially the same.

Figure 7.4 Assembly Language, Sorting Problem

CLR R0 ;LEFT POINTER=0
LOOP1: MOV R0,R1

ADD #2,R1 ;RIGHT P0INTER=LEFT+2
LOOP2: CMP LIST(R0) ,LIST(R1) ;COMPARE LIST(LEFT) AND LIST(RIGHT)

BLE NOSWAP ; IF LESS OR EQUAL, OK
MOV LIST(R0) ,R2 ;OTHERWISE SWAP
MOV LIST(R1),LIST(RO) ;TWO LIST ELEMENTS
MOV R2,LIST(R1)

NOSWAP: ADD #2,R1 ; INCREMENT RIGHT POINTER
CMP R1,#50 ;TOO BIG?
BLT LOOP2 ;LOOP UNTIL DONE

Exercise Set 1 149
Figure 7A (continued)

ADD #2,R0 ; INCREMENT LEFT POINTER
CMP R0,#46 ;TOO BIG?
BLT LOOP1 ;LOOP UNTIL DONE

LIST: .BLKW 24 ;SPACE FOR ARRAY

E X E R C I S E SET 1

1 Given that general registers R0, R 1 , and R2 contain the following octal
values:

R0 000000
R1 000124

R2 177742

and that the symbols ABC, P Q W , and XYZ correspond to the following
addresses:

ABC 001000

PQW 012406

XYZ 177772

what are the effective addresses of the following clear instructions; that is,
what locations would be cleared when they are executed?

(a) CLR PQW

(c) CLR ABC+54

(e) CLR PQW(R0)

(g) CLR PQW(R2)

(i) CLR ABC+40(R1)

(b) CLR PQW+24
(d) CLR PQW(R1)

(0 CLR XYZ+1046
(h) CLR XYZ(R1)
0) CLR XYZ+100(R1)

2 Assemble each of the instructions in exercise 1, in machine language.
(Assume the .ENABLE AMA card has been used as usual.)

3 Convert the program segment shown in Figure 7.4 to a complete sorting
program. Use the RNUM and P N U M subroutine shown in Appendix B to
complete the missing input and output sections. Run the program with
sample data.

4 The following flowchart describes a sorting algorithm known as the bubble
sort:

(a) How does this sorting program work? Show an example with four or
five elements?

(b) How does this sorting program differ from the selection sort shown in
Figure 7.4?

(c) Which method is more efficient, or is there any difference?

(d) What advantages or disadvantages are there, one over the other, if any?

5 Write an assembly language program segment (such as was done in Figure
7.4) for the bubble sort program shown in exercise 4.

6 Write and run a complete bubble sort program adding input and output sec
tions using the subroutines given in Appendix B.

7.3 O T H E R A D D R E S S I N G M O D E S

Register-Deferred Addressing

Because of the importance of arrays in computing, and because of the different
ways that arrays are used in programs, the PDP-11 has several ways of dealing
with arrays. The method used in the previous examples is the index register
mode, where one of the general registers is used as an index register. Another
method of accessing elements of arrays is the deferred-addressing method.
Deferred addressing is the use of an intermediate operand register that contains
the address of the real operand. In the PDP-11 , the simplest of the deferred ad
dressing modes is the register-deferred mode. Here a general register contains
the address of the operand. In assembly language, this mode is indicated by
placing parentheses around the name of the register. For example, the instruc
tion CLR (RO) would clear the memory location whose address is contained in
RO. More particularly, if RO contains 001244, then this instruction would clear
the contents of memory location 001244. The contents of RO are not affected in
any way by this instruction, and would remain at 001244.

Note that register-deferred addressing is in effect a simplified version of
index register addressing. In index register addressing, an effective address is
computed by adding a base address to the contents of a register. With register-
deferred addressing, the effective address is simply the contents of the register
—there is no base address to add. Consequently, the instruction CLR (R0)
performs exactly the same function as the index register mode instruction
CLR 0(R0). There is, however, one main difference. Since the second instruc
tion does have a base address, even though it is zero, it is a two-word instruc
tion, whereas the register-deferred version is a one-word instruction.

In many cases, the effect of adding in a base address can be achieved by
adding it to the original value of the register. This is clearer from examining the
example given in Figure 7.5. This example gives two versions of a program that
adds together the elements of a 20-word array, DATA, and leaves the answer in
SUM.

Of special note in the register-deferred version of the program in Figure 7.5
is that the first and fifth instructions use addresses as data. This is very impor
tant to the concept of assembly language. Addresses are just numbers, and as
such can be treated as data just as any numbers that may represent other things.

Generally, however, both versions are very much alike. If each program is
traced, it will be found that instruction executions match one for one. The main
difference is that in version (b), the contents of R0 will always be larger by the
value of the address of DATA. This takes care of the need for a base address in
the third instruction of version (a). Without getting involved in the complex
question of the efficiency of specific instructions, it can be said that one version
would be about as preferable as the other.

Figure 7.5 A Program to Add 20 Numbers

CLR R0
CLR SUM

LOOP: ADD DATA(R0), SUM
ADD #2,R0
CMP R0,#50
BNE LOOP

SUM: .BLKW 1
DATA: .BLKW 24

MOV #DATA , R0
CLR SUM

LOOP: ADD (R0),SUM
ADD #2 f R0
CMP R0,#DATA+50
BNE LOOP

SUM: .BLKW 1
DATA: .BLKW 24

(a) Index Register Version (b) Register-Deferred Version

The question then arises that if both methods are so similar, why have
both? It turns out that the index register method has advantages when dealing
with more than one array, because often one index register can serve to point to
several arrays if you are pointing to the same place in all of them. However,
with the register-deferred method, a separate register would be needed for each
array. The advantages of the register-deferred method become clearer when it is
used in conjunction with the auto-increment and auto-decrement modes that
will be discussed next.

Auto-Increment Addressing

As can be seen from most of the examples given previously, when scanning
through an array, it is necessary to update the index register by adding some
number every time through the loop. This is true in both of the methods given
already. Also, the number added each time is usually 2 since the programs
usually step through successive words in an array. In order to facilitate this, and
to make many programs much more efficient, the PDP-11 has an addressing
mode where this increment takes place automatically. This is called the auto-
increment mode.

The auto-increment mode operates in essentially the same way as the
register-deferred mode in that a register is used to hold the address of the
operand. The only difference is that after executing the instructions, the register
involved will be increased by 2. For example, the auto-increment instruction:

CLR (R0)+

is much the same as the pair of instructions:

CLR (R0)
ADD #2,R0

There are, however, two notable differences. The first is simply that the auto-
increment mode requires fewer instructions. The second is that with auto-incre
ment, the condition codes are determined by the effect of the instruction, not
the increment process. Also of note is the assembly language convention of
using the plus sign to indicate automatic incrementing.

For an example of how auto-increment can be used, let us look at the ex
ample from Figure 7.5b and see how this could be rewritten using the auto-
increment mode. See Figure 7.6 for this comparison.

As would be expected from the preceding discussion, the difference be
tween the two programs is that the auto-increment version does not need the in
structions ADD #2,R0. This makes the program shorter, clearer, somewhat
easier to write, and it requires less memory and is also about 25 percent faster.
(Note that the saved instruction is inside a loop.)

Figure 7.6 A Modified Program to Add 20 Numbers

MOV #DATA , R0
CLR SUM

LOOP: ADD (R0),SUM
ADD #2,R0
CMP R0,#DATA+50
BNE LOOP

SUM: .BLKW 1
DATA: .BLKW 24

M O V # D A T A , R0
CLR SUM

LOOP: ADD (R0)+,SUM

CMP R0,#DATA+50
BNE LOOP

SUM: .BLKW 1
DATA: .BLKW 24

(a) Register-Deferred Version (b) Auto-Increment Version

Auto-Decrement Addressing

In order to deal with the fact that it is often necessary to access the elements of
an array in reverse order, the PDP-11 has another addressing mode called the
auto-decrement mode. The auto-decrement mode is essentially the same as the
auto-increment, with the general register being decremented or reduced by 2.
Another difference is due to the need for symmetry between the two modes. In
the auto-increment mode, the general register is incremented after it is used. In
the auto-decrement mode, the general register is decremented before it is used.
This means that the auto-decrement instruction exactly undoes what the auto-
increment does. This is important when an array is used as a stack. Stacks will
be discussed in more detail in Chapter 9. But briefly, a stack is an array where
information is added and then used in much the same way that dishes are added
to or removed from a stack of dishes.

In assembly language, the auto-decrement mode is indicated as:

CLR - (R3)

This instruction would cause R3 to be decremented by 2, and then the location
that R3 is pointing to would be cleared. Note that the designers of the assembly
language require the minus sign in front, whereas in the auto-increment mode,
the plus sign is in back. This is to remind programmers that decrementing takes
place before use, whereas incrementing takes place after use.

As an example of the use of auto-decrement mode, Figure 7.7 shows a pro
gram that copies a 20-word array A to another array B, reversing the order of
the words.

Figure 7.7 A Program for Reversing an Array

MOV #A,R0
MOV #B+50,R1

LOOP: MOV (R 0) + , - (R 1)
CMP R0,#A+50
BNE LOOP

A: .BLKW 24
B: .BLKW 24

7.4 F U L L SET OF A D D R E S S I N G M O D E S

Review of Op Codes

In the earlier chapters, a bit of subterfuge was used to make understanding
machine language simpler. For example, we stated that the operation code for
MOV A,B was 013737 and the op code for MOV #5,X was 012737, and so on.
From this and from looking at assembly listings, it must seem that there is
something special about 27s and 37s on the PDP-11 . Among other things, this
section should clear up the mystery.

Except for a few special cases of instructions that have restricted or no ad
dressing capability, each operand of an instruction is signified by a 6-bit code.
Three of the six bits indicate the addressing mode. The other three indicate the
general register involved. For example, mode 6 is index register mode and 3
stands for R3. Therefore, the instruction op code 005063 would be generated
for CLR X(R3). (Note all CLR instructions have the 0050XX form of op code.)

Other modes that have already been discussed are shown in Table 7 .1 .

TABLE 7. J

Mode Name Example Op Code

0 Register CLR R3 005003
1 Register-deferred CLR (R3) 005013
2 Auto-increment CLR (R3)+ 005023
4 Auto-decrement CLR - (R 3) 005043
6 Index register CLR X(R3) 005063

(Address X)

Other Addressing Modes

With three bits used for expressing modes, one should expect eight modes, and
only five are shown in Table 7 .1 . In fact, there are eight modes. Each odd mode
is the deferred addressing form of the previous even mode. This can already be
seen with modes 0 and 1. Similarly, mode 3 is a deferred version of mode 2. For
example, the instruction code 005033 is expressed in assembly language as
CLR @(R3) - I - . (Note that an at sign @ shows deferred addressing.) With this
instruction, the contents of R3 are fetched and used as an address. The contents
of that location are then fetched, and are also used as an address. The location
specified by the second address is then cleared. (The general term for this type
of addressing is indirect addressing.) Also, after R3 is used, it is incremented by
2.

For example, assume that we have the following contents of R3 and
memory:

R3 001046 Memory
Address Contents
001046 001210
001210 X X X X X X

If the instruction CLR@(R3) + is executed, the contents of location 001210 will
be cleared, and R3 will be incremented to 001050.

For the most part , modes 3, 5, and 7 are used in advanced programming
where tables of addresses are used for complex data structures. It should be
noted that indirect addressing is an extremely powerful programming technique
that often simplifies the solution of difficult problems. Indirect addressing will
be used in Chapter 9 when FORTRAN programs and assembly language pro
grams are combined. Table 7.2 shows the complete list of all eight addressing
modes.

TABLE 7.2 PDP-11 ADDRESSING MODES

Mode Name Example Op Code

0 Register CLR R3 005003
1 Register-deferred CLR (R3) or @R3 005013
2 Auto-increment CLR (R3) + 005023
3 Auto-increment- CLR @(R3)+ 005033

deferred
4 Auto-decrement CLR - (R3) 005043
5 Auto-decrement- CLR @-(R3) 005053

deferred
6 Index register CLR X(R3) 005063
7 Index register CLR §X(R3) 005073

deferred

Note: Modes 0-5 are one-word instructions; modes 6 and 7 require an extra word
for the address of X. As a result, modes 6 and 7 automatically add 2 to the program
counter.

Immediate and Absolute Addressing

The most curious use of the addressing modes has to do with how they are used
when the designated register is register 7. Recall that register 7 is the program
counter usually called PC, and will contain the address of the next instruction
word to be fetched from memory. This is an important concept, because it
means that the P C is always incremented immediately after a fetch, and before
any other kind of use of its contents.

For this reason, the following instructions operate as:

MOV PC, R0 Moves the address of the next instruction to R0

MOV PC, X (R3) Moves the address of the location that contains the

address X to R3 locations after X

MOV (PC) , R0 Moves a copy of the next instruction to R0

Of course, it is occasionally useful to deal directly with the program
counter, even in a deferred way, but there are four modes that have very special
uses. These are modes 2, 3, 6, and 7, and are listed in Table 7.3.

It is now possible to explain the function of the .ENABL assembly direc
tive. In Chapter 3, it was suggested to include the statement .ENABL AMA in
your program in order to make the machine language program easier to under
stand. Without the .ENABL AMA statement, all addresses are normally
assembled using mode 67 (relative addressing). Adding the .ENABL AMA
statement causes the assembler to use mode 37 (absolute addressing) instead.

Modes 27 and 37 should be very familiar to the reader. Let us now see how
these modes actually work. Mode 27 is actually mode 2 or auto-increment

TABLF 7.3

Mode Name Example Op Code

27 Immediate MOV #5,R0 012700
000005

37 Absolute
address

MOV
(i f

X,R0
AMA i s e n a b l e d)

013700
(address of X)

67 Relative
address

MOV
(i f

X,R0
AMA i s no t e n a b l e d)

016700
(distance from
the instruction to
X)

77 Relative
address
deferred

MOV @X, R0 017700
(distance from
the instruction to
X)

mode. The following two instructions are equivalent:

MOV #5,R0 MOV (PC)+,R0
.WORD 5

Assume, for example, that the MOV instruction begins in memory cell 001000.
Before the instruction is fetched from memory, the program counter will con
tain 001000.

Address Contents
PC 001000 > 001000 012700

001002 000005

001004

When the processor fetches the instruction, it automatically adds 000002 to the
program counter. Thus, after the instruction is fetched (but before it is ex
ecuted), the program counter contains 001002.

Address Contents
001000 012700

PC 001002 > 001002 000005
001004

The instruction is now executed. Mode 27 indicates that register 7 contains the
address of the source operand. The processor therefore fetches the number
000005 contained in address 001002 and places it in register 0. However, mode
27 also specifies that 000002 should be added to the program counter. As a
result, after the MOV instruction has been executed, the program counter will
contain the address of the next instruction, namely 001004.

Address Contents
001000 012700

001002 000005

P C 001004 > 001004

Note that the absolute-addressing mode (mode 37) works in the same way
and the instruction MOV 1024,R0 could be written as:

MOV @(PC)+,R0
.WORD 001024

However, here we have deferred addressing, so we do not move 001024 to R0,
but what 001024 points to , namely the contents of location 001024. Sometimes
the absolute-addressing (37) is preferred for special cases in programs that do
not contain the .ENABL A M A directive. In such cases, the instruction can be
written as MOV @#X,R0. It should be noted that mode 37 increments the pro
gram counter so that the P C will be advanced to the next instruction.

Finally, note that although it is possible to write an instruction that auto-
decrements the PC , it normally makes no sense to do so. However the reader
should consider the effect of the instruction MOV - (P C) , - (PC).

Relative Addressing

The relative-addressing mode (67) is the normal addressing mode used by the
PDP-11 unless you specifically prevent it by using the .ENABL AMA. Earlier
examples in the text suggested the use of .ENABL AMA because it makes the
assembly listings easier to understand. As we shall soon see, the relative-ad
dressing mode can be quite mysterious.

In effect, relative addressing is about the same as using register 7 as an in
dex register, for example, CLR X(PC). This means that an effective address is
computed by adding the base address X and the P C . For example, if the instruc
tion CLR X(PC) is located at location 001032, and X is 001242, we can deter
mine the effect of the instruction execution. Note that the program counter has
just been used to fetch the base address of the instruction in question, located at
001034. Since the P C is always incremented immediately after this fetch, its
value during execution will be 001036. This is added to X, or 001242, to obtain
an effective address of 002300, which is then cleared.

Consequently, this instruction is simply an instruction to clear location
002300. In other words, it could be replaced with CLR 2300. Figure 7.8 shows
how these instructions operate.

Since both instructions require the same number of words and therefore
fetches, it would seem that the most straightforward method, namely the
absolute-addressing mode would be preferred. Why then does the PDP-11
assembler seem to prefer relative addressing? The answer is that straightfor
wardness is not really of much consequence. It certainly would be if you were

hand assembling your programs and had to compute the rather strange ad
dresses needed in the relative-addressing mode. The M A C R O assembler, how
ever, has arithmetic capability that makes these computations trivial and
automatic.

The advantage of relative addressing can be seen quite easily by taking the
example from Figure 7.8 and redoing it in Figure 7.9 so that all addresses are
made 1500 higher. This would be the effect if the same program were to be
loaded 1500 higher in memory.

Figure 7.8 Comparison between Modes 37 and 67 Addressing

Address Contents
001032 005067 effective address =
001034 001242 001242 + 001036 = 002300
001036 Next instruction

002300 Location cleared

(b)

Address Contents
001032 005037
001034 002300
001036 Next instruction

002300 Location cleared

(a)

Figure 7.9 Relocated Comparison between Modes 37 and 67 Addressing
Address Contents

002532 005037
002534 004000
002536 Next instruction

address

004000 Location to
be cleared

(a)

Address Contents
002532 005067 effective address =
002534 001242 001242 + 002536 = 004000
002536 Next instruction

004000 Location to
be cleared

(b)

When we examine both Figures 7.8 and 7.9, it becomes obvious that there
is an advantage to using relative addressing. Moving the program required no
modification of the machine language code.

Since most programs must be relocated from the addresses of original
assembly, the use of relative addressing reduces the amount of machine lan
guage modification that must be made during relocation. In fact, because of 67
addressing and user access to the program counter, it is possible, with extreme
care, to write programs that can be loaded into any location in memory and run
without modification. Programs written in this way are called position inde
pendent code. This is used for many operating systems programs that must

be rapidly fetched and slotted into some available area of memory. This subject
is described in more detail in Chapter 13.

The final mode to mention here is the relative-addressing-deferred mode.
In effect, this is the same as relative addressing except that addressing is defer
red. Figure 7.10 shows the operation of a mode 77 address. (Compare Figures
7.8 and 7.9.)

Figure 7.10 Mode 77 Addressing
Address Contents
001032 005077
001034 001242 effective address = 001242 + 001036 = 002300
001036 next instruction

002300 003724 but this location is used as a
deferred address

003724 location to
be cleared

As experience with FORTRAN or BASIC may have shown, arrays are often
needed with multiple dimensions. Most frequently, this is seen in the form of
the matrix (see Figure 7.11).

Since the computer memory is organized in the form of a linear string,
more complex data structures such as matrices must be mapped or translated
into the linear format. For a structure as simple as a matrix, the usual thing to
do is to subdivide the matrix into a number of one-dimensional arrays or
strings. This can be done either by stringing out the rows of matrix one after the
other, or by stringing out the columns. Basically, it makes little difference
which way is chosen. However, most FORTRAN systems store matrices
columnwise. Since much of the use of assembly language by casual users is to
augment FORTRAN, we suggest that unless some other reason overrides, the
F O R T R A N conventions be followed. Table 7.4 shows how a 5 x 7 matrix of
one-word integers might be stored in the PDP-11 in the FORTRAN manner
starting at location 003500.

From Figure 7.11, it can be seen that any array element Al} can be accessed
by displacing the proper amount from the base address 003500. The displace
ment amount can easily be derived from the formula 2[i- 1 + 5 0 - 1)] -

7.5 M U L T I P L Y - D I M E N S I O N E D A R R A Y S

Sec. 7.5 Multiply-Dimensioned Arrays 161
Figure 7.11 A Classical m x n Matrix

TABLE 7.4 MEMORY MAP OF A 5 X 7 MATRIX

Address Matrix Address Matrix Address Matrix
Element Element Element

3500 A,, 3530 A 3 3 3560 A 5 5

3502 A 2 1 3532 A 4 3 3562 A|6

3504 A 3 1 3534 A S) 3564 A 2 6

3506 A 4 1 3536 Ai 4 3566 A 3 6

3510 A 5 1 3540 A 2 4 3570 A 4 6

3512 A I 2 3542 A 3 4 3572 A 5 6

3514 A 2 2 3544 A 4 4 3574 A 1 7

3516 A 3 2 3546 A 5 4 3576 A 2 7

3520 A 4 2 3550 A „ 3600 A 3 7

3522 A 5 2 3552 A 2 5 3602 A 4 7

3524 A 1 3 3554 A 3 5 3604 A 5 7

3526 A 2 3 3556 A 4 5

For example, if the matrix element A 3 6 is desired, / = 3 and j = 6. Therefore, the
displacement is:

2 [3 - 1 + 5 (6 - 1)] = 54 1 0 = 66 8

The resulting address is 003566.
The derivation of this formula is straightforward. The matrix is stored in

memory with the first column occupying the first five memory words, the sec
ond column occupying the next five memory words, the third column occupy
ing the next five memory words, and so on. Thus theyth column begins 5 (/ - 1)
words from the start of the array. The ith word in the column will be located / - 1
words from the beginning of the column or / - 1 + 5(j - 1) words from the begin
ning of the array. (The first element in a column is obviously zero words past
the beginning of the column). Multiplication by 2 is necessary because word ad
dresses increase by twos.

The computation of the subscript using the preceding formula involves
multiplication, which is not a basic operation on the smaller PDP-1 Ts . Arrays
are often scanned by row, column, or diagonally. In these cases, it is often
possible to index through these arrays in a much simpler way.

Clearly, if we were going to scan down the matrix columns one after the
other, we would be doing the same thing as simple indexing through an array
of 35 elements. Therefore, any of the techniques described in previous sections
could be used.

Quite often (and this distinguishes a matrix from a one-dimensional array)
a special operation must be performed at the end of scanning each column. For
example, we might be trying to find the sums of the numbers in each column.
This can easily be accomplished by including a second counter that tests for the
ends of the columns. Figure 7.12 shows how a program could scan through the
columns of the 5 x 7 matrix.

At first glance, scanning across the rows of a matrix may seem more com
plex than scanning down a column. However, it is in fact not any harder, and
with some tricks, may even be easier. To scan across a row merely means in
crementing by an appropriate number. Referring back to Table 7.4 we can see
that elements A, , , A 1 2 , A , 3 , A 1 4 , and so on are at location 003500, 003512,
003524, 003536, and so on. Each is 12 locations from the previous one. (Octal
12 is decimal 10 or twice the number of rows in the matrix.)

Figure 7.12 A Program for Scanning Down the Columns of a Matrix

MOV #A,R1
L00P1: Any processing for the beginning of a column

MOV #5,R2
L00P2: Any processing on the array element (Rl)

ADD #2,R1 ;LEFT OUT IF AUT0-INC USED
DEC R2
BNE L00P2
End of column processing

CMP R , # A + 1 0 6 ;106 = 2 X 35 IN OCTAL
BLO L00P1

Consequently, it is merely necessary to increment our pointer register by 12
each time. The problem is knowing how to initialize the pointer register at the
beginning of each row. One method for doing this would be to have a dummy
pointer register that scans down the first column. See Figure 7.13 for an exam
ple of this kind of approach.

There is, however, a rather simple trick of arithmetic that can make the
dummy counter unnecessary. Figure 7.14 shows how this operates. By suc
cessively adding 000012 (octal) to the address in R l , the first row of the matrix
is processed. Since the matrix has 5 times 7 or 35 elements, each of which uses
two addresses, the span of addressess for the matrix is 70 decimal or 106 octal.
When the contents of Rl reaches 000106 octal, the first row has been processed.
Subtracting 104 octal sets the contents of Rl to 000002, the correct displace
ment for the first element in the second row.

Exercise Set 2 163
Figure 7.13 Program to Scan Rows of a 5 x 7 Matrix

MOV #A,R2 ;SET UP DUMMY POINTER
L00P1: Beginning of row processing

MOV R2.R1 ;SET UP REAL POINTER
L00P2: Operate on matrix element (Rl)

ADD #12,Rl
CMP R1,#A+106
BLO L00P2
End of row processing

ADD #2,R2 ;INCREMENT DUMMY
CMP R , # A + 1 2
BLO L00P1

Figure 7.14 Improved Program for Scanning the Rows of a 5 x 7 Matrix

MOV #A tR1
L00P1: Beginning of row processing

LOOP2: Operate on matrix element (R1)

ADD #12,Rl
CMP R1,#A+106
BLO L00P2
End of row processing

SUB #104,R1
CMP R1,#A+12
BLO L00P1

E X E R C I S E SET 2

1 Given that R0 contains 001200 and that memory has the following con
tents:

Address Contents
001172 001206
001174 001174
001176 001172
001200 001206
001202 001204
001204 001200
001206 001172

what are the new contents of memory and RO after each of the following
instructions? (Assume the above contents for each instruction.)

(a) CLR RO (b) CLR (RO)
(c) CLR (RO)+ (d) CLR -(RO)
(e) MOV R 0 t (R 0) (0 MOV (RO),RO
(g) MOV (R0)+ , (R0)+ (h) MOV (R 0) + ,(RO)
(i) MOV (R 0) + , - (R 0) (j) MOV - (RO) . - (RO)
(k) MOV e (R0)+ t R0 (1) MOV e (R0)+ ,£(R0)+

2 Assemble each of the instructions in exercise 1 into machine language.

3 Assume that the following program is loaded into location 2000. What
does it do when executed?

PC=%7
START: MOV -(PC),-(PC)

HALT
.END START

4 Hand assemble the following program into machine language. Since there
is no .ENABL AMA, you should not use mode 37, but rather mode 67. Do
any locations in the program need to be changed if your program is
relocated to a different address? If so, what are they, and how do they
change?

START: MOV #7,A
MOV #3,B
MOV A,C
ADD B,C
HALT

A: .BLKW 1

B: .BLKW 1

C: .BLKW 1

.END START

5 Rewrite the program(s) from exercises 3, 5, or 6 in the previous section of
exercises (pages 149-150) so that maximum use is made of the auto-
increment or auto-decrement modes.

6 Write a program that reads 35 numbers in the order that they would be if
scanning a 5 x 7 matrix across the rows. Print out the numbers in the
order they would have if scanning the matrix down the columns.

*7 A two-dimensional array can be scanned by row or by column. What are
the corresponding ways that a three-dimensional array can be scanned?
Write a program that reads 60 numbers forming a 3 x 4 x 5 array and
then print out the 60 numbers in all the different ways that the array can be
scanned. (Do not consider all possible reversals of direction.)

CHAPTER 8

ALPHABETIC
INFORMATION-
BYTE INSTRUCTIONS

8.1 R E P R E S E N T I N G A L P H A B E T I C
I N F O R M A T I O N

Introduction

So far in our discussion, we have dealt with how to perform the elementary
numeric calculations. Nothing has been said about alphabetic information,
even though it should be clear that there must be some way of dealing with
alphabetic data. After all, the assembler, the operating system, the FORTRAN
compiler, and the BASIC interpreter all deal with statements that are strings of
alphabetic characters. Furthermore, since these processors are really just or
dinary computer programs, any program should be able to manipulate
alphabetic data.

The immediate question is how alphabetic information is represented in
the computer. The answer is that character data are encoded as binary numbers
that have a unique representation for each character of the alphabet. (This must
also include numerals and punctuation.) The actual encoding used is com
pletely arbitrary. In other words, the interpretation of the character code is
completely determined by the design of the input /output device used for read
ing or printing the characters. With the PDP-11 , the most frequently used code
is the one that is standard for teletypewriters. This code is called ASCII which
means American Standard Code for Information Interchange. Other codes

used with the PDP-11 are Hollerith (punched card code) and RAD50. These
will be discussed later.

The ASCII Code System

As just stated, the ASCII code system originated from use with teletypewriters.
As such, each code represents the pressing of some combination of keys on a
typewriter-like keyboard. (Note that as on most typewriters, pressing more
than one key at a time is usually illegal. The exceptions are the SHIFT and
CONTROL keys which do not produce a code themselves, but are used in com
bination with other keys.) With a typewriter, every key you press causes the
printing mechanism to do something, that is, type a character, space, carriage
return, and so on. Similarly, every implemented ASCII code causes the printing
mechanism on the teletypewriter to do such an operation. In order to type a
message on a typewriter, you must press the keys in a sequence. For the com
puter program to type a message on a teletypewriter, the program must provide
the teletypewriter with a sequence of ASCII codes.

The full 7-bit ASCII system uses 128 codes, of which 95 are used for print
ing characters, and 33 are used for control operations such as carriage return
and line feed. The 95 printing characters consist of the following:

26 Uppercase letters

26 Lowercase letters

10 Numerals

1 Blank space

32 Punctuation marks

The 32 punctuation marks are:

! " # $ % & ' () * + , - . / < > : ; = ? @ [\] _ ^ ' { | } ~

Note here that some of the less expensive teletypewriters and printers are only
capable of printing 64 characters, which are:

26 Uppercase letters

10 Numerals

1 Blank space

27 Punctuation marks
(the marks ' { | } ~
are excluded)

Of the 33 control characters, only a few are commonly used; the most common
of these are:

BEL—Rings the bell on the typewriter

BS—Backspaces the typewriter*

HT—Horizontal t a b t

LF—Line feed, advances the paper one line

VT—Vertical t a b t

FF—Form feed, advances the paper to a new page*

CR—Carriage return, moves the print mechanism back to the
beginning of the line

At this point, the reader may wonder what the other 26 control characters do .
For the most part, with computer equipment, they do nothing. (Many of them
are used as control codes for message switching and sending telegrams. In fact,
this is what teletypewriters were originally used for.) In most equipment, the
unused control characters are ignored. For example, a teletypewriter with no
horizontal tab feature will do nothing when sent a horizontal tab character. As
a consequence, these characters can be used for software functions. For exam
ple, the PDP-11 operating system will replace a horizontal tab with space
characters so that the program, in effect, simulates a tab key.

Because there are 128 = 2 7 ASCII characters, it would require a 7-bit
number to cover all the possibilities. Therefore, ASCII is a 7-bit code, where
each character is represented as a 7-bit binary number. The first 32 numbers are
used for 32 of the 33 control characters, 000 through 037 (octal). Blank space is
040; the decimal digits 0-9 are 060 through 071; uppercase letters occupy 101
through 132; lowercase letters, 141 through 172; punctuation is assigned in an
ad hoc manner to the otherwise unused codes from 041 through 176. All this
leaves one control character to be assigned to 177. This character is called Rub
Out or DEL (for DELete) and had a special importance in the days of hand-
prepared paper tape. If you make a mistake typing, you can backspace a paper
tape punch, but you cannot erase the holes. You can, however, punch more
holes. Therefore, a special character was created called Rub Out or DEL with a
code of all Is (177). This character would cause all holes to be punched across
the tape, and was generally ignored by the input processors. Because of this
traditional usage, the PDP-11 operating system uses DEL or Rub Out as a soft
ware backspace to erase mistakes. Table 8.1 shows the entire 128-character
ASCII code in octal.

The ASCII Keyboard

Because of the size of the ASCII alphabet (128 characters), it is not usually
practical to assign one key for each character. As a consequence, it is normal to
use a combination of keys to obtain some of the symbols. For example, a shift

*Some equipment is not capable of this function.
tMost equipment is not capable of this function.

TABLE 8.1 THE ASCII CHARA CTER SET

000 NUL 040 SP 100 @ 140 '
001 SOH 041 ! 101 A 141 a
002 STX 042 " 102 B 142 b
003 ETX 043 # 103 C 143 c
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 ` 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 J
013 VT 053 + 113 K 153 k
014 FF 054 , 114 L 154 1
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
017 SI 057 / 117 O 157 o

020 DLE 060 0 120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 V 166 V

027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 X

031 EM 071 9 131 Y 171 y

032 SUB 072 : 132 Z 172 z
033 ESC 073 ; 133 [173 {
034 PS 074 < 134 \ 174 |
035 GS 075 = 135] 175 }
036 RS 076 > 136 ^ 176 ~
037 US 077 ? 137 _ 177 DEL

key is used for distinguishing between upper- and lowercase letters on the 95
(printing) character keyboards. The shift key also serves to distinguish between
certain punctuation marks and numerals as is done on most ordinary type
writers. Therefore, a 64-character keyboard has a shift key even though there
are only uppercase letters.

In fact, on the 64-character keyboard, the function of the shift key is quite
simple. It reverses, or complements, the fifth bit (bit 4 if the least significant bit
is bit 0). Therefore, the shift key would change 061 to 041 or would change 056
to 076. From Table 8.1, we see that these are

1 ! and >

respectively. Thus, on most ASCII keyboards, exclamation point is4'shift one"
and greater than is "shift period." Figure 8.1 shows a typical keyboard for

64-character ASCII . Note that some punctuation appears as shifted letters. The
reader may verify that bit 4 is being complemented as stated before.

Note that the 64-character keyboard has very few keys for control charac
ters. Typically carriage return, line feed, escape, and delete are the only ones.
The first two are needed because they are typewriter functions that are used just
to do ordinary typing. The latter two serve no particular hardware function, but
are used extensively for software purposes, as mentioned before for delete.

The reader may well wonder how one might produce other control charac
ters. Note that near the lower left-hand corner of Figure 8.1, there is a key
marked CNTL (for control). This key is much like the shift key in that it has no
particular function of its own, but is held down while another key is pressed.
The basic function of the control key is to force the two most significant bits of
the character code to zero. Thus, for example:

Control @ is 000 or NUL

Control A is 001 or SOH

Control B is 002 or STX

Control C is 003 or ETX

Note that all of the control characters except DEL can be produced this
way. This includes carriage return (control M) and line feed (control J) . DEL is
somewhat odd, being all Is, and therefore usually is given a separate key. In any
case, since the control key forces bits to zero, it could not be used to create
DEL.

The 95-character ASCII keyboard is usually quite similar to the
64-character keyboard, except that the shift key must function differently
with letters. Here the normal code will be lowercase, and the shift will produce
uppercase. This is done by forcing the sixth bit (bit 5) to zero. Thus the char
acter " a " or 141 becomes " A " or 101. In addition, since shifted letters cannot
be used for punctuation, separate keys are needed for

^ [\] _ and @

Figure 8.1 A SCI 164-Character Keyboard

Furthermore, we pick up the additional punctuation

{ | } ~ and '

However, it can be seen that the shift key will allow these characters to share
keys with other punctuation. Many 95-character keyboards also have a special
locking key that may be marked ALL CAPS. This key causes the keyboard to
behave like a 64-character keyboard. The reason for this is that 95-character
keyboards are relatively new, and much of the existing software is not capable
of dealing with lowercase letters. Without such a switch, you would have to
hold the shift key down most of the time while using such software.

Devices Other than Teletypewriters

The ASCII code is a serial (character-by-character) code that was originally
designed for use with teletypewriters which are character-by-character typing
machines. Even so, the ASCII code is quite useful for such devices as line
printers and character display screens (often called CRTs because the major
component is a cathode-ray tube).

Even though these devices are designed for high-speed multicharacter
operations, information is usually fed to them one character at a time in order
to simplify interconnections. Line printers and CRTs usually handle informa
tion in units of a line or a page at a time; as such, they do not have a typing car
riage to return as does a teletypewriter. However, in order to be compatible
with normal ASCII , carriage return and line feed are used to terminate a line
and to advance to the next line. Therefore, for the most part , these devices may
be treated as if they were ordinary teletypewriters.

There may, however, be some differences, or special ways that these
devices must be handled. For example, some line printers must advance the
paper in order to print a line; thus it is not necessary to transmit both a carriage
return and a line feed.

Some devices have special capabilities. Printers may allow the programmer
to advance the paper to the top of a new page. CRTs may have functions such as
screen erase, cursor control, and scroll versus page mode. A cursor is a flashing
marker that indicates where text is to be inserted on the screen. The cursor
usually moves to the right as you type, but some CRTs allow the cursor to be
repositioned anywhere on the screen. Scrolling allows the user to add lines to
the bot tom of the screen by rolling the remaining text up, losing the top line.
These special capabilities usually operate through some protocol of control
characters. The particular manual for the device should be consulted for such
information.

Storing Characters in the P D P - 1 1

As we have just seen, the basic ASCII code is a 7-bit code. However, on some
teletypewriters and other equipment, an eighth bit is added in order to obtain

error detection. This bit is called a parity bit and is set to a 1 or a 0 in order to
make the total number of Is in the 8-bit code an even number. This is called
even parity. Now, if noise or a malfunction causes one of the Is to change to a 0,
or one of the 0s to change to a 1, the total number of Is becomes an odd number
(odd parity), and this error is detectable. (Note: Some machines generate odd
parity, and then even parity means there is an error.)

Since parity ASCII is rarely used on the PDP-11 , we will not discuss it fur
ther now. However, in order to have full generality with parity systems, the
ASCII code is usually treated as an 8-bit code. The most significant bit, which
would be the parity bit if parity were used, is then either always a 1 or always a
0, depending upon the device being used.

Now, since we have 8-bit codes, and since the PDP-11 has 16-bit words, it
stands to reason that the most efficient use of memory will occur when two
character codes are packed into each word. PDP-11 tradition has the first
character placed in the least significant eight bits, and the second character
placed in the most significant eight bits. As an example of how this works, the
message HELLO! would be stored starting in location 001000 as follows:

Address Binary Contents
E H

001000 0100010101001000

L L
001002 0100110001001100

! O
001004 0010000101001111

Note that the order in which characters are packed into words seems
backwards. However, aside from being PDP-11 tradition, this method also
serves a practical purpose that will be discussed in the next section.

Another peculiarity becomes apparent when we convert the previous
binary words to octal, and get:

Address Contents

001000 042510

001002 046114

001004 020517

Looking at the octal word, it is certainly not obvious what the ASCII character
codes are. The reason for this is that octal encoding is based upon dividing a
word into multiples of three bits, and the 8-bit ASCII code is not a multiple of
three bits. For this reason, most mini- and microcomputer manufacturers have
given up octal all together, and use hexadecimal encoding, which divides a word
into groups of four bits.

There is really no simple formula for extracting the ASCII codes from the
octal encoding of a whole word. The easiest thing to do is probably to translate
the word into binary, and split it into its 8-bit character codes. Then translate

these back into octal. Figure 8.2 shows how this may be done. Fortunately, the
software in the PDP-11 is set up so that you do not have to do this very often.
And in any case, after you have done the translation a few times, you tend to get
the knack for doing it in your head.

Figure 8.2 Converting Bytes to Words

Next higher (odd)
byte contents Even byte contents

(octal representation)

Word contents
(binary representation)

Word contents
(octal representation)

8.2 M A N I P U L A T I N G C H A R A C T E R S

Bytes and Byte Instructions

Now that we know how to store character codes in the PDP-11 , our next step is
to see how to write programs to manipulate strings of characters. The first step
in that process is to decide how to separate the two character codes in a single
word. Clearly, some sort of scheme using the shift instructions discussed in
Chapter 6 could be made to work. However, this does not seem to be particu
larly easy either for the programmer or the computer. Since character process
ing is so important , instructions are available to accomplish it.

There is a whole special class of instructions called byte instructions. The
term byte is used to refer to a small number (perhaps a mouthful) of bits. A byte
is usually smaller than a word, but is large enough for a character code. The ac
tual size of a byte and the number of bytes per word varies somewhat from
machine architecture to machine architecture. In the PDP-11 , there are eight
bits to a byte, and therefore two bytes per word. Thus, in effect, bytes are the
same as the character codes described in the preceding section.

Bytes were mentioned briefly in Chapter 3, pages 34-35, but not used
after that . Let us now review what was said about bytes, and see how bytes are
used. There is something very important about bytes. Bytes are addressable!
Recall that word addresses must be even numbers. The reason is that odd ad
dresses are reserved for byte operands. The even addresses refer to the low-
order eight bits of a word, and the odd addresses refer to the upper eight bits of
the word. Note, however, that only byte instructions may use odd addresses.

A typical example of a byte instruction is MOVB. This instruction is like

MOV, except that it only moves eight bits rather than sixteen, and it may have
either or both of its addresses odd. To see how this works, let us reconsider the
example of the message HELLO!. As bytes, this message appears as:

Byte Binary Octal
Address Contents Contents
001000 01001000 110

001001 01000101 105

001002 01001100 114

001003 01001100 114

001004 01001111 117

001005 00100001 041

Now the instruction MOVB 1005,1002, would cause the byte at 001002 to
change to what the byte at 001005 contains, namely 041. This would change
memory to contain:

Byte Octal
Address Contents

001000 110

001001 105
001002 041

001003 114

001004 117

001005 041

Or equivalently, this would be the encoding of the message HE!LO!.
Most of the data-handling instructions that have been described so far

have byte instructions as their counterparts. This results in the following list
of byte instructions:

CLRB TSTB ADCB
NEGB R0RB SBCB
INCB R0LB MOVB
DECB ASRB CMPB

ASLB

Note specifically that ADDB and SUBB are missing from the list. There are no
instructions for adding or subtracting two bytes.

The operation of the byte instructions is essentially the same as their full-
word counterparts except that their effect is limited to eight bits. For example,
the instruction INCB 1003 would cause the 114 in byte location 001003 to
change to 115. This changes the message to HE!MO!.

The operation code for a byte instruction is closely related to the operation

code for the corresponding word instruction. The operation codes are identical
except that the first bit of the word instruction is 0, while the first bit of the byte
instruction is 1. For example, the operation code for MOV is 01ssdd, while the
operation code for MOVB is l l s sdd . Similarly, the operation code for CLR is
0050dd, while the code for CLRB is 1050dd.

Bytes can represent signed or unsigned numbers. Since 8 bits can be ar
ranged in 2 8 or 256 different ways, unsigned numbers range from 0 to 255
(decimal), and signed numbers range from - 128 to 127 (decimal). The condi
tion code bits operate in the normal manner (see Chapter 6). The error point for
signed numbers is between 177 and 200 (octal). Passing this point causes the V
bit to be set. Similarly, the error point for unsigned numbers is between 377 and
000 (octal). Passing this point may cause the C bit to be set. (Note that INCB
and DECB, like INC and DEC, do not affect the C bit.) The shift and rotate in
structions change the C bit in the expected manner. For example, a ROLB in
struction moves bit 7 into the C bit in the same way that a ROL instruction
moves bit 15 into the C bit. In both cases, the old value of the C bit is placed into
bit 0.

Byte Instructions with Processor Registers

A question arises when instructions such as INCB R2 are used. Since the pro
cessor registers are 16 bits long, it is not clear which bits of the register are af
fected by the byte instructions. On the PDP-11 , the following convention is
followed. All byte instructions except MOVB affect only the 8 low-order bits of
a processor register (bits 0 through 7). The high-order bits of the register (bits 8
through 15) are unaffected. For example, if register 2 contains 000377, the in
struction INCB R2 will change the contents of the register to 000000. If register
2 contained 177777, the result of the instruction would be 177400.

The MOVB instruction is an exception. When the destination of a MOVB
instruction is a processor register, the upper 8 bits of the register (bits 8 through
15) are set equal to the sign bit of the byte (bit 7). For example, if register 2 con
tains 177777 and the instruction MOVB #144,R2 is executed, the contents of the
register will be changed to 000144 because the sign of the byte is 0. If register 2
contains 000000 and the instruction MOVB #234,R2 is executed, the contents of
the register will be changed to 177634 because the sign of the byte is 1. Moving a
byte to a processor register was defined in this way to allow a programmer to
convert a signed 8-bit number into a signed 16-bit number. The reader should
verify that 234 is the 8-bit, two's complement representation of - 100, and that
177634 is the 16-bit, two's complement representation of - 100.

Note that these questions only arise when byte instructions are used with
processor registers. These questions do not occur when byte instructions are
used with memory because the unit of addressable storage is only 8 bits. An in
struction such as MOVB #177,2002 will change the contents of memory byte
002002, but it will have no effect on the contents of bytes 002001 or 002003.

Assembly Language Conventions
for Bytes and Characters

As we saw in the previous section, it is somewhat difficult to convert from bytes
to words, or vice versa. Because of this, the assembly language has some special
assembly directives that facilitate dealing with bytes.

As can be seen from the previous examples, most of the use of bytes is in
the form of arrays. Therefore, most of the assembly directives operate with ar
rays. The first is the .BLKB directive that operates just like .BLKW, except that
bytes are allocated instead of words. However, in some cases, just allocating
space for bytes is not enough. We would like to be able to specify what is in
those locations. For example, we might want to specify that an array of suc
cessive bytes is to contain the characters HELLO!. One method of doing this is
with the .BYTE directive. This directive has .BYTE followed by a number of
byte data separated by commas. For example, in order to store the message
string HELLO!, one could use the following line of code:

MESG: .BYTE 1 1 0 , 1 0 5 , 1 1 4 , 1 1 4 , 1 1 7 , 0 4 1

The label MESG would identify the address of the first byte of the message.
Note that since bytes can occupy odd addresses, it is quite possible that the sym
bol MESG would be assigned to an odd address. This is perfectly all right, but
remember that odd addresses can only be referred to with byte instructions;
word instructions must have even addresses.

There is a companion to .BYTE that can be used to fill a word array with
data. It is .WORD. Referring back to the example on page 171, the same mes
sage could be expressed in the form of words as:

MESG: .WORD 42510 ,46114 ,20517

Note however, that in this case MESG must be an even address.
After a long sequence of byte data, it may easily become unclear to a pro

grammer whether the next location to be loaded is an odd or an even location.
This may not be important if the next location is to be filled with another byte.
However, if you are about to insert more instructions or full-word data into the
program, you must be certain that the next location has an even address. One
solution to this problem would be to carefully count the number of bytes you
have generated and then add an extra byte if necessary to make the number
come out even. An easier method is to have the assembler do the counting by us
ing the .EVEN directive. The following example shows how .EVEN is used:

ALPH: .BYTE 1 0 1 , 1 0 2 , 1 0 3
.EVEN

NUMB: .WORD 17743

NUMB is guaranteed to appear at an even address because the .EVEN directive
will cause the generation of an extra byte of data if necessary.

Note that the .EVEN directive must be used whenever there is uncertainty
as to whether the assembler is at an odd or an even location, and when the next
entry is to be treated as a full word. This could happen even though the next
item is being generated with the .BYTE directive, because often pairs of bytes
are treated as words. Consider the following example:

MOV CRLF,TERM

.BYTE 1 , 2 , 3

.EVEN
CRLF: .BYTE 15,12

CRLF must be at an even location because it is referenced by a MOV instruc
tion, which must refer to an even address.

It should be noted, however, that when using .BYTE for placing character
strings in a program, the programmer must convert all the characters into
ASCII codes by looking them up in Table 8.1, or a similar table. Here again, the
computer is quite capable of looking up codes in a table, and the assembler
allows for this with the .ASCII directive. The format of .ASCII is .ASCII
followed by a string of characters enclosed in slashes. Those characters are
translated to ASCII codes and placed in successive byte locations. As an exam
ple, the string of bytes forming the message HELLO! used before could be
formed with the ASCII directive as follows:

MESG: .ASCII /HELLO!/

Since .ASCII generates bytes, it may use an odd number of byte locations. Thus
the .EVEN directive should be used with .ASCII for the same reason it is used
with the .BYTE directive.

Since slashes are used as delimiters, the messages cannot contain slashes.
This can be circumvented by using other delimiters. There are also means for
handling control characters and non-ASCII codes. For information on this, it is
best to refer to the manual for the particular version of the assembler you are
using.

Indexing with Byte Instructions

Because it is so common to use bytes in the form of arrays, it is important to
note that byte instructions can be indexed in the same ways that word instruc
tions can. The only essential difference is that since bytes can be located at odd
addresses, it is legal for the effective address of a byte instruction to be odd.
This should cause no special alarm because, in fact, byte instructions work
essentially the way one would expect them to work.

Recall that in most of the examples in the previous chapter, an index
register was modified in a loop by adding 2 each time through the loop.

Therefore, the examples contained an instruction such as A D D #2,R1. If these
programs were rewritten to use a byte instruction, that instruction would prob
ably appear as A D D #1 ,R1 , or simply INC R l . For example, Figure 8.3 shows a
simple program for zeroing out an array of twenty bytes. The directive .BLKB
is like .BLKW except that it reserves a block of bytes.

The more interesting features of byte instructions come when auto-
increment and auto-decrement modes are used. Because bytes can be at odd
locations, the auto-increment/decrement modes cause incrementing or decre
menting by 1 instead of 2.*

Figure 8.3 Program for Zeroing Bytes

CLR R0 ;RO IS INDEX REGISTER
LOOP: CLRB STRING(RO) ;CLEAR BYTE

INC R0 ;INCREMENT INDEX
CMP R0,#24 ;LOOP TO END OF ARRAY
BLT LOOP

STRING: .BLKB 24

As a simple example of how auto-incrementing can be used with byte in
structions, Figure 8.4 shows a simple program for printing out a message. For
the purpose of this program, it is assumed that P C H A R is the name of a
subroutine that prints the character contained in RO.

Note that the program in Figure 8.4 uses a different technique for looping
than was used for previous examples. Rather than counting how many times the
program goes through the loop, it loops until the data equals a predetermined
number sometimes called a sentinel value. In this case, zero is used, because
zero is not a legal ASCII code for a printing character. In fact, this technique is

Figure 8.4 A Program for Printing a Message

MOV #MESG, R1 INITIALIZE R1
LOOP: MOVB (R1) + ,R0 ;GET BYTE

BEQ OUT ;STOP LOOPING WHEN A ZERO IS REACHED
JSR PC,PCHAR ;PRINT CHARACTER
BR LOOP ;AND LOOP UNTIL END

OUT:

MESG: .ASCII /THIS IS A MESSAGE./
.BYTE 0 ;ZERO BYTE TO STOP THE PROGRAM

*There are two exceptions to this rule that involve the stack pointer and the program
counter. These exceptions occur because the stack pointer and the program counter must
always point to a word location or an even address. Therefore, these registers are always
incremented or decremented by 2, even with byte instructions.

so useful for dealing with messages that there is a special assembly directive just
for the purpose. It is .ASCIZ, which is just like .ASCII except that a byte of 0 is
added onto the end of the string. Therefore, in the example of Figure 8.4, the
line

M E S G : . A S C I Z / T H I S I S A M E S S A G E . /

could be used. Then the .BYTE 0 would not be necessary.

E X E R C I S E SET 1

1 With a teletypewriter or CRT connected in LOCAL mode (that is, not con
nected to a computer, but talking to itself), explore the effects of all of the
keys. Also, use the shift and /o r control key with all of the other keys, and
describe the effects. In particular:

(a) Does your machine have upper- and lowercase? If not, what is the effect
of shifting a letter? Is it possible to type all letters with shift held down?
If there is lowercase, is there a shift lock key? An all caps key? What is
the difference?

(b) What is the effect of the control key? Which control characters do
anything? What do they do? Do you always notice the effect?

2 Perform the steps outlined in exercise 1 with the PDP-11 console typewriter
connected to the RT-11 operating system. How do you explain the different
results obtained between exercises 1 and 2?

3 Do the same as exercise 2, but type R TECO before you start doing the ex
periment. Again, compare with previous results and try to explain the dif
ference. (See Appendix E for a partial explanation of TECO).

4 Separate the following words into pairs of bytes, indicating which is the low-
order byte and which is the high-order byte:

(a) 006003
(c) 123456
(e) 022222

(b) 177777
(d) 111111
(f) 000400

5 Combine the following pairs of bytes into words expressed in octal (note
orders):

Low Order High Order

(a) 001 001
(c) 101 102
(e) 123 342

Low Order High Order

(b) 200 200
(d) 377 377
(f) 063 065

6 Assume that the contents of byte locations P , Q, and R are:
P 177
Q 377
R 001

and that the condition codes are N = 1, C = 1, V = 0, and Z = 1. What will be
the new values of P , Q, R and the condition codes after each of the follow
ing instructions is executed with the above contents?

(a) CLRB P
(c) DECB R
(e) INCB Q
(g) ROLB Q
(i) ASLB Q

(b) INCB R
(d) INCB P
(f) ROLB P
(h) ASLB P
G) ASRB R

8.3 SIMPLIFIED I N P U T A N D O U T P U T

Input and Output of Characters in the RT-11 System
(Optional Section Intended for Persons Using RT-11)

Being able to store character codes in a computer serves little purpose unless
there is some way of reading in or printing out characters. The processes of
reading and printing data are extremely complex, and are handled in some
depth in Chapter 11, and in great depth in the PDP-11 Peripherals Handbook.
However, if you are using the RT-11 operating system, there are some built-in
system functions that allow input and output of characters. In fact, these func
tions are clever enough so that if you are operating from the console
teletypewriter, input and output appear there; and if you are operating from a
batch stream, input comes from the batch stream, and output appears on the
batch log.

These functions are made available through two system macros called
.TTYIN and TTYOUT. Macros are simply packages of code that may be in
serted at various places in your program. (The macros .REGDEF and .EXIT
were introduced in Chapter 5.) In order to obtain the packages called .TTYIN
and .TTYOUT from the System Macro Library, the following .MCALL
assembly directive should be inserted in your program:

.MCALL .TTYIN,.TTYOUT

After the .MCALL directive appears, you may read a character by insert
ing .TTYIN at the appropriate point in the execution of your program. Each

occurrence of .TTYIN is replaced by a set of instructions that asks the RT-11
operating system to read a character. When these instructions are executed,
control is transferred to the RT-11 operating system which waits until someone
types a message at the teletypewriter, terminated by a carriage return. The
RT-11 operating system then places the first character of the message into RO
and returns control to your program. If you are operating under the batch
stream, RO gets the first character following the $DATA card (line).

Subsequent uses of .TTYIN will place successive characters of the message
in RO. After all characters of the message have been read, including the carriage
return and the line feed that end the message, the next use of .TTYIN will cause
the system to wait for someone to type a second message.

Note that .TTYIN does not give you the first character of the message until
the entire message, including the carriage return, has been typed. This allows
the operating system to process certain control characters such as rubout, which
causes the most recently typed character to be erased, and control U, which
causes the entire line to be erased. (Appendix D describes these control func
tions for the RT-11 operating system.) Note that the operating system
automatically inserts a line feed character after a carriage return is typed. As an
example, the program in Figure 8.5 will read in a one-line message.

Figure 8.5 Sample Program, One-Line Message

.MCALL .TTYIN,.TTYOUT

MOV #LOC.R1 ;GET BUFFER ADDRESS
LOOP: .TTYIN ;GET CHARACTER

MOVB R0,(R1)+ ;STORE IT IN BUFFER
CMPB R , # 1 2 ;WAS IT LINE FEED?
BNE LOOP ; IF NOT, KEEP LOOPING

LOC: .BLKB 40 ;ROOM FOR 32 CHARACTERS

The macro .TTYOUT will print out a single character from RO on the con
sole teletypewriter (or log file, if you are operating in batch mode). Figure 8.6
shows how the message ABC could be printed, followed by carriage return and
line feed. It is also possible to use .TTYOUT to print a fixed character code by
using a line such as .TTYOUT #15 which would print a carriage return. Note,
however, that the contents of RO will still be changed. For other uses of .TTYIN
and .TTYOUT, consult the RT-11 Advanced Programmer's Guide.

Figure 8.6 Program for Printing ABC Message

.MCALL .TTYIN,.TTYOUT

MOV #MSGfR1 ;GET MESSAGE ADDRESS
LOOP: MOVB (R1)+,R0 ;GET CHARACTER

BEQ OUT ;DONE IF ZERO BYTE
.TTYOUT ;PRINT CHARACTER
BR LOOP ;LOOP UNTIL DONE

OUT:

MESG: .ASCII /ABC/
.BYTE 1 5 , 1 2 , 0

Input and Output of Characters at the
Hardware Level (Optional Section Intended
for Persons Not Using a Resident System)

As mentioned in the previous section, the processes of reading and printing data
are complex operations. However, it is possible to read and print characters at
the operator 's teletypewriter with only a few instructions. This section shows
how to do these operations. The explanations given here are oversimplified,
and are intended to allow users to do their own input and output . For more
detail see Chapter 11.

In order to print a character, it is merely necessary to move the ASCII code
for the characters into a special byte address called the printer buffer. We can
use the symbolic name PRB. Thus, we could cause an A to be printed by ex
ecuting the instruction MOVB #101,PRB. There is a catch, however: once you
have executed such an instruction, you must wait a certain amount of time until
you can do it again. This is because the printers are slow. In the time it takes to
print one character, the PDP-11 can execute thousands of MOVB instructions.

In order to tell if the printer is ready to receive a character for output , there
is another special byte address called PRS for printer status. This byte goes
negative when the printer is ready, and you should never move a byte into the
PRB unless the PRS is negative. Consequently, the following subroutine can be
used to print the ASCII character in RO:

PCHAR: TSTB PRS ;TEST PRINTER STATUS
BPL PCHAR ;LOOP UNTIL READY
MOVB R0,PRB ;OUTPUT CHAR
RTS PC ;RETURN

Input from the operator 's keyboard operates in a manner very similar to
printing. There are two special byte locations KBS (keyboard status) and KBB
(keyboard buffer). Whenever someone types a character at the keyboard, the
KBS becomes negative. The ASCII code for the character just typed will be
available in the KBB. As soon as you examine the KBB, the KBS becomes
positive again so that you can now wait for the next character. Thus, in theory
at least, the following instructions could read one character from the keyboard
and move it into register 0:

RCHAR: TSTB KBS ;TEST KEYBOARD STATUS
BPL RCHAR ;LOOP UNTIL SOMETHING IS TYPED
MOVB KBB,R0 ;GET CHARACTER
RTS PC ;RETURN

There are, however, two minor problems. First, recall that ASCII is a 7-bit
code. Since the move byte instruction fetches 8 bits from byte KBB, there is a
question about the value of the most significant bit of the byte. On the standard
PDP-11 operator 's keyboard, this bit will be set to 1. Because a MOVB instruc
tion is used with a register destination, bits 8 through 15 of the register will also
be set to 1. To solve this problem, a BIC instruction (for Bit Clear) can be used
to set the 9 high-order bits of the register (bits 7 through 15) to 0 without alter
ing the 7 low-order bits (bits 0 through 6). The operation of the BIC instruction
will be explained in the next section.

The second problem is one of philosophy of system design. The PDP-11
operator 's console operates in the full duplex mode. This means that the
keyboard and the printer are separate devices with no relationship between
them. Consequently, if the previous instructions were used by themselves for
input, the operator would be typing blindly and would never see what was being
typed. The solution to this is called echoing, which requires that whenever a
program reads a character, it prints it back out. This can be achieved by calling
subroutine P C H A R whenever a character is read. The following subroutine can
be used to read a character into RO.

RCHAR: TSTB KBS ;TEST KEYBOARD STATUS
BPL RCHAR ;LOOP UNTIL SOMETHING IS TYPED
MOVB KBB,R0 ;GET CHARACTER
BIC #177600,R0 ;CLEAR HIGH ORDER BITS
JSR PC,PCHAR ;ECHO CHARACTER
RTS PC ;RETURN

So far, we have stated the KBS, KBB, PRS, and PRB were special byte
locations, but we did not say where they were. Although the actual locations are
modifiable, in most PDP-11 systems they are the four even-numbered locations
starting with 177560. When you use the previous three-letter symbols in your
assembly language programs, you must define them as specific addresses. This
is done with a line that contains a label, an equal sign, and the value of the ad-

dress. Therefore, any program using these symbols for input /output must con
tain the following lines:

KBS=177560
KBB=177562
PRS=177564
PRB=177566

As an example, the program shown in Figure 8.7 will print out ABC.

Figure 8.7 Sample Program, Print ABC

PRS=177564 ;DEFINE PRINTER ADDRESSES
PRB=177566

MOV #MSG, R3 ;GET MESSAGE ADDRESS
LOOP: MOVB (R3) + , R 0 ;GET CHARACTER

JSR PC,PCHAR ;AND PRINT IT
TSTB (R 3) ;CHECK FOR ZERO BYTE
BNE LOOP ;LOOP UNTIL END

MSG: .ASCIZ /ABC/
.EVEN

PCHAR: TSTB PRS ;TEST PRINTER STATUS
BPL PCHAR ;LOOP UNTIL READY
MOVB R0.PRB ;OUTPUT CHAR
RTS PC ;RETURN

8,4 BIT M A N I P U L A T I O N I N S T R U C T I O N S

The Need to Manipulate Bits

Earlier in this chapter, it was stated that the 8-bit character codes could be ex
tracted from a word by shifting. This is in fact true; however, it turns out to be a
considerable effort to extract portions of a word in this way. We later discussed
the byte instructions, and this solved the problem for the moment . However,
the byte instructions only work when the information is packed into a word in
8-bit chunks.

Needless to say, it is often quite useful to pack information into words or
bytes in various size parcels. Here are some examples of pieces of words or bytes
that have already been discussed as having some special significance:

1. Bit 15 of a word or bit 7 of a byte gives the algebraic sign.

2. Bit 0 of a word or byte tells if the number being represented is odd or even.

3. Bits 5 and 6 of an ASCII character code tell whether the character is upper-
or lowercase or a control character, or in the main block of numeric and
punctuation characters.

4. Bit 7 of a byte may be used as a parity check bit on an ASCII character.

The BIS, BIC, and BIT Instructions

In order to create or examine little packets of information of this kind, the
PDP-11 has been supplied with three instructions. Each of these instructions
has a byte counterpart . They are designed to set or clear specific bits in a word
or to test specific bits.

The three instructions are as follows:

BIS — Bit set
BIC — Bit clear
BIT — Bit test

They are two-operand instructions, and the first operand is a m a s k that is used
to select certain bits in the destination. For example, the BIS instruction causes
each bit in the destination to be set to a 1 if the corresponding bit in the mask is a
1. The bits that correspond to Os in the mask are not changed. In effect, this is a
bit-by-bit OR operation of the mask with the destination. For example, con
sider the following binary numbers before and after the execution of a BIS
instruction:

X = 1 101 111 000 010 001

Y = 1 100 010 101 101 000 Before BIS

Execution of the BIS X,Y:

X 1 101 111 000 010 001
Y 1 101 111 101 111 001 After BIS

Note that the mask is unchanged.
The BIC instruction is similar, except that bits of the destination are

cleared to 0 if the corresponding bit of the mask is a 1. This operation is like the
Boolean A N D operation of the one's complement of the mask with the destina
tion (see chapter 2). The preceding example will now be reshown, using the BIC
instruction:

X = 1 101 111 000 010 001
Y = 1 100 010 101 101 000 Before BIC

Execution of BIC X,Y:

X 1 101 111 000 010 001
Y 0 000 000 101 101 000 After BIC

The BIT instruction is quite different. It is like the C M P instruction in that
no computed result is stored; instead, it is used to set condition codes. A com
puted result is determined that has a 1 in a given bit position only if both
operands have Is in the corresponding position. This is the Boolean A N D
operation. If there are no Is in the entire computed result, the condition code Z
will be set. If the most significant bit of the computed result is 1, then N will be
set. Since an overflow or carry cannot occur, these condition codes are not
used. However, in order to be consistent with how most persons would want to
use the branch instructions, V is always cleared and C is left unchanged. In fact,
all of the bit manipulation instructions affect the condition codes in the same
way.

Again using the same values of X and Y, here is an example of how the BIT
instruction operates:

X = 1 101 111 000 010 001

Y = 1 100 010 101 101 000 Before and after BIT

Execution of BIT X,Y

Computed result = 1 100 010 000 000 000 (not stored)

X and Y are unchanged. Condition codes are:
N = 1
Z = 0
V = 0
C = Previous value before BIT instruction

The three instructions BIT, BIC, and BIS have byte counterparts BITB,
BICB, and BISB. These all operate the same way, except that they deal with
8-bit bytes rather than 16-bit words.

The C O M Instruction

The last bit manipulation instruction is COM (for COMplement) which simply
reverses all of the bits in the destination. That is, 1 bits are changed to 0, and 0
bits are changed to 1. For example, the instruction COM X will have the follow
ing effect:

X = 1 101 111 000 010 001 before COM

Execution of COM X

X = 0 010 000 111 101 110 after COM

Similarly, the COMB instruction will complement the 8 bits in a byte.
Beginning programmers sometimes confuse the COM and NEG instruc

tions. NEG is used to obtain the negative of a signed 2's complement number.
The COM instruction could be used to obtain the negative of a Ts complement
number as described in Chapter 2. However, the PDP-11 uses the 2's comple
ment system for signed numbers rather than the l ' s complement system. As a
result, the COM instruction is usually only used for bit manipulation purposes.

Examples Using Bit Manipulation

Figures 8.8 and 8.9 show two examples of program segments that use the bit
manipulation instructions. The first, in Figure 8.8, extracts the third octal digit
of the number N and prints it out as a single character.

The program segment in Figure 8.9 takes a 7-bit ASCII code and deter
mines whether there is an odd or an even number of Is in the code. A parity bit
is the added bit in position 7 to produce a byte with odd parity (see page 171).
Neither of these examples is a complete program, but each is assumed to be a
segment of some larger program.

Figure 8.8 Program to Print Third Octal Digit of a Word

.MCALL .TTYOUT

MOV N,R0 ;PUT NUMBER IN R0
BIC #177077, R0 ;CLEAR ALL BUT 3RD DIGIT
MOV #6,R1 ;SET UP FOR 6 SHIFTS

LOOP: ASR R0 ;SHIFT RIGHT
DEC R1 ;6 TIMES
BNE LOOP ;L00P UNTIL DONE
BIS #60,R0 ;MAKE TEMP AN ASCII CODE
.TTYOUT R0 ;PRINT CHARACTER

N: .BLKW 1

The example in Figure 8.8 uses .TTYOUT for output . This was described
in the optional section beginning on page 179. If you are not using the
RT-11 system, simply delete the .MCALL and replace .TTYOUT with

Figure 8.9 Subroutine to Generate a Byte with Odd Parity

; SUBROUTINE ODDGN GENERATES A BYTE WITH ODD PARITY

ODDGN: BICB #200,R0 ; CLEAR PARITY BIT
MOVB #1tMASK ;START WITH MASK OF 1
MOV #7,R1 ;7 BITS IN CODE
CLR TEST ;TEST WILL INDICATE PARITY

LOOP: BITB MASK,R0 ;TEST FOR BIT
BEQ SKIP ;SKIP IF ZERO
INC TEST ;TEST COUNTS ONES

SKIP: ASLB MASK ;MOVE MASK BIT
DEC R1 ;COUNT SEVEN BITS
BNE LOOP ;LOOP UNTIL DONE
BIT #1,TEST ;TEST PARITY
BNE DONE ; IF PARITY ALREADY ODD WE ARE DONE
BISB #200,R0 ;OTHERWISE SET PARITY BIT

DONE: RTS PC ;RETURN WITH RESULT IN RO

MASK: .BLKB 1
.EVEN

JSR P C , P C H A R . (Subroutine P C H A R , which is described on page 181,
would also have to be included.)

A final example uses various features of the bit manipulation and shift in
structions with character strings. This program (shown in Figure 8.10) prompts
the user by typing out an asterisk, and then reads in an unsigned decimal
number that is terminated by a carriage return. The value of the decimal
number is placed in location DATA. Because no check is made of the number
of characters typed in, the result will be modulo 65536. Similarly, since no error
checks are made, if the user types characters other than decimal digits, the
result will be meaningless.

Note the general way that this program works. It starts out with the con
tents of DATA equal to 0. Then each time a digit is picked up , the number in
DATA is multiplied by 10 and the value of the digit is added. For example, sup
pose we type in 573: the number in DATA is 0 and the first digit is 5; the number
in DATA times 10 is still 0, plus 5 is 5. Now the next digit is 7. DATA times 10 is
50, plus 7 is 57. The last digit is 3. DATA times 10 is 570; add three and we get
573. The carriage return ends the process.

Note also that since carriage returns are followed by line feeds, an extra
read is placed at the end of the program to eat up the line feed so that the pro
gram would work if used subsequent times.

As in Figure 8.8, the use of .TTYIN and .TTYOUT can be replaced with
the direct input /output forms shown on pages 181-182.

Figure 8.10 Decimal Read Subroutine

.MCALL .TTYIN,.TTYOUT

; READS A DECIMAL NUMBER AND LEAVES IT IN RO

READ: MOVB #52,R0
.TTYOUT ;PRINT * TO PROMPT USER
CLR DATA ;INITIALLY ANSWER IS ZERO

LOOP: .TTYIN ;GET CHARACTER
CMPB R0.#15 ;WAS IT A CARRIAGE RETURN?
BEQ DONE ; I F SO WE ARE DONE
BIC #177760,R0 -.OTHERWISE STRIP EXTRA BITS
ASL DATA ;DATA=DATA*2
MOV DATA,R1 ;SAVE DATA*2
ASL DATA ;DATA IS NOW 4
ASL DATA ;AND 8 TIMES ORIGINAL
ADD R1,DATA ;AND NOW 10 TIMES
ADD 0,DATA ;ADD IN DIGIT
BR LOOP ;GET NEXT DIGITS (IF ANY)

DONE: .TTYIN ;DO ONE LAST READ FOR LINE FEED
MOV DATA,R0 ;GET RESULT
RTS PC ;AND RETURN

DATA: .BLKW 1

Single and Double Operand
Families of Instructions

Now that the bit manipulation instructions have been described, we can com
plete the description of the single and double operand families of instructions
that are available on all PDP-11 's . The double operand family is shown in
Figure 8.11. In order to explain the notation used in the figure, the move in
struction in the first row will be considered in more detail.

In the figure, the mnemonic for the move instruction is MOV(B). This in
dicates that the mnemonic for a 16-bit move is MOV and that the mnemonic for
an 8-bit move is MOVB. In the second column the op code for move is listed as
• 1SSDD. The symbol • should be replaced by 0 to obtain the operation code
for the word instruction (01SSDD), and it should be replaced by 1 to obtain the
operation code for the byte instruction (11SSDD). The third column specifies
the name of the instruction (move). The fourth column describes the operation.
In this case, d—s indicates that the contents of the destination is set equal to the
contents of the source. The last column specifies the effect of the instruction on
the condition code bits. The asterisks under the N and Z bits indicate that these
bits reflect the number that is moved to the destination. That is, a negative

number would cause the N bit to be set to 1, and a zero would cause the Z bit to
be set to 1. The 0 under the V bit indicates that a move instruction always sets
the V bit to zero, while the dash under the C bit indicates that a move instruc
tion does not affect the C bit.

Figure 8.11 The Double Operand Family of Instructions

Mnenomic Op Code Instruction Operation N Z V c
General

MOV(B) • 1SSDD move d <- s * * 0 —
CMP(B) • 2SSDD compare s - d * * * *

ADD 06SSDD add d <- s + d * * * *
SUB 16SSDD subtract d <- d - s * * * *

Logical

BIT(B) • 3SSDD bit test (AND) s ^ d * * 0 -
BIC(B) • 4SSDD bit clear d <- (~s) ^ d * * 0 -
BIS(B) • 5SSDD bit set (OR) d <- s V d * * 0 -

Figure 8.12* shows the single operand family of instructions. Note that the
destination result of the complement instruction is described as ^ d to indicate
a 1 's complement negative. In contrast, the destination result for the negate in-
structon is - d to indicate a 2's complement negative. The only new instruction
is SWAB (for SWAp Byte) which swaps the two bytes in a word. For example,
the instruction SWAB R2 will cause the low-order bits in register 2 (bits 0
through 7) to be moved to the high-order bit positions (bits 8 through 15).
Similarly, the high-order bits will be moved to the lower bit positions. Note that
SWAB is a word instruction that does not have a byte counterpart .

Figure 8.12 The Single Operand Family of Instructions

Mnemonic Op Code Instruction dst Result N Z V c
General

CLR(B) • 050DD clear 0 0 1 0 0
COM(B) • 051DD complement (l's) ~ d * * 0 1
INC(B) • 052DD increment d + 1 * * * _ DEC(B) • 053DD decrement d - 1 * * * _
NEG(B) • 054DD negate (2's compl) - d * * * *
TST(B) • 057DD test d * * 0 0

*Figures 8.11 and 8.12 are part of the PDP-11 programming car J that is reproduced in
side the front cover of the book.

Figure 8.12 (contin ued)

Mnenomic Op Code Instruction dst Result NZVC

Rotate & Shift

ROR(B) • 060DD rotate right -> C, d * * * *
ROL(B) B061DD rotate left C, d <- * * * *
ASR(B) • 062DD arith shift right d/2 * * * *
ASL(B) • 063DD arith shift left 2d * * * *
SWAB 0003DD swap bytes * * * 0

Multiple Precision

ADC(B) • 055DD add carry d + C * * * *
SBC(B) • 056DD subtract carry d - C * * * *

8.5 O T H E R C H A R A C T E R R E P R E S E N T A T I O N S
(Optional Section)

Hollerith Code

Although ASCII is the most popular character encoding for use with small
computers, other encodings are worthy of note. Of special importance is the en
coding used on punched-card equipment. This is also known as Hollerith code
because of its developer, Herman Hollerith, who introduced the use of punched
cards for tabulating the 1890 U.S . Census.

The basis of Hollerith code is a paper card that is the same height and
width as the dollar bill in use at that time. Rectangular holes can be punched in
the card in any of 80 column positions horizontally, and any of 12 row posi
tions vertically (see Figure 8.13).

Each column is used for a single character; therefore, a card can contain 80
encoded characters. Since there are 12 rows, and since, conceivably, any possi
ble combination of 12 punches is possible, the punch-card code could accom
modate an alphabet with as many as 2 1 2 = 4096 different characters. In prac
tice, however, if you punch too many holes in a card, it starts looking like, and
having the physical strength of, a piece of cheesecloth. Consequently, the codes
are restricted so that normally no column has more than three punches in it.*

*There are some exceptions to this rule, notably special-purpose cards such as end-of-file
cards, binary cards, and some extended alphabet codes that may include lowercase letters
and control characters.

Figure 8.13 Hollerith Card

The rows on the card are numbered (from top to bot tom) 12, 11 ,0 , 1, 2, 3,
4, 5, 6, 7, 8, and 9, respectively. The codes for the numerals 0 through 9 are
punched with a single punch in the corresponding row (that is, the code for 5 is a
punch in the 5 row, or a five punch). Letters are formed by combining one
punch in rows 1-9 (a numeric punch) with a second punch in rows 12 ,11 , or 0 (a
zone punch). This gives 9 x 3 = 2 7 possibilities, of which 26 are used. Figure
8.14 gives a table of codes for the alphabet. Note that the one code left out is
0-1, a code in the middle of the table. Hollerith left this code out because he
feared that his machinery might tear a card with two adjacent rows being
punched. In addition, the single punches 12 ,11 , and no punch at all are used for
&, - , and blank space.

Figure 8.14 Hollerith Code for the Alphabet

A 1-12 J 1-11 Unused 1-0
B 2-12 K 2-11 S 2-0
C 3-12 L 3-11 T 3-0
D 4-12 M 4-11 U 4-0
E 5-12 N 5-11 V 5-0
F 6-12 O 6-11 W 6-0
G 7-12 P 7-11 X 7-0
H 8-12 Q 8-11 Y 8-0
I 9-12 R 9-11 Z 9-0

Modern Card Codes

Later, as data processing became more sophisticated, a need for more punctua
tion arose. This need was met by extending the numeric range from 9 to 15 by
using an 8 punch in combination with a punch from 2 through 7. For example,
an 8-5 punch has a decimal value of 13. In addition, the gentler modern equip
ment allows the 0-1 punch to be used. This gives a total possibility of 64
characters.

Assignment of punctuation to punch configurations is pretty much ar
bitrary, and there are, in fact, several different assignments. Figure 8.15 shows

Figure 8.15 IBM 029-EH Keypunch Code

Space
No

punch & 12 11 0 0
1 1 A 12-1 J 11-1 / 0-1
2 2 B 12-2 K 11-2 S 0-2
3 3 C 12-3 L 11-3 T 0-3
4 4 D 12-4 M 11-4 U 0-4
5 5 E 12-5 N 11-5 V 0-5
6 6 F 12-6 O 11-6 w 0-6
7 7 G 12-7 P 11-7 X 0-7
8 8 H 12-8 Q 11-8 Y 0-8
9 9 I 12-9 R 11-9 Z 0-9
: 8-2 c 12-8-2 ! 11-8-2 unused 0-8-2
8-3 . 12-8-3 $ 11-8-3 , 0-8-3
@ 8-4 < 12-8-4 * 11-8-4 % 0-8-4

| 8-5 (12-8-5) 11-8-5 _ 0-8-5
= 8-6 + 12-8-6 ; 11-8-6 > 0-8-6
" 8-7 | 12-8-7 — 11-8-7 ? 0-8-7

the most popular card code. This code is often called 029 code because it was
first introduced on the IBM model 29 keypunch. In some ways, however, the
name 029 code is a misnomer, because IBM makes model 29 keypunches with a
variety of different code assignments. In particular, this code assignment is
found in the very popular IBM model 029-EH keyboard. However, note that
the assignment of numerals and alphabetic characters is standard; only punc
tuation changes.

The 64-character 29 code is a subset of an 8-bit code called EBCDIC (pro
nounced ebb-sa-dick, which is an acronym for Extended Binary Coded Decimal
Interchange Code). The 8 bits provide for a possible 2 8 or 256 combinations. In
addition to the 64 characters of the 29 code, EBCDIC includes lowercase letters
as well as a variety of control characters. The EBCDIC code is shown in Figure
8.16 as a table with 32 rows and 8 columns. The row specifies the rightmost five
bits while the column specifies the leftmost three bits. For example, the capital
letter A occupies the second position in the seventh column. Thus the binary
code for an A consists of the bits 110 (from the column) followed by 00001

Figure 8.16 EBCDIC Code

Rightmost
Five Bits

Leftmost Three Bits Rightmost
Five Bits 000 001 010 011 100 101 110 111
00000 NUL DS Sp -
00001 SOH SOS / a A
00010 STX FS b s B S
00011 ETX c t C T
00100 PF BYP d u D U
00101 HT LF e V E V
00110 LC ETB f w F W
00111 DEL ESC g X G X
01000 h y H Y
01001 i z I Z
01010 SMM SM c
01011 VT CU2 . ,

01100 FF < %
01101 CR ENQ (_
01110 SO ACK + >
01111 SI BEL | ?
10000 DLE & 0
10001 DC1 j J 1
10010 DC2 SYN k K 2
10011 TM 1 L 3
10100 RES PN m M 4
10101 NL RS n N 5
10110 BS UC 0 O 6
10111 IL EOT P P 7
11000 CAN q Q 8
11001 EM r R 9
11010 CC ! :
11011 CU1 CU3 $ #
11100 IFS DC4 * @
11101 IGS NAK) '

11110 IRS ; =
11111 IUS SUB —I "

(from the row) or 11000001. Notice that many combinations are not assigned to
any symbol or control character. EBCDIC is used by most IBM computers
as well as computers made by other manufacturers.

R A D 5 0 Code

Finally, there is another character code that is of special interest to PDP-11
users, called RAD50 code. As seen earlier, ASCII code can only be packed two
characters per word. As a consequence, character strings can require a lot of
memory. Therefore, the DEC software engineers devised a special code for use

in assembly symbol tables and similar places where three characters can be
packed into a word. In order for this code to work, there must be a restricted
alphabet. This consists of the letters A through Z, the numerals 0 through 9,
blank space, ., and $. This comes to 39 characters. To even things out, an un
used code was added to get 40.

Now, if we compute how many combinations of three characters are possi
ble with a 40-character alphabet, we get 40 x 40 x 40 = 64,000. Note that
since this is somewhat less than 65,536, each possibility can be accounted for in
a 16-bit word.

The way RAD50 code works is that each character of the alphabet is
treated as a digit in the base 40 number system (see Chapter 2). Figure 8.17
shows the assignment of values to the digits in this system. Thus, for example, if
you had the character string GHI to translate to RAD50 code, you would find
the values of G, H , and I in Figure 8.17, that is, G = 7, H = 8, and 1 = 9. Then
you would multiply them by the appropriate powers of 40:

7 x 40 2 + 8 x 40 + 9

or

7 x 1 6 0 0 = 11200
8 x 4 0 = 320
9 x 1 = 9^

11529

Therefore 11529i 0 is the code, except that we have computed in decimal,
therefore we should convert to octal:

11529,0 =26411 8

Consequently, in the form we would probably see, the radix 40 code for GHI is
026411. In fact, the DEC people are so used to octal that they called the code
RAD50 instead of RAD40. (Notice that 4 0 1 0 = 50 8 .)

In assembly language, RAD50 code can be generated with the .RAD50
directive. This works a lot like .ASCII except that it outputs words instead of
bytes. Therefore the line .RAD50 / G H I / would generate the word 026411. If
more than three characters are given, multiple words are filled. If the string
is not a multiple of three characters, trailing blanks are added. For more infor
mation on RAD50 code, the various PDP-11 systems handbooks should be
consulted.

Figure 8.17 The RAD50 Code

Blank 0 E 5 J 10 O 15
A 1 F 6 K 11 P 16
B 2 G 7 L 12 Q 17
C 3 H 8 M 13 R 18
D 4 I 9 N 14 S 19

Exercise Set 2 195
Figure 8.17 (continued)

T 20 Y 25 0 30 5 35
U 21 Z 26 1 31 6 36
V 22 $ 27 2 32 7 37
w 23 . 28 3 33 8 38
X 24 Unused 29 4 34 9 39

E X E R C I S E SET 2

1 Given that the contents of A, B, C, and D, are:
A—070707
B—107070
C—123456
D—054321

what would be the effect on A, B, C, and D and the condition codes N Z C
and V after executing each of the following instructions on the original
contents?

(a) BIS A, B (b) BIC A, C

(c) BIC C, A (d) BIS B,C

(e) BIT C,D (f) BIT C,C

2 Write and run a program that reads characters typed in and prints each
character out seven times followed by carriage return/l ine feed. The pro
gram terminates when it reads control-Z

3 Write a program which reads an entire typed line that is followed by car
riage return/l ine feed. The program then prints out the line alternately for
ward and backward seven times. The line length may vary, but would not
be longer than 80 characters.

4 Write a program to run in the batch stream which reads characters from
data cards. It types the characters back out replacing all control characters
(including carriage return and fine feed) with an asterisk and the letter that
would be typed with " c o n t r o l " to get the control character. Follow each
control-J or *J with a carriage return and line feed. What control
characters does the batch stream insert into your data? Can control
characters be punched onto cards? If so, how?

5 Write a subroutine that reads 16-bit binary numbers as a sequence of 16
ASCII 1s and 0s followed by carriage return/l ine feed. The subroutine
returns with the binary value in R0.

6 Write a subroutine that takes the value of R0 and prints it out as a 16-bit
binary number. Print one number per line as the subroutine is called suc
cessively.

7 Combine the subroutines of exercises 5 and 6 with a main program that
tests the subroutines by calling them several times.

8 Write a subroutine that prints out signed decimal numbers. Modify the
subroutine in Figure 8.10 to read signed decimal numbers. Write a main
program that tests these subroutines by calling them a number of times.
The printout routine should not print leading zeros.

*9 Write a program that reads a body of text. The program then prints out the
number of times each printable character occurred in the text. Your
answers should be printed in decimal using a routine such as written for ex
ercise 8. Your printout should resemble:

A APPEARED 129 TIMES
B APPEARED 17 TIMES
C APPEARED 18 TIMES

CHAPTER 9

SUBROUTINES

9.1 I N T R O D U C T I O N

In previous chapters, we have seen the use of simple subroutines for performing
often repeated operations such as reading or printing numbers. Subroutines are
very important in the structure of computer programs.

In this chapter, we will examine the details of how the calling and returning
processes function. We will also see how subroutines access data from the main
program, and how complex subroutine structures can be tied together and
joined with programs written in a higher-level language. The latter item is,
perhaps, the most important. One of the most significant uses of assembly
language for the minicomputer user is to augment such languages as FOR
TRAN to allow operations that would be difficult or impossible in the high-
level language alone.

9.2 C A L L I N G A S U B R O U T I N E

Review of the JSR Instruction

In earlier examples, it was stated that a subroutine could be called by using the
instruction:

JSR PC,ADDR

Furthermore, the subroutine returned to the main program with the instruc
tion:

RTS PC

The explanation given in Chapter 5 was that the JSR instruction used the stack
pointer (register 6) to save the program counter (register 7) in an area of
memory called the stack.

This explanation is true, but incomplete. For example, we have already
seen programs in which subroutines called other subroutines. When subrou
tines are nested in this manner, several return addresses will be saved on the
stack. This raises the question of how each RTS instruction gets the correct
return address from the stack.

Using the Stack

In order to use an array to store return addresses, there must be an index
register or pointer that indicates where the data are being stored. General
register number 6, or the SP (for Stack Pointer), is always used for this purpose.
The reader can now see why there were cautions against using register 6. Ran
dom use of register 6 would cause very strange things to happen the next time a
subroutine were called. (This problem would exist even if the program used no
subroutines. The operating system uses register 6 for its own subroutines and
program interruptions that may occur without the user's awareness.)

An array that is accessed by sequentially adding and removing data in this
fashion is called a stack. The operation of a stack is analogous to a stack of
plates in a cafeteria. In order to save an item of information, a new plate is ob
tained from somewhere, a 16-bit binary number is printed on the plate, and the
plate is placed on top of the stack of plates. To retrieve an item from the stack,
the plate on the top of the stack is removed and the number on the plate is ex
amined. Notice that plates are always added and removed from the top of the
stack. As a result, the plate that is removed is always the plate that was most
recently added. For example, in the following figure, three quantities labeled A,
B, and C are first saved on the stack and then removed from the stack:

Although C was the last item to be placed on the stack, it is the first item to be
removed. This Last In-First Out sequence is often abbreviated as LIFO.

Register 6 is called the stack pointer because it contains the address of the
item that is currently on the top of the stack. For example, assume that the stack

consists of memory cells 000400 through 000776. A special case occurs if the
stack is empty. In this case, register 6 contains the address of the memory cell
that immediately follows the end of the stack. Since memory cell 000776 is the
end of the stack, register 6 contains 001000 when the stack is empty:

register 6 001000

Address Contents
000376 ??????
000400 ??????

000772 ??????
000774 ??????
000776 ??????
001000 ??????

In order to save an item on the stack, subtract 000002 from register 6 and store
the item in the resulting address. If item A is saved on the stack, the result will
be:

register 6 000776

000772 ??????
000774 ??????
000776 item A
001000 ??????

To save item B on the stack, subtract 000002 from register 6 and place item B in
the resulting address:

register 6 000774
000772 ??????
000774 item B
000776 item A
001000 ??????

Retrieving an item from the stack is just the reverse of saving an item.
Fetch the contents of the memory cell whose address is contained in register 6
and then add 2 to register 6. After item B is fetched, the stack will appear as
follows:

register 6 000776

Address Contents
000772 ??????
000774 ??????
000776 item A
001000 ??????

Notice that memory cell 000774, which used to contain item B, now contains
??????. Memory cells that used to contain an item on the stack may contain
meaningless information after the item is removed from the stack. The reason
for this is that system program interruptions may use the stack and overwrite

the old data . Removing another item from the stack retrieves item A, and leaves
the stack empty:

register 6 001000

000772 ??????
000774 ??????
000776 ??????
001000 ??????

Because return addresses are saved on the stack, subroutines can be nested
without difficulty. For example, a main program called A L P H A might JSR to
a subroutine called BETA. BETA in turn might JSR to a subroutine GAMMA,
and G A M M A might then JSR to subroutine ETA. By the time subroutine ETA
is executing, three return addresses have been saved on the stack—the return
addresses to A L P H A , BETA, and G A M M A . Because of the last in-first out
property of the stack, the return address that is removed from the stack when
ETA is completed will be the return address to G A M M A . Similarly, GAMMA
will return to BETA, and BETA will return to A L P H A . As we shall see later in
the chapter, the use of the stack for storing return addresses even allows a
subroutine to call itself. Such subroutines are called recursive.

Storing an item on the stack is much like executing the instruction

MOV X , - (S P)

Similarly, removal of a number from the stack is equivalent to

MOV (SP)+,X

Actually, users can employ these two instructions for placing their own data on
the stack, and thereby use the stack for storing temporary data. As an example
of this, imagine a subroutine that uses R0, R l , and R2 for internal computa
tion. However, also assume that the main program is using these registers and
does not want the subroutine to change them. The subroutine must then save
the values of R0, R l , and R2, and restore them when returning. This is a very
common use for the stack. (Although almost any free location could be used to
save a register, the stack is very convenient and saves the programmer having
to think up labels and insert .BLKW's in the program. Memory and time
are also conserved because MOV R 0 , - (S P) is a one-word instruction, but
MOV R0,SAVE is a two-word instruction.) The subroutine would have the ap
pearance shown in Figure 9 .1 . Note the label RETN. In order to return, you
must either do BR RETN or execute the same instructions or their equivalent. It
would be catastrophic to execute RTS P C without restoring the contents of the
registers. The RTS P C instruction takes the top of the stack to be the return ad
dress. If the registers had not been restored, the top of the stack would contain
the saved value of R2, not the return address. The general rule is that any pro
cess may use the stack for storing data, but whatever a process adds to the
stack, it must remove: nothing more—nothing less.

Figure 9.1 Using the Stack to Save Registers

START: MOV R 0 , - (S P) ;SAVE REGISTERS
MOV R 1 , - (S P) ;RO, R1, AND R2
MOV R 2 , - (S P) ;ON STACK

RETN: MOV (SP)+,R2 ;RESTORE REGISTERS
MOV (SP)+,R1 ;NOTE REVERSE ORDER
MOV (SP)+,R0 ;LAST ON STACK IS FIRST OFF
RTS PC ;SUBROUTINE RETURN

As we pointed out, the stack is just an array in memory. The question
arises as to where the array is. This depends on the operating system. In the
RT-11 system, programs are normally loaded starting at address 1000. The
stack goes backward from there, using locations 776, 774, and so on. The hard
ware on some PDP-11 computers prevents the stack pointer from going lower
than 400, thus giving a limited but reasonable amount of space for the stack. If
more space is needed, there are provisions that allow programs to be loaded
starting at higher locations. If you are running with no operating system, it
would probably be necessary to set up your own stack area. An array of
reasonable size just about anywhere would do.

Note that, because most stack operations involve words, the stack pointer
must always be an even number. This is taken care of automatically once the
stack pointer is properly initialized and used correctly. Even byte operations
take this into account. For example, MOVB X , - (S P) causes the SP to be
decremented by 2 instead of 1. In a sense, the machine is " n i c e " and does what
is needed without the programmer having to worry about it.

Alternative Calling Methods (Optional Section)

It may seem strange that the JSR and RTS instructions specifically refer to the
program counter. One might suppose that the program counter would always
have to be saved and restored when subroutines are called. This is in fact true,
but there are different places one could store the program counter. In the
PDP-11 , it is allowable to save the program counter in any of the general
registers. For example, the instruction JSR R5,SUBR would cause the program
counter to be saved in R5 and the subroutine would then return by the instruc
tion RTS R5. This would be an alternative method for calling and returning
from subroutines. However, this seems to have a disadvantage over the calling
method described in the previous section because there does not appear to be a
provision for subroutines that call other subroutines. This, however, has been
taken care of because JSR R5,SUBR causes R5 to be saved on the stack before
the program counter is saved in R5. The RTS R5 instruction undoes this by first

restoring the program counter from R5 and then restoring R5 from the stack.
Figure 9.2 shows how this process operates.

From Figure 9.2, we can see that the JSR R5,SUBR instruction ac
complishes what JSR PC,SUBR would, but has the added advantage that the
return location in the main program is more accessible to the programmer. (It is
easier to use R5 than to find a location on the stack.) This is often very useful

Figure 9.2 Effect of JSR R5,SUBR Instruction

for passing information back and forth between the main program and a
subroutine. This whole problem is discussed in the following sections.

Naturally any of the general registers RO through R5 could be used with the
JSR or RTS instructions. You must remember, however, that the same register
must be used with both the JSR and RTS. You could not save the program
counter in R5 and then expect to find it in R3.

On the other hand, it would not make sense to try to use the stack pointer
(SP) to save the program counter. The value of the stack pointer would be lost,
and this would disrupt communications in the system. One might almost con
clude that use of the program counter (PC) would be similarly absurd. How
then do all the examples of previous chapters work? Figures 9.3 and 9.4 show
the effects of JSR and RTS instructions using both R5 and the program
counter. The essential point is that while storing the program counter in the
program counter does nothing, it does not hurt anything either. The net effect is
that the program counter is directly saved on the stack.

Figure 9.3 Operation of JSR Instruction

Figure 9.4 Operation of RTS Instruction

Passing Information between a
Main Program and Subroutines

In most cases, the function of a subroutine is to perform some computation
based on one or more numbers or pieces of information. The results of this
computation may also be in the form of one or more pieces of information.
These pieces of information must be communicated from the main program to
the subroutine and vice versa.

In Chapter 5, a very simple method of communication was used for the
RNUM and P N U M subroutines. The number being passed to or from the
subroutine was placed in RO. This method is usable whenever there are only a
few (no more than six) words of information being passed back and forth. The
first word is placed in RO, the second in R l , and so on up through R5 (if
necessary). The subroutine would be programmed to look for the information

in the appropriate register. As many as six results could be transmitted back in
the same way.

Obviously, this method of passing information has serious limitations
when dealing with large amounts of data or arrays. The limitation of six
registers for storage can be overcome by using specially set aside areas of
memory that serve as communications areas. However, this does not really
work well for large amounts of data because it requires loading and storing all
of the locations at each subroutine call. This could require an excessive amount
of computing.

One possible solution to this problem is especially useful when dealing with
arrays. Here, instead of passing the values in the array, the main program
passes the address of the array. The subroutine then uses this address in order to
access the data in the array. As an example of how this works, Figure 9.5 shows
a subroutine that adds up an array of 100 numbers. The main program passes
the address of the array to the subroutine via RO. The value of the result is
passed back, also using RO. Thus, we are using a combination of both methods.
The calling sequence for this program would be:

MOV #ARRAY, R0
JSR PC.SUMUP
MOV R0.ANS

where ARRAY is the label of the array of the numbers to be added together,
and ANS is the location that ultimately receives the result.

Of special note here is the fact that, in addition to the advantages just
discussed, passing addresses rather than data is a much more general method of
communication. For one thing, addresses can be used bidirectionally. In other
words, if the subroutine has an address of a main program location, it can use
that address both for accessing data and for sending results back to the main
program.

In summary, we can say that transmitting values is a quick and simple
technique that is very useful for subroutines that deal with only a few pieces of
data . Transmitting addresses is needed for subroutines using many pieces of
data .

Figure 9.5 Subroutine for Summing an Array

SUMUP: MOV R 1 , - (S P) ;SAVE R1 AND R2
MOV R 2 , - (S P) ;ON STACK
MOV 0,R1 ;SHIFT DATA ADDRESS TO R1
MOV #144,R2 ;R2 GETS ITEM COUNT
CLR R0 ;CLEAR SUM

SUMLP: ADD (R1)+,RO ;ADD ITEM TO SUM
DEC R2 ;DECREMENT COUNT
BNE SUMLP ;LOOP UNTIL DONE
MOV (SP)+,R2 ;RESTORE R1 AND R2
MOV (SP)+,R1 ;FROM STACK
RTS PC ;RETURN

Exercise Set 1 205

EXERCISE SET 1

For exercises 1-3, assume that R0 contains 000056, R1 contains 177514, R2
contains 177776, and the following memory locations contain:

Also assume that the SP contains 000772 and that the original value of the SP
was 1000. The value of the P C is 001206. The address of SUB is 001472.

1 What values are contained on the stack?

2 What locations would change, and what would be the new contents after
execution of each of the following instructions (use the given contents for
each instruction):
(a) MOV R 0 , - (S P)

(b) M0Y (SP)+,R1

(c) CMP (S P) + , (S P) +

(d) JSR PC,SUB

(e) JSR R2, SUB

(0 RTS PC
(g) ADD R2,SP

(h) MOV (S P) , - (S P)

*3 Which of the following instructions represent normal use of the stack?
Which are abnormal and may produce unpredictable results owing to the
fact that the operating system may periodically interrupt your program
and modify locations below the stack pointer? Which instructions are
catastrophies and will most likely result in program failure? Explain your
answers. Use the given contents for each instruction and show the resulting
changes in contents.

(a) MOV R0, (SP)+

(b) CMP - (S P) , - (S P)

(c) JSR PC,(SP)+

(d) JSR PC,@(SP)+

(e) JSR SP,SUB

(f) INC SP
(g) DEC SP

(h) MOV 4(SP) ,R0

(i) RTS SP

Address
000770
000772
000774
000776
001000

Contents
123456
001076
000005
004212
013737

4 Write a subroutine similar to SUMUP, shown in Figure 9.5 on page 204.
However, your program will have a second input argument giving the size
of the array to be summed. Then write a main program that reads 10
numbers, prints them, and calls your subroutine to sum them up, and then
does the same with 20 numbers.

5 Write a program that reads in a variable number of numbers (up to 100),
sorts them, and prints out the sorted array. This program should be split
into various subroutines, one for each of the major functions. Array ad
dresses, sizes, and all other data should be passed in the general registers at
each subroutine call.

*6 Write a pair of subroutines SREG and RREG. SREG saves the values of
R0 through R5 on the stack and returns. (Note a problem due to the fact
that the return address may no longer be at the top of the stack.) SREG
must not modify R0 through R5.

RREG restores the values of R0 through R5 as last saved by SREG. It must
return with the stack cleared to the original value (before SREG was
called).

The pair of subroutines must be recallable so that a succession of
subroutines calling each other could all call these subroutines.

*7 Write a main program and some subroutines to test out SREG and RREG
from exercise 6.

9.3 I N D E P E N D E N T A S S E M B L Y -
G L O B A L S Y M B O L S

The Need for Independent Assembly

When writing a program of any appreciable size, it is most important to break
the program down into a number of pieces of manageable size which are
called modules. The more independent these modules are, the easier it is to
write, test, and debug each one. When every module is debugged, it is
reasonable to deal with debugging the total program.

In order to deal with programming in this fashion, it is important to be able
to treat each module as a separate program. This means that each of the smaller
programs must be able to be assembled by itself. Consequently, it must have all
its own locations completely defined within the module as does any program. In
other words, there must not be any undefined symbols.

On the other hand, these program modules are intended to be combined
to form one big program. This means that although the modules may be highly

Sec. 9.3 Independent Assembly—Global Symbols 207

independent, they cannot be completely independent. There must be some form
of communication between the programs. This is accomplished by means of
global symbols.

Global Symbols

A global symbol is a symbolic address that is defined in one program but ac
cessible to other independently assembled programs. Although global symbols
can be used for almost anything that ordinary symbols are used for, they are
normally used for subroutine names.

For example, a program module may contain a subroutine named READ.
If this subroutine is to be called from one of the other program modules, the
symbol READ must be global. The definition of global symbols is accom
plished by means of a directive called .GLOBL (note spelling). The .GLOBL
directive is always followed by a symbol, for example, .GLOBL READ. The ef
fect of such usage depends on the context of the remainder of the program so
that .GLOBL has two possible meanings:

1. If the symbol following .GLOBL (such as READ) is defined in the program
module (either with : or =) , then the symbol is defined as a global symbol
that is accessible to other modules.

2. If the symbol following .GLOBL is not defined in the module, then it is
designated undefined global. This prevents the assembler from generating
an error message for an undefined symbol. Instead, a special code is
generated in the object file which indicates that certain undefined addresses
must be defined when all of the modules are combined to form a single
program.

Linking with Global Symbols

The* process of combining all of the program modules together and resolving
global symbols is performed by a system program called the linker.* The linker
does two things. First it relocates each program module to a successive block of
memory. Note that the relocation address will be different for each module,
and will depend on how much memory was required by the preceding modules.

Second, the linker resolves the global references. Here the linker is
finishing a process that the assembler could not do because of undefined global
symbols. As in assembling, two passes are required through the object files. In
the first pass, a symbol table is constructed for all defined global symbols. In
the second pass, the missing addresses corresponding to undefined global sym
bols are supplied by looking them up in the symbol table generated during the

•This linker is the same linker discussed in the section on relocation in Chapter 4 (pages
79 ff). The reader is referred to this section to review the relocation concept.

first pass. If undefined global symbols still remain, it means that a .GLOBL
definition is missing. An error message will result.

In addition, most systems have a provision for subroutine libraries. This is
a file of object modules that the linker will search to try to resolve undefined
global symbols. A module will not be loaded from the library unless it is needed
to satisfy an undefined global symbol.

Figures 9.6 and 9.7 illustrate the use of global symbols. In the main pro
gram (Figure 9.6), READ is declared to be a global symbol to indicate that
the linker will substitute a numerical address for READ in the instruction
JSR P C , R E A D . (If the .GLOBL directive were omitted, the assembler would
flag R E A D as an undefined symbol.) In the subroutine (Figure 9.7), READ is
declared to be a global symbol to indicate that some other module (in this case
the main program) references the address READ. If the .GLOBL directive were
omitted from the subroutine, no assembly error would occur. However, in try
ing to resolve the reference to READ in the main program, the linker may
search the subroutine library looking for an object module called READ. If the
library contains a READ routine, the results during execution are unpredictable
and the programmer may have great difficulty locating the error. If no READ
subroutine is found, the linker prints an error message.

The difference between the .END statements in Figures 9.6 and 9.7 is
significant. The main program module must have a transfer or starting address

Figure 9.6 A Main Program Module

.TITLE MAIN PROGRAM MODULE

.GLOBL READ ;READ IS USED BUT NOT DEFINED
START:

JSR PC.READ ;THIS LINE USES READ

.END START ;NOTE TRANSFER ADDRESS

Figure 9.7 A Subroutine Module

.TITLE SUB1 A SUBROUTINE MODULE

.GLOBL READ ;READ IS DEFINED IN THIS MODULE
READ: MOV R 0 , - (S P) ;BEGINNING OF READ SUBROUTINE

RTS PC

.END ;NOTE NO TRANSFER ADDRESS

on the .END statement, but none of the other modules should have anything
following the .END statement. This is because there cannot be more than one
starting place for an entire program.

9.4 I N T E R F A C I N G A S S E M B L Y L A N G U A G E
W I T H F O R T R A N (RT-11 Operating System)

The Need for Combining F O R T R A N
and Assembly Language

In FORTRAN there are three types of program modules. These are the main
program, subroutine subprograms, and function subprograms. All these pro
gram modules are independently compiled or translated into object modules.
Communication between object modules is accomplished by means of global
names for the subroutines and functions. Since the object modules produced by
the FORTRAN compiler have exactly the same format as those produced by the
assembler, it is possible to replace FORTRAN subroutines and functions with
modules written in assembly language, as long as certain programming conven
tions are followed. Although it would also be possible to replace a FORTRAN
main program with an assembly language main program, it is not usually
recommended, because FORTRAN main programs perform certain initializa
tion operations that FORTRAN subroutines and functions require.

There are various reasons why one would want to write an assembly
language subroutine to be called by a FORTRAN main program or subroutine.
First, there are certain operations that are not particularly easy in FORTRAN.
These include character manipulation, bit operations on words (masking, pack
ing, and so on), and multiple-precision arithmetic other than that which is pro
vided in FORTRAN. Second, some operations are excluded from FORTRAN.
These include nonstandard input /output , interfacing to nonstandard devices,
and access to absolute memory locations.

The second of these categories is especially important for minicomputer
users because of the specialized applications of many minicomputers. The
reader should note that these routes are well traveled and libraries of
FORTRAN-callable subroutines exist for facilitating use of such devices as
graphics display units, the laboratory peripheral system (LPS-11), and so on.

F O R T R A N Calling Conventions

When writing an assembly language subroutine that is to interface with FOR
TRAN programs, it is necessary to use the calling and returning instructions
that FORTRAN uses. It is also necessary to use the same methods for passing
data back and forth.

The simplest case is a subroutine that has no arguments in the call. Such a
subroutine would be called in FORTRAN using a statement such as:

CALL XSUB

The object code generated by the FORTRAN compiler is exactly that which the
assembler would generate for:

.GLOBL XSUB
JSR PC,XSUB

This means that the subroutine should have the simple structure shown in
Figure 9.8.

Figure 9.8 Simple Structure for a FOR TRAN Callable Subroutine

.TITLE XSUB SAMPLE SUBROUTINE

.GLOBL XSUB
XSUB:

RTS PC
.END

The next topic to deal with is the communication of data between FOR
TRAN programs. There are two ways that a FORTRAN main program can
communicate with a subroutine. The first is by means of an argument list; the
second is through common blocks.

Argument lists are transferred by passing addresses, as described earlier in
this chapter. However, since there are at most six available general registers,
and since FORTRAN allows a large number of subroutine arguments, the
general registers alone are not usable for passing arguments. Instead, FOR
T R A N stores the addresses of the arguments in an array. Since the subroutine
needs access to the array, the address of the array is placed in R5 prior to calling
the subroutine. This means that accessing FORTRAN arguments must be done
through double-deferred addressing.

As an example , a F O R T R A N program having the s ta tement
CALL YSUB(A,B,C) will set aside an array of four locations. There is one loca
tion for each of three addresses, and one location at the beginning of the array
that gives the number of arguments. Figure 9.9 gives the equivalent assembly
language for the FORTRAN statement CALL YSUB(A,B,C). The number of
arguments is given in the argument list so that an assembly language subroutine
could deal with a variable number of arguments. (Other computer systems use
different conventions for detecting the number of arguments such as using a
special value to mark the end of the argument list.)

Figure 9.10 illustrates a subroutine that adds the elements of an array A
and places the sum in S. Note that the program changes both R0 and R1;

Figure 9.9 Assembly Language Equivalent for CALL YSUB(A,B, C)

.GLOBL YSUB ;ALL SUBROUTINES ARE GLOBAL

MOV #ARGS,R5 ;R5 GETS ADDRESS OF ARGUMENT LIST
JSR PC,YSUB ;CALL SUBROUTINE

ARCS: .WORD 3 ;NUMBER OF ARGUMENTS
.WORD A ;ADDRESS OF A
.WORD B ;ADDRESS OF B
.WORD C ;ADDRESS OF C

A: .BLKW 1 ;LOCATION OF A
B: .BLKW 1 ;LOCATION OF B
C: .BLKW 1 ;LOCATION OF C

Figure 9.10 Relation of FORTRAN to Assembly Language

SUBROUTINE SUM(S.A)
INTEGER S , A (1 0) , I
S=0
DO 10 I=1,10

S=S+A(I)
10 CONTINUE

RETURN
END

FORTRAN Subroutine

.TITLE SUM

.GLOBL SUM

.MCALL .REGDEF

.REGDEF
SUM: MOV 4(R5) ,R0 ;R0 GETS ADDRESS OF A

CLR @2(R5) ;CLEAR S
MOV #12,R1 ;SET COUNTER TO TEN

LOOP: ADD (R0)+,@2(R5) ;S=S+A(I)
DEC R1 -.DECREMENT COUNTER
BNE LOOP ;LOOP UNTIL DONE
RTS PC ;RETURN
.END

Equivalent Assembly Language Subroutine

however, this is all right because FORTRAN conventions allow it. Register R5
is used to point to the argument list. Therefore 2(R5) and 4(R5) refer to the sec
ond and third locations of the list. These locations contain the addresses of the
arguments (S and A in the FORTRAN program). Since 2(R5) refers to the ad
dress of S, @2(R5) refers to the contents of S. Therefore, when the instruction
CLR @2(R5) is executed, the contents of S is cleared.

C o m m o n Blocks

The other method that FORTRAN programs can use to communicate is by
means of common blocks. If a main program and subroutine both contain the
statement

COMMON /WBLK/X,Y,Z

the X, Y, and Z refer to the same locations in the two programs,* and thus com
munication can take place without argument lists or arrays of addresses being
passed. The method operates by declaring the common block name as a global
name, and a special array is set aside that is large enough for the variables in the
common block. This space is set aside in each program, but the linker is de
signed to overlay blocks with the same global name. (That is, the common
blocks in the various programs are assigned to the same area of memory.) This
ensures that the programs all refer to the same locations.

Figure 9.11 shows the assembly language equivalent of the FORTRAN
C O M M O N statement. The .PSECT directive establishes that what follows is to
go in a particular program section. The name WBLK identifies the particular
section. The remaining five parameters indicate that the section (or block) is:

a. Read-write. The alternative is read-only, and has meaning only in systems
that have memory protection.

b . Data type as opposed to instruction type. Again this is meaningful only in
protected systems.

c. Relocatable as opposed to absolute. In assembly language, it is possible
to have absolute program sections, but in FORTRAN everything is
relocatable.

d. Global as opposed to local. If this section is to be accessible to other pro
gram modules, the name WBLK must be global.

e. Overlaid as opposed to concatenated. The X, Y, and Z in this block are to
occupy the same locations as the X, Y, and Z in blocks with the same name
in other programs. Concatenated sections would be placed one after
another and would use separate space.

*It is assumed that X, Y, and Z are declared consistently in both programs.

Figure 9.11 The Assembly Language Equivalent of a Common Block

INTEGER X , Y (2 5) ,Z
COMMON /WBLK/X,Y,Z

FORTRAN

.PSECT WBLKf RW,DAT,REL,GBL,OVR
X: .BLKW 1
Y: .BLKW 3 1 ;25 DECIMAL IS 3 1 OCTAL
Z: .BLKW 1

.PSECT
Equivalent Assembly Language

Although some of these options may be meaningless in your system (such
as a and b), they all must be specified. Error messages will result if the linker
finds conflicting attributes for program sections with the same name.

After the .PSECT line, a sequence of labeled .BLKW's is given for the
variables in the block. It is possible to use data generating lines (such as
.WORD). This would have the same effect as a FORTRAN BLOCK DATA
module. Locations in the block would have data loaded in them, but care would
have to be taken to avoid overwriting data specified in a different module. In
order to avoid this problem, FORTRAN prohibits the use of D A T A statements
for variables in common blocks, except in the BLOCK DATA module.

A block ends either when another .PSECT is encountered, or at the .END
at the end of the program. If a .PSECT has no argument, it indicates that
assembly is to go back to the regular program section. On the other hand, a
subsequent .PSECT could have arguments, indicating the definition of another
common block.

F O R T R A N Functions

The final subject in this section is FORTRAN function subprograms. From the
descriptions found in most FORTRAN handbooks, one could imagine that
function subprograms are entirely different from subroutine subprograms. In
fact, there is only one real difference. Functions return a single value that is
available for use in an expression. This value may occupy one word as for in
tegers, or it may occupy as many as four words for double-precision or complex
data types. These words are always returned in the general registers R0 -R3 .
Argument lists and common blocks for functions are implemented exactly the
same as for subroutines. Thus, we can see that the subroutine SUM of Figure
9.10 could be rewritten as a function as shown in Figure 9.12. Note that since
the function is of integer type and thus returns a 16-bit binary number, only
RO is needed for the result to be available to FORTRAN. The difference in
the FORTRAN main program would be that, instead of the statement
CALL SUM(S,A), there would be a statement such as S = ISUM(A).

Figure 9.12

INTEGER FUNCTION ISUM(A)
INTEGER A (1 0) , J
ISUM=0
DO 10 J = 1 , 1 0

ISUM=ISUM+A(J)
10 CONTINUE

RETURN
END

FORTRAN Function

.TITLE ISUM

.GLOBL ISUM

.MCALL .REGDEF

.REGDEF
ISUM: MOV 2(R5) ,R1 ;R1 GETS ADDRESS OF A

MOV #12,R2 ;R2 GETS COUNT
CLR R0 ; CLEAR SUM

LOOP: ADD (R1)+,R0 ;ADD A(J) TO SUM
DEC R2 ;DECREMENT COUNT
BNE LOOP ;LOOP UNTIL DONE
RTS PC ;RETURN
.END

Equivalent Assembly Language Subroutine

9.5 R E C U R S I V E S U B R O U T I N E S

In certain subdisciplines of computer science, such as language processing and
artificial intelligence, recursive subroutines are important . In brief, a recursive
subroutine is a subroutine that calls itself. Recursive subroutines developed
from recursive definitions used in mathematics.

As an example of a recursive definition, consider the factorial function.
An engineer might be content to define n factorial (or n!) as the product of the
integers from 1 through n. (0! = 1 would be considered a special case.)
However, while this definition is sufficient for computation, it is not in a very
usable form for mathematical proofs. A mathematician would prefer the
following definition:

0! = 1
n! = n * (n - l) ! i f n > 0

Definitions of this sort are amenable to use in a form of proof called
mathematical induction. Inductive proofs are gaining importance in computer
science for proving program correctness.

While FORTRAN and BASIC have no provision for recursive sub
routines, most of the newer higher-level languages allow them. For example
ALGOL, A P L , and PASCAL are among the languages that allow subroutine
subprograms or function subprograms to call themselves. Since none of these
languages, to date, have the popularity of FORTRAN, we have chosen to give
an artificial example in FORTRAN. Figure 9.13 shows what a recursive FOR
TRAN program would look like for computing factorials. Note that this pro
gram would be illegal in most FORTRAN systems.

Figure 9.13 Factorial Program

INTEGER FUNCTION FAC(N)
INTEGER N
FAC=1
IF (N.EQ.0) RETURN
FAC=N*FAC(N-1)
RETURN
END

Imagined Recursive Program

INTEGER FUNCTION FAC(N)
INTEGER N,J
FAC=1
IF (N.EQ.0) RETURN
DO 10 J = 1 ,N

FAC=FAC*J
10 CONTINUE

RETURN
END

Equivalent Conventional FORTRAN

The reason the recursive program in Figure 9.13 will not work in most
FORTRAN systems is that the system will fail to save all the necessary data
when the program calls itself. As a result, the subroutine will not be able to pick
up properly when it returns to itself. (Note that if a recursive program calls
itself, it must be able to return to itself. Note also that there must be an eventual
path through the subroutine to the original calling program. Otherwise, an
endless loop will result.)

Although FORTRAN may not allow recursive subroutines, the PDP-11
stack provides assembly language users with the most important tool for recur
sive programming. In order for recursive subroutines to work, required data
must be saved on a stack every time the routine calls itself. The data are then
removed from the stack when the routine returns to itself. Figure 9.14 shows
how a FORTRAN-callable factorial function could be written recursively in

Figure 9.14 Recursive Factorial Routine

.TITLE FACTORIAL ROUTINE

.GLOBL FAC

.GLOBL MUL

.MCALL .REGDEF

.REGDEF
FAC: MOV @2(R5) ,R0 ;GET VALUE OF N

BNE RECUR ;SKIP ON UNLESS ZERO
MOV #1,R0 ;ZER0 FACTORIAL IS 1
RTS PC

Figure 9.14 (continued)

RECUR: MOV R 0 , - (S P) ;SAVE N ON STACK
DEC R0 ;COMPUTE N-1
MOV R0,N ;SAVE IN N
MOV #LIST1,R5 ;GET PARAMETER LIST
JSR PC,FAC ;COMPUTE N-1 FACTORIAL
MOV R0,K ;K=N-1 FACTORIAL
MOV (S P) + , J ;J=N
MOV #LIST2,R5 ;GET PARAMETER LIST
JSR PC,MUL ;COMPUTE N*(N-1)FACTORIAL
RTS PC ;RETURN WITH RESULT IN RO

LIST1: .WORD 1 -.ARGUMENT ARRAY FOR FAC
.WORD N

LIST2: .WORD 2 ;ARGUMENT ARRAY FOR MUL
.WORD K
.WORD J

K: .BLKW 1
J : .BLKW 1
N: .BLKW 1

.END

assembly language. Note that this program has two pieces of necessary infor
mation that must be saved on the stack. One item is the argument value N, and
the other is the return address, which is, of course, automatically saved on the
stack. In order to avoid the problem of multiplication, this subroutine calls a
FORTRAN function MUL(K,J), which multiplies K and J and returns the 16-bit
product in register 0.

E X E R C I S E SET 2

1 Write a subroutine similar to SUMUP, shown in Figure 9.5 on page 204.
However, your program will have a second input argument giving the size of
the array to be summed. Then write a main program that reads 10 numbers,
prints them, and calls your subroutine to sum them up, and then does the
same with 20 numbers. Each subroutine including RNUM and PNUM (if
used) must be independently assembled as separate modules that are linked
together with global symbols. See exercise 4, page 206.

2 Write a program that reads in a variable number of numbers (up to 100),
sorts them, and prints out the sorted array. This program should be split in
to various, independently assembled subroutines for each of the major
functions. The separate subroutine modules should be linked using global
symbols. Array addresses, sizes, and so on, should be passed in the general
registers at each subroutine call. See exercise 5, page 206.

3 The following is a proposed method for generating positive random
numbers in the range 1-32767:

(a) Start with any positive integer in the range.
(b) For each generated number: (i) Shift the original number left

once, (ii) If the two high-order bits are both 1 or both 0, set the low-
order bit to 0. If one of the bits is 1 and the other is 0, set the low-order
bit to 1. In other words, the low-order bit becomes the exclusive OR of
the sign bit and bit 14 of the shifted number, (iii) Then clear the sign
bit to 0.

Write a FORTRAN-callable subroutine or function for generating such
pseudo-numbers. Test your subroutine by calling it several hundred times
and printing the results with a 1216 format. Can you think of any other
means of testing the randomness of these numbers? If so, incorporate them
into your program.

4 Write a FORTRAN-callable subroutine that is called by the FORTRAN
statement:

CALL LOCS(A)

where A is a three-location INTEGER*2 array. Your subroutine fills in A
with the following:

A(l) The memory address of the JSR instruction
that called LOCS

A(2) The location of the parameter list
A(3) The location of A itself

Write a FORTRAN main program that tests this subroutine. Verify its
results from loading maps, symbol tables, and so on, as best as you can.

5 A recursive function known as Ackermann's function is defined over the
nonnegative integer as follows:

A(0,n) = n + 1 for n > 0

A(m,0) = A(m - 1,1) f o r m > 0

A(m,n) = A[m - 1, A(m,n - 1)] for m and n > 0

Write a recursive subroutine in assembly language for computing Acker
mann ' s function.

6 Write a FORTRAN-callable function that calls the recursive Ackermann's
function of exercise 5 above, and test it with a main program that calls the
function for various values. (Warning: Do not use numbers larger than 3 for
the arguments.)

7 Write a sorting program such as described in exercise 2, above, except that:

(a) The input and output subroutines and main program should be written
in FORTAN.

(b) The sorting program should be in assembly language.

(c) All arguments should be passed by placing them in common blocks.

CHAPTER 10

MACROS AND
CONDITIONAL
ASSEMBLY

10.1 REPETITIVE BLOCKS OF C O D E

The Need for Assembly Time Repetition

Quite often while solving a problem employing assembly language, one finds
that large areas of a program are highly repetitive. Now the first reaction that
should come to mind is that loops and subroutines are used for avoiding repeti
tion. Although this is true, there are occasions when neither loops nor
subroutines are the best method. Following is a list of some possible reasons
why loops or subroutines may be undesirable on occasion:

1. Programs with loops and subroutines will run slower than programs with
equivalent repeated code. This is because loops needs extra instructions for
counting, indexing, testing exit conditions, and branching back. Similarly,
subroutines have to be called and returned from; arguments have to be
passed; and registers must be saved. On those few occasions when speed is
critical, subroutines and loops may need to be avoided (especially at the in
nermost nested levels of the program).

2 . Although there may be repetition in form, there may not be exact repeti
tion. Although this could be handled by a subroutine with a complex argu
ment structure, it often is not desirable. If the underlying process is very
simple, the overhead of passing arguments and calling a subroutine may in
volve more overall code than if the desired code were simply repeated.

3. Finally, the code that is repeated may be data rather than instructions.
Assume, for example, that an array is to be filled entirely with 5s. One way
to handle this would be with an initialization routine that stores 5s over the
array. Sometimes, however, initialization routines are inconvenient and it
is preferable just to assemble the array with the elements initialized to 5 by
repeating the directive .WORD 5 several times.

The preceding reasons are not intended to be exhaustive, but to give several
ideas why one would have repetitive parts of a program. It was this motivation
that led to the development of macro assemblers. As we shall see in this chapter,
the implementation of macros is so sophisticated that other uses will also
become apparent .

Repeat Blocks

The simplest form of repetition that assembly language deals with is the repeat
block. A repeat block is a block of code that is repeated verbatim over and over
again some number of times. An example of the need for this is the case given
before of an array filled with 5s. This could be assembled by placing a number
of .WORD 5 lines one after the other.

As a convenience to the user, the PDP-11 assembly language has a special
assembly directive for indicating repeats. The .REPT directive is used in the
following context:

.REPT Expression

Block of code

. ENDR

The block of code is repeated over and over, the number of times being given by
the value of the expression following the .REPT directive. Figure 10.1a shows
how a block of seven words containing the number 5 could be assembled using
the .REPT directive. Figure 10.1b shows the equivalent code. Note that

Figure 10.1 Use of Repeat Block

.REPT 7

.WORD 5

.ENDR

(a) Repeat Block

.WORD 5

.WORD 5

.WORD 5

.WORD 5

.WORD 5

.WORD 5

.WORD 5

(b) Equivalent Code

Sec. 10.1 Repetitive Blocks of Code 221

although this example has only one line between .REPT and .ENDR, there is no
definite limit* and any needed amount of code is acceptable.

Also note the fact that the lines in the repeat block are repeated without
change. There is no variability in the lines of text. That does not mean,
however, that there is no room for variability in the generated machine
language. Expressions and definitions can be used to produce variable results as
is shown in the following examples.

Repeat Blocks Using the Location Counter

Suppose that a programmer wished to create an array of 100 pairs of words.
The first word in each pair contains zero, while the second word contains the
address of the next pair of words. This arrangement of data is known as a singly
linked list and is often used for data that must be rearranged. To rearrange
data, one need only move several pointers or addresses. The data words
themselves are not moved.

Looking again at this structure, the array appears as:

0

Address

0

Address

0

Address

Clearly, there is a repetitive structure, but not exact repetition because each of
the addresses is different. In order to accomplish the preceding with repeat
blocks, we will use the special symbol • which is called the location counter. This
symbol is used in the PDP-11 assembly language to represent the location of the
line being assembled. Since this location keeps changing, the value of . keeps
changing. To use this, we note that the address of the next word in memory can
be designated by the expression . - I - 2. Using this, the linked list structure can be
generated as shown in Figure 10.2.

Figure 10.2 Linked List Structure

.REPT 144

.WORD 0

.WORD .+2

.ENDR

T h e only limit would be that the assembler's storage capability would eventually fill up.

Repeat Blocks with Other Symbols

Although it is often possible to represent variable data in terms of complex ex
pressions involving the . symbol, it is sometimes quite difficult or impossible. In
such cases, another method of defining variable data may prove useful. This
method involves definition of symbols using the = symbol. We have already
used = to define register symbols in the form R0 = °/o0. However, as was shown
in the optional section on page 182, addresses can be assigned with = as
PRS = 177564. For the most part defining symbols with = and : are
synonymous. There is, however, one important difference. If a symbol is de
fined more than once using : , it is the multiple-definition error and the pro
gram will be flagged with error messages. On the other hand, symbols defined
with = may be redefined with a subsequent = . These definitions are repeated
on both passes of assembly, and the symbol will take on a new value after its
redefinition for the remaining lines of program.

Figure 10.3 shows how the list structure of Figure 10.2 could be im
plemented by redefining symbols with = rather than using the . symbol. While
this particular example may seem somewhat more complex, it has the advan
tage of more generality. Consider, for example, the problem of filling an array
of eight locations with the values of the factorials of 1 through 8. Redefinition
in a repeat block gives a simple, straightforward method for generating such an
array (see Figure 10.4).

Figure 10.3 Linked List with Redefined Symbols

K = 0
A: .REPT 144

.WORD 0
K=K+4

.WORD A+K

.ENDR

K=0
A: .WORD 0
K=K+4

.WORD A+K

.WORD 0
K=K+4

.WORD A+K

.WORD 0
K=K+4

.WORD A+K

A: .WORD 0
.WORD A+4
.WORD 0
.WORD A+10
.WORD 0
.WORD A+14

Repeat Block Equivalent of Repeat Block Equivalent With K Evaluated

Figure 10.4 An Array of Factorials

K = 1
F = 1

.REPT 10

.WORD F
K=K+1
F=F*K

Note the fact that neither K nor F is a location or even the name of a loca
tion. They are simply symbols that are assigned numeric values in the symbol
table. They are not used as the address of an instruction or piece of data.

10.2 SYMBOLIC E X P R E S S I O N S

Review of Expressions

In previous chapters, symbolic expressions have been used in a simple form.
Usually these expressions have been limited to something of the form A - 6 or
A + 6, meaning the address six locations before or after A. When dealing with
repeat blocks, macros, and conditional assembly, much more complexity is
needed to give more power in expressions. For one thing, we should note that
symbols need not be used exclusively for addresses. Symbolic names can be
used for numbers that can be used for any purpose.

The assembly language programmer must be extremely careful to under
stand the relationships between the assembly process itself and program execu
tion. For example, the line of assembly code K = K + 1 does not cause the
register K to be incremented at execution time. In fact, it does not even cause
the generation of any executable machine language code. What it does do is to
cause the entry for K in the assembler's symbol table to be incremented. Do not
confuse K = K + 1 with INC K. They are entirely different statements.

It is also important to note that there is a difference between symbols used
for addresses in a program and symbols used for numbers. The symbols used
for addresses in a program have values that must be changed when the program
is relocated to an execution area. The values of symbols used for numbers do
not change during relocation. Likewise, symbols used for absolute addresses do
not change when the program is moved. Symbols in the symbol table are distin
guished as being relocatable or absolute. (A third kind of symbol is the global
symbol, but since global symbols are usually used in simple expressions where a
number is, in effect, added or subtracted, they will not be considered further in
this section.)

Rules for Forming Expressions

Expressions can be used in assembly language almost anywhere that a number
or value is required. Expressions are formed by combining symbols and
numbers with the operators + , - , *, and / almost as in FORTRAN or BASIC.
Parentheses can be used except that < and > are used for left and right paren
theses. It is extremely important to note that there is no operator precedence.
Expressions are evaluated from left to right, with parentheses having their usual
effect. For example, X + Y * < A + < 5 * B / K > > would be an acceptable ex-

pression. Because of the left-to-right evaluation, the expression 1 +2*3 will be
equal to 9, not 7. (The assemblers for some computers do not follow this rule.)

Just as symbols have types, expressions will have those same types. Rather
than enumerate an exhaustive set of rules for determining the types of expres
sions, the following is a set of commonsense guidelines that will handle all but
the most unusual cases : !

1. The expression must evaluate to something that could be entered in the
symbol table. Thus, it should be one of the following:

a. A number, or an absolute address.

b . An address of a location within the program, or a location that is
displaced a fixed amount from a location in the program, for example,
the location 100 bytes beyond the end of your program.

c. A global address plus or minus a fixed number.

2. An expression composed entirely of numbers and absolute symbols will be
absolute.

3. A relocatable symbol plus or minus an absolute value will be a relocatable
expression. The reason is because a location that is a fixed amount from
some location in a program will move (and therefore have to be relocated)
as the program is moved.

4. The difference between two relocatable symbols is absolute. The reason is
because the difference between two addresses is the number of locations
between those two addresses. If both are relocatable, then both will move
the same amount as the program is moved. Therefore, the number of loca
tions between them will remain fixed.

5. The preceding rules can, of course, apply to the subexpressions of a com
plex expression. In addition, there are two rules that apply to the use of
multiplication and division:

6. With multiplication, at least one operand should be absolute. Then the
multiplication can be thought of as repeated addition. For example, if
A, B, and C are relocatable, consider the following expression:
< 3*A > - < 2*B > - C. This could be rewritten a s : A + A + A - B - B - C ,
which is equivalent to A - B + A - B + A - C . Note that each subex
pression is the difference between two relocatables and is therefore ab
solute. Therefore, the entire expression is absolute.

7. With division, both operands should be absolute. It is hard to imagine
anything else making sense. However, this does not preclude the use of
division in complex expressions that involve relocatable parts. For exam
ple, if the difference between two addresses were desired in words rather
than bytes, the following expression would work: < A - B > / 2 . Note that
this is really the quotient of two absolute subexpressions (assuming that A

t Some versions of the assembler issue error messages for complex expressions. Other
versions pass the expression to the linker for evaluation.

and B are relocatable). Also note that the preceding expression is preferable
to the seemingly equivalent < A / 2 > - < B/2 > . Although this expression
may work on the PDP-11 with its propensity for even addresses, it may give
problems with divisors other than 2.

A n Example Using Expressions

The use of expressions and symbols that are numbers is important for ordinary
assembly language programming because it gives the programmer the ability
to modify the program easily. For example, consider a program that prints out
a message and surrounds the message with three layers of asterisks such as:

Obviously, this must be a very important message. Figure 10.5 illustrates a
subroutine for printing this message.

By using symbols and expressions, modifications can be made to the pro
gram quite easily. For example, if the message were to be surrounded by five
layers of boxes instead of three, all that would need to change is the sixth line of
the program, which would now state BOXES = 5. If the asterisks were to be
changed to at signs, the fifth line of the program could be changed to read
MARK = 100. (Octal 100 is the ASCII code for @.)

The Effect of T w o Assembly Passes

A final consideration involved with expressions and the use of expressions con
cerns the order in which symbols are defined and used. Recall that two passes
are needed in the assembly process because an instruction may refer to a sym
bolic address that is defined later on in the program. There are, however, cases
where a value must be known on the first pass. In such cases, the symbols used
in expressions for such a value must have been previously defined.

Essentially, since the symbol table is generated in the first pass, any sym
bols that affect the values in the symbol table must have been defined before
being used. A simple example of such a case is the direct definition case, which
will usually result in an error. For example:

A=B
B=5

will leave A undefined at the end of the first pass, and during much of the
second pass. Clearly, this problem could easily be fixed by exchanging the two
lines.

Figure 10.5 Message-Printing Subroutine

; SUBROUTINE MPRINT TO PRINT A MESSAGE SURROUNDED BY BOXES

.TITLE MESSAGE PRINT

.MCALL .REGDEF,.TTYOUT

.REGDEF

.GLOBL MPRINT
MARK=52
BOXES=3
CR=15
LF = 12
MPRINT: JSR PC.HORIZ ;PRINT HORIZONTAL STRIPES

MOV #BOXES, R1 ; PR INT MARKS AT
HLOOP: .TTYOUT #MARK ;THE BEGINNING OF THE

DEC R1 ;MESSAGE
BNE HLOOP
MOV #MSG,R1 ;PRINT THE MESSAGE

MLOOP: MOVB (R1)+,R0 ;ZERO BYTE INDICATES
BEQ TPNT ;THE END
.TTYOUT
BR MLOOP

TPNT: MOV #BOXES, R1 ;PRINT MARKS AT
TLOOP: .TTYOUT #MARK ;THE END OF THE MESSAGE

DEC R1
BNE TLOOP
.TTYOUT #CR ;PRINT CARRIAGE RETURN
.TTYOUT #LF ;LINE FEED
JSR PC,HORIZ ;PRINT HORIZONTAL STRIPES
RTS PC ;RETURN

HORIZ: MOV #BOXES, R1 ;GET NUMBER OF LINES
HLOOP1: MOV #EMSG-MSG-1+<2*BOXES>,R2 ;GET LENGTH OF LINES
HL00P2: .TTYOUT #MARK ; PR INT MARK

DEC R2 ;LOOP OVER LENGTH
BNE HLOOP2
.TTYOUT #CR ;PRINT CARRIAGE RETURN
.TTYOUT #LF ;LINE FEED
DEC R1 ;LOOP OVER NUMBER
BNE HLOOP1 ;OF LINE
RTS PC ;RETURN

MSG: .ASCIZ /THIS IS A MESSAGE!/
EMSG: ;THIS LINE JUST DEFINES EMSG

.END

A more complex problem arises when an expression is used in a way that
affects the size of the program. If such an expression contains undefined sym-

Exercise Set 1 227

bols, it will adversely affect all subsequent addresses for the remainder of the
program. For example:

Since A is undefined on the first pass, the assembler will not know how many
words to set aside for the array X. For lack of anything better to do , the
assembler uses 0 for undefined symbols. Therefore, the address Y will be the
same as the address X. However, on the second pass, A is defined as 5 so the ad
dress Y will come out to be 12 (octal) greater than the address X. This
discrepancy will be flagged with a P for a phase error.

Sometimes these errors can be rather subtle. For example, R l is not nor
mally defined until the macro .REGDEF is called.* This call must be done early
in the program text. Otherwise, consider a simple instruction such as CLR R l .
If .REGDEF had not been called until later in the program, R l would be as
sumed to be an address and CLR Rl would be assembled as a two-word instruc
tion in pass 1. All subsequent labels in the symbol table would be defined on this
basis. Later, however, when we come back to the CLR Rl on pass 2, R l has
been defined as register 1 or % 1. The assembler thus assembles a one-word in
struction and all the following label definitions will be wrong by one word,
resulting in numerous phase errors. Note, however, that neither the CLR Rl
nor the .REGDEF line is flagged with errors. The phase errors are flagged on
the ' ' innocent ' ' label definitions that follow. This is because the assembler does
not know that anything bad has happened until it sees a label definition that is
different on the two passes.

1 Show how the following repeat blocks would assemble in machine lan
guage. Assume that they are loaded at location 1200.

X: .BLKW A
Y: .BLKW 1
A=5

E X E R C I S E SET 1

(a) .REPT 5
.WORD .+5
.ENDR

(b) .REPT 7
.WORD 5
.WORD . - 2
.ENDR

•Some of the newer assemblers automatically define the eight register names, but we
could turn the automatic definition off for the example with the directive .DSABL REG.

(c) K=0
. REPT 4

K - K + 2
.WORD ,+K
.ENDR

(d) K=0
.REPT 5

KrK+1
.REPT K
.WORD K*3
.ENDR
.ENDR

2 Write a repeat block that generates an array of 100 words labeled NUMBS.
This array should be set to contain the numbers 1 through 100.
(a) Do the problem using . expressions.

(b) Do the problem using symbol redefinition with = .

3 Assume that 1 = 2 , J = 3 , and K = 5 are defined values for the assembly
language symbols, I, J, and K. What are the values of the following expres
sions in octal?

(a) I*J+K (b) I+J*K

(c) J / I + 2 (d) I+J/K

(e) I+<J*K>/K (f) I + «J*K>+K>

(g) I + J * < I + J > (h) < I + J > » I + J

4 Assume that A, B, and C are relocatable symbols (that is, labels that refer to
locations in the program). Also, I, J, and K are absolute symbols (that is,
symbols that refer to fixed numbers). Which of the following expressions
are absolute, relocatable, or neither?
(a) A+I (b) B-K

(c) A-B (d) A+B

(e) A+K-B (0 <A-B>+<A-C>

(g) <A-K>+<A-J> (h) <A+K>+<<B-C>*4>

5 The following program produces a number of phase errors due to improper
order of definitions. Indicate which statements are misplaced, and which
statements would be flagged with phase errors. {Note: Even though this is
not a program in that there are no executable lines, reordering the
statements could cause it to assemble without error.)

1=3
A: .BLKW K
B: .BLKW D-C
C: .BLKW I
D: .BLKW K+I
K=J
J = I+5

.END
6 Reorder the statements in the program in exercise 5, so that there are no

assembly errors.

10.3 M A C R O S

A Simple Macro

Macros are complex blocks of assembly language that can be repeated a number
of times in a program. Unlike repeat blocks, the repeated code generated by a
macro need not all be in one place but may be placed at various points in the
program. Also unlike repeat blocks, macros allow considerable variability to
the repeated blocks. It must be noted that macros are also useful in other con
texts.

Essentially, macros are named blocks of code. Anywhere the name is used
in the operation field, the block of code will be inserted in (copied in) the pro
gram. In addition, there may be parameters, or symbols, that are modified or
substituted for each time the macro is invoked, or called. As an example, let us
consider a program that very frequently adds two numbers together and stores
the result somewhere, as would happen in FORTRAN or BASIC with the state
ment A = B + C or LET A = B + C.

In PDP-11 assembly language, this simply requires two lines of code:

MOV B,A
ADD C,A

In order to use this as a macro, we must first create a macro name and names for
the parameters (substitutable symbols). Let us use the name SUM for the macro
and A, B, and C for the parameter names. Any symbol names are usable so long
as they are not confused with any other symbols in the program. For example, it
would not usually be a good idea to name a macro MOV or A D D .

After the names are chosen, we must then define the macro. This starts out
with the directive .MACRO SUM,A,B,C and is followed by the lines of code to
be generated each time the macro is called. Finally, the directive .ENDM is used
to signal the end of the macro definition. Figure 10.6 shows the full macro
definition.

Figure 10.6 Simple Macro Definition

.MACRO SUM,A,B,C
MOV B, A
ADD C,A
. ENDM

Macro Definition versus Macro Expansion

Note that the macro definition itself does not cause any code to be placed in the
program. It is when the macro is called that code is generated. The macro call
consists of the name of the macro used as if it were an op code followed by the
arguments to be substituted for the parameters. Figure 10.7 shows a number of

Figure 10.7 Simple Macro Calls and Expansion

(a) SUM X,Y,Z MOV Y,X
ADD Z fX

(b)SUM A,B,C MOV B,A
ADD C,A

(c)SUM PRICE, COST, PROFIT MOV COST, PRICE
ADD PROFIT,PRICE

(d)SUM X + 6 , R 0 # 1 0 MOV R0,X+6
ADD #10,X+6

Macro Call Generated Code

examples of macro calls along with the effective generated code. Example (a) in
Figure 10.7 shows a simple straightforward macro call, where the symbols X,
Y, and Z are to be substituted for A, B, and C. In example (b), A, B, and C are
substituted for themselves, which causes no confusion.

In example (c), PRICE, COST, and PROFIT are substituted for A, B, and
C, showing that the number of characters substituted need not be the same as in
the parameter name. A key point here is that character strings are substituted,
not addresses. It would be improper to say that the address of PRICE is
substituted for the address of A. In fact, the symbol A may never even be used
as an address. What happens is that the macro processor replaces all of the
substitutable parameters with the argument character strings. The resulting
code is then processed by the assembler as normal assembly language.

Example (d) shows how this operates. Here, the character strings X + 6,
RO, and #10 are substituted for A, B, and C. Note here that RO and #10 are not
addresses. However, the generated code is correct assembly language and
would be translated correctly into machine language.

Macro Parameters in Other Fields

It is important to understand that when macros are called, they are expanded by
replacing the parameter occurrences with the argument character strings. It
should be noted that parameters can occur anywhere within the macro defini
tion and are identified by the use of the name surrounded by punctuation of
some sort. Figure 10.8 shows a macro definition and expansion that illustrates
how various fields can be substituted.

First, note that the lines of code in the macro definition do not constitute
correct assembly code by themselves. The first line contains DEF in the op code
field, which is not a legal PDP-11 instruction. However, DEF is a substitutable
parameter, and in the macro expansion, DEF does not occur but is replaced
with CLR, which is a legal PDP-11 op code.

Figure 10.8 A Macro with Various Substitutable Parts

.MACRO TEST,ABC f DEF,HIJ
ABC: DEF HIJ

INC HIJ
. ENDM

(a) Definition

TEST LOOP1,CLR.COUNT
(b) Macro Call

LOOP1: CLR COUNT
INC COUNT
(c) Macro Expansion

Another point this example shows is that labels can be substitutable. In
fact, it is almost always necessary for a label that appears in a macro definition
to be a substitutable parameter. Suppose that ABC were not substitutable; then
if the macro were called two or more times, ABC would appear as a label more
than once, and would result in a multiple-definition error. There are features
for dealing with labels that help solve some of these problems; however, their
discussion is beyond the scope of this chapter.

The basic purpose of macros in assembly language is to allow the program
mer to extend the language and to create new languages. A simple example of
this would be the problem created by a programmer who forgot that there is no
add byte instruction in the PDP-11 . Imagine that this programmer wrote a large
program with many add byte instructions. One solution would be to write an
add byte macro as shown in Figure 10.9. This instruction could then be used
almost as if it were an instruction in the machine. One slight problem is that
T E M P I and TEMP2 must be set aside somewhere as locations in the program.
Also, th i s ' ' ins t ruc t ion ' ' does have a large number of words. It should be clear
that there is room for improvement in this macro example. This is left as an ex
ercise for the reader.

Figure 10.9 The ADDB Macro

.MACRO ADDB, X, Y
MOVB X,TEMP2
MOVB Y,TEMP1
ADD TEMP2,TEMPI
MOVB TEMP1,Y
. ENDM

When you write a macro such as ADDB, in effect you are creating a new
and more powerful machine, one that has an ADDB instruction. In fact,
sometimes programmers use macros to generate an assembly language for an
entirely different machine. Each instruction on the other machine is trans-

formed into a macro that either creates machine language for the other
machine, or creates PDP-11 code that simulates the other machine. This could
help solve the problem of assembling the first assembly language translator for
a newly designed computer.

10.4 C O N D I T I O N A L A S S E M B L Y

Definition of Conditional Assembly

Often, especially in large programs, there may be portions of code that are
sometimes needed and sometimes not needed. Examples include:

a. Portions of a program needed for debugging and not needed when the pro
gram is running.

b . Macros and subroutines for multiplication, division, and so on which are
not needed with PDP -11's that have an extended instruction set.

c. Code that is needed to support optional computer features.

Code that is not needed can be removed from the program to save memory.
However, it is not necessarily an easy task to remove code from a program.
Editing out areas of a large program or pulling cards from a deck are risky
propositions at best. There is always the chance of removing too much, or of
removing the wrong things. It is also difficult to go back to the original code if
you change your mind. Conditional assembly is a method for dealing with these
problems.

Conditional assembly allows a certain identified block of code in a pro
gram to be included or to be ignored by the assembler. The block of code is
called a conditional block, and is delimited by two assembly directives. The
beginning of the block is marked by .IF and the end by .ENDC . The .IF direc
tive includes a description of a logical condition. If the condition is true, the
code in the conditional block is assembled into the program. Otherwise, the en
tire block is skipped over as if it did not exist.

Example of Conditional Assembly

Figure 10.10 shows a simple example of a conditional block. The value of the
symbol TEST determines whether or not the block of code is assembled. If
TEST is not equal to 0, then the code is assembled. Otherwise it is skipped over.

Of special note is the fact that the block of code contains the definition of
the label XCODE. Consequently, if this block of code is skipped over,
references to the symbol XCODE would result in an error flag for an undefined
symbol. To prevent this, it would be necessary either to:

Sec. 10.4 Conditional Assembly 233
Figure 10.10 Conditional Block

. I F NE,TEST
MOV X,Y

XCODE: INC R0
ADD W,R1
.ENDC

1. include all references to XCODE in conditional blocks that are skipped
when TEST equals 0, or

2. include an alternative definition for XCODE that is included when TEST
equals 0.

Also note that this conditional block generates machine instructions and
therefore affects the location counter. Therefore, the symbol TEST must be
defined earlier in the program. Usually symbols that control conditional blocks
are defined with = early in the program where they can be easily accessed for
modification.

Figure 10.10 uses the relational operator NE for not equal. As would be ex
pected, the six arithmetic relations EQ, NE, LE, LT, GE, and GT (for equal,
not equal, less than or equal, less than, greater than or equal, and greater than)
are all usable. They all compare their argument expression with zero. The syn
tax is .IF relation,expression. For example, .IF GE,X-5 will skip over code
unless the value of the expression X-5 is greater than or equal to zero.

Other Conditional Assembly Codes

In addition to the preceding arithmetic conditions, there are six symbolic condi
tions. These are as follows:

1. DF—defined. The condition is true, if the argument is a defined symbol.
For example, .IF DF,XYZW will generate code if XYZW is a defined sym
bol in the symbol table. Note a danger here—if XYZW is later defined in
pass 1, it will be defined for all of pass 2.

2. NDF—not defined. This is the opposite of DF.

3. B—blank. The condition is true if the following macro parameter is
substituted with blanks. For example, consider the following macro:

.MACRO BLANK,X,Y,Z

. I F B,Y

.WORD X,Z

.ENDC

.ENDM

The macro call BLANK 5,ABC,6 will generate no code, whereas
BLANK 5,,6 will generate two words of code.

4. NB—not blank. This is the opposite of B.

5. IDN—identical. This condition code is true if the following two macro
type arguments are identical character strings after macro parameter
substitution.

6. DIF—different. This is the opposite of IDN.

Clearly, the last four conditional assembly codes are only usable within a
macro definition. In fact, one of the main uses of conditional assembly is within
macros. Conditional assembly can be used to control the lines of code that are
assembled depending upon argument values, or even upon the number of times
the macro is called. As an example, consider a macro that prints out messages.
The first time that the macro is called, a subroutine for printing the message
must be generated. The subsequent uses of the macro simply generate subrou
tine calls. Figure 10.11 shows a macro that will generate code to accomplish
this. The macro is called by MESG #STRING where STRING is the label of
.ASCIZ message string.

10.5 N E S T I N G A N D RECURSION

Without exploring the subject in depth, we can note that conditional blocks can
be nested within other conditional blocks, and macro definitions can appear
within macros. The . IF—.ENDC and .MACRO—.ENDM directives must
occur in pairs like parentheses. This allows complex structures for multiple
decisions and for macros that define other macros when called.

Also note that macro expansions can call other macros. For example, the
macro of Figure 10.11 uses the macro .TTYOUT. This causes no problem
because after expansion, control is returned to the assembler proper which may
encounter additional macro calls. This produces additional generated code that
is simply added to whatever is already there.

An interesting point here is that a macro may call itself. This forms a kind
of loop where the macro is expanded repeatedly. However, as in normal pro
gramming loops, there must be a way to end the loop. Thus, if a macro does call
itself, that call must be within a conditional block which eventually is skipped
over. Macros of this sort are called recursive macros, since they behave in much
the same way as recursive subroutines which were described in Chapter 9.
Figure 10.12 shows a recursive macro for generating a table of numbers from 1
through N by calling the macro TABLE N. Note that TABLE calls the macro
TAB, which is the recursive macro. In the .IF line, N is enclosed by parentheses
because it might be replaced by an expression. Because of limitations on nesting
depth, this macro may not work if N is very large. The current RT-11 assembler
will not allow N to be greater than 17 octal.

Sec. 10.5 Nesting and Recursion 235

Figure 10.11 A Macro Employing Conditional Assembly

; MACRO TO PRINT A MESSAGE

MESGI=0
.MACRO MESG,X
MOV R 0 , - (S P) ;SAVE RO
MOV R 1 , - (S P) ;AND R1
MOV X,R1 ;GET ADDRESS OF MESSAGE
JSR PC.MESGS ;PR INT MESSAGE
MOV (SP)+,R1 ;RESTORE R1
MOV (SP)+,R0 ;AND RO
. I F EQ,MESGI ;FIRST USE?

MESGI = 1 ;YES BUT DON *T USE AGAIN
.MCALL .TTYOUT ;GET .TTYOUT MACRO
BR MESGE ;SKIP OVER SUBROUTINE

MESGS: MOVB (R1)+,R0 ;GET CHARACTER
BEQ MESGD ;DONE?
.TTYOUT ;NO PRINT RO
BR MESGS ;AND LOOP

MESGD: .TTYOUT#15 ;OUTPUT CR
.TTYOUT#12 ;AND LF
RTS PC ;AND RETURN

MESGE: ;SKIP AROUND ADDRESS
.ENDC ;END OF CONDITIONAL BLOCK
.ENDM ;END OF MACRO

Figure 10.12 A Recursive Macro

; MACRO FOR GENERATING A TABLE OF CONSECUTIVE NUMBERS

.MACRO TABLE,N
TABK=1 INITIALIZE TABK

TAB N ;START PROCESS
.ENDM

; RECURSIVE MACRO TO BE USED BY TABLE

.MACRO TAB,N

. I F LE,TABK-<N> ;HAVE WE GENERATED ENOUGH

.WORD TABK ;NO, PRODUCE WORD
TABK=TABK+1 ;INCREMENT TABK

TAB N ;GENERATE MORE
.ENDC
.ENDM

E X E R C I S E SET 2

1 Given the following macro definitions:

.MACRO ORD A,B
MOV A,B
CLR A
SUB B,A
.ENDM
.MACRO SPEC A,B,C
MOV #A , AA
B A,C
CLRB C+6
.ENDM

show the assembly language expansions resulting from the following
macro calls:

(a) ORD SUM ,TOTAL

(c) ORD A(R0),B

(e) SPEC XMAX,MOV,W

(g) SPEC X,ORD, 1000

(b) ORD R0,(R1)+

(d) ORD B,A

(0 SPEC 1000,ADD,C+6
(h) SPEC B,ORD,A

2 Assuming that the symbols A and B are defined as A = 5 and B = 7, what
code, if any, is assembled by the following conditional assemblies?

(a) . I F EQ,A-3
MOV X,Y
.ENDC

(c) . I F GT,B
MOV R,R0
.ENDC

(b) . I F NE,A-3
MOV #3,W
.ENDC

(d) C=0
. I F LT,B-4

C = 1
.ENDC
. I F Q,C
MOV H,Q
.ENDC

(e) C=0
. I F EQ.B

C = 1
. I F EQ,C
MOV U,V
.ENDC
MOV L,M
.ENDC

(f) C=0
. I F NE,B

C = 1
. I F EQ,C-1
MOV I , J
.ENDC
MOV G,F
.ENDC

3 Write a macro that saves the contents of general registers R0 through R5
on the stack.

Exercise Set 2 237

4 Write a macro called SAVER that saves the contents of registers RO
through Rn on the stack, where n is determined from a macro parameter.
For example, SAVER 3 would save registers RO through R3. Hint: Use a
repeat block in the macro. Also, note that registers can be designated by a
percent sign followed by an expression, for example, %5-3 means R2.

5 Rewrite the macro SUM A,B,C shown in Figure 10.6 on page 229. The
modified macro should use conditional assembly to take advantage of the
fact that a simpler expansion can result if the computation is:

(a) SUM A, A, C (MOV is not necessary)

(b) SUM A, B, #1 (INC can be used instead of ADD)

*6 Rewrite the ADDB macro in Figure 10.9 on page 231 so that it is more effi
cient or improved in each or a combination of the following ways. If no im
provement can be made, say so. Which criteria contradict each other?

(a) The macro expansion should have as few words as possible in line in
the code.

(b) Overall memory use should be reduced assuming many calls.

(c) The execution of the macro should be as fast as possible.

(d) The condition codes should have the values that a real ADDB instruc
tion would have when finished.

(e) The program should not destroy the contents of general registers, but
should work right when the arguments are general registers.

*7 Imagine that there is a simple computer with an architecture similar to the
PDP-11 in that it has a memory of 16-bit two's complement words.
However, it only has one general register called " the accumulator . ' ' All
operations must operate through the accumulator and there are 10 instruc
tions, as follows:

LDA M Load memory location M into the accumulator.

STA M Store the accumulator into location M.

ADDA M Add the contents of M to the accumulator.

SUBA M Subtract the contents of M from the accumulator.

JUMP M Jump to location M.

JMI M Jump to location M if the accumulator is negative.

JZ M Jump to location M if the accumulator is 0.

READ Read a number into the accumulator.

PRINT Print out the value of the accumulator.

STOP Stop execution.

The following program prints out the first 10 powers of two by computing
2X as X + X:

.TITLE HYPOTHETICAL COMPUTER PROGRAM
START: LDA MTEN ;INITIALIZE COUNT TO

STA COUNT ;NEGATIVE 10
LDA ONE ;INITIALIZE POWER
STA POWER

LOOP: LDA POWER ;MULTIPLY POWER BY TWO
. ADDA POWER

STA POWER
PRINT ;PRINT POWER
LDA COUNT ;INDEX COUNT
ADDA ONE
STA COUNT
JMI LOOP ;LOOP WHILE NEGATIVE
STOP ;AND THEN STOP

MTEN: .WORD - 1 2 ;INITIAL VALUE OF COUNT
ONE: .WORD 1 ;THE CONSTANT ONE
COUNT: .BLKW 1 ;VARIABLE DATA AREA
POWER: .BLKW 1

.END START

Write a set of macros that simulates this hypothetical machine by replacing
each instruction with PDP-11 instructions that have an equivalent effect.
Test your macros with the sample program.

*8 Write a hypothetical machine program as described in exercise 7 that reads
two signed numbers and multiplies them together producing a signed result.
Is it possible to make your program efficient even though there is no shift
instruction? Test your program with the macros you wrote for exercise 7.

CHAPTER 11

INPUT AND OUTPUT

11.1 I N T R O D U C T I O N

Chapter 8 described simple methods for reading and for printing alphabetic in
formation. This chapter explains the input and output operations in greater
detail. There are great differences in speed between the processor and memory
on one hand and the input and output devices on the other. The processor and
memory are all-electronic devices that can perform hundreds of thousands or
millions of operations per second. In contrast, most input and output opera
tions involve mechanical motion of some kind. As a result, input /output
devices typically perform only tens or hundreds of operations per second. The
problem is to find a satisfactory way of connecting the very fast processor to the
comparatively slow input /output devices.

11.2 D E V I C E P O L L I N G

Definitions

The simplest method of communicating with an input or output device is called
device polling. The processor directs the input /output device to perform a sim
ple operation, such as printing a single ASCII character. The processor then

repeatedly asks the device, 4 'Have you finished printing the character? ' ' On
some devices, printing a single ASCII character will require one-thirtieth of a
second. As a result, the processor may ask " H a v e you finished?" thousands of
times before the device finally responds " Y e s . " At this point, the processor
can ask the device to print a second ASCII character. The following sections
describe device polling in greater detail.

Address Assignments

In order to perform input or output, the processor needs some method of
transferring information between itself and the input /output devices. On the
PDP-11 computer, this is accomplished by assigning each input /output device
one or more addresses, as if they were memory cells. This is called memory
mapped input/output.

Consider the computer system shown in Figure 11.1. This system consists
of a processor, 20,000 (octal) bytes of memory, and a teletypewriter terminal.
Notice that an ASCII terminal is really two different devices. The keyboard is
an input device while the printing mechanism is an output device. Unlike a
typewriter, there is no direct connection between the keyboard and the printing
mechanism. It is quite possible to type at the keyboard and have nothing
printed.

As Figure 11.1 indicates, addressable memory locations 177560 and
177562 are registers that control the use of the keyboard while addressable
memory locations 177564 and 177566 control the printer. The processor does
not distinguish between normal memory cells and the special memory cells con
trolled by the input /output devices. In performing a fetch, for example, the
processor in Figure 11.1 sends out an address and waits for something to re
spond with the contents of the addressed location. If the (word) address is be
tween 000000 and 017776, memory sends back the contents. If the address is
177560 or 177562, the keyboard controller responds, while if the address is

Figure 11.1 A Small Computer System

177564 or 177566, the printing mechanism controller responds. (In our exam
ple, any other address would result in an addressing error.)

Each input or output device has its own standard addresses. On virtually
any PDP-11 , for example, the operator 's keyboard is controlled through ad
dresses 177560 and 177562. The assignment of addresses to a particular
input /output device is a fairly arbitrary decision that was made by the people
who designed the PDP-11 and in fact can be changed by the user. However, the
following convention was observed: Word addresses between 000000 and
157776 (167776 for the LSI-11) are normal memory addresses, while word ad
dresses from 160000 (170000) to 177776 are used for input /output devices and
other special purposes.*

The Keyboard Buffer

As previously noted, the console keyboard controls memory cells 177560 and
177562. Memory cell 177562 is called the keyboard buffer. The low-order seven
bits in the keyboard buffer contain the ASCII code for the key that was most
recently struck on the keyboard. For example, if the C key were pressed most
recently, the keyboard buffer would contain the following:

Note that the ASCII code for the capital letter C, which is 103 in octal or
1000011 in binary, occupies bit positions 0 through 6. Bits 7 through 15 are la
beled with question marks to indicate that their settings are unpredictable. On
most PDP-11 systems, bit 7 will be set to a 1, while bits 8 through 15 will be set
to 0. However, it is better programming practice and safer to make no assump
tions about the setting of these bits.

Reading characters from the keyboard buffer is quite simple. For example,
the following statements will branch to statement C A P Z if the most recently
struck key was uppercase Z.

MOV 177562,R4
BIC #177600.R4
CMP R4,#132
BEQ CAPZ

After the character is moved to register 4, the bit clear instruction is used to set
the 9 high-order (garbage) bits to 0:

*Larger PDP-11 computers can have an option called memory management. This allows
a much larger memory address space for the machine. As a result, much of the literature
uses 18-bit addresses to specify the device addresses, and shows them as 777560, 777562,
and so on. For smaller machines, the upper two bits can be ignored.

ASCII character

Contents of R4 before BIC
Mask 177600 in binary
Contents of R4 after BIC

? ? ? ? ? ? ? ? ? a a a a a a a

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
O O O O O O O O O a a a a a a a

While it is legal assembly language to use numeric addresses in an instruc
tion such as MOV 177562,R4 it is poor programming style. It is preferable to
define symbols for addresses and more complicated constants as shown in the
previous chapter. Accordingly, the preceding example can be rewritten as
follows:

MASK=177600
KBB=177562

MOV KBB.R4
BIC #MASK, R4
CMP R4,#132
BEQ CAPZ

Using symbols significantly reduces errors. In addition, although device
addresses are fixed for a given computer, they may vary from one machine to
another. If your program is to be run on another PDP-11 , modification is much
easier, since only the line KBB = 177562 would need to be changed, whereas
there might be many references to the keyboard buffer.

The keyboard buffer is quite different from normal memory cells. First,
the contents of the buffer changes when the key is pressed. Secondly, the buffer
is a read-only memory cell that ignores store requests. That is, an instruction
such as CLR 177562 has no effect on the contents of the buffer. As a result, the
following instructions will not achieve the desired result because the BIC in
struction will not set the high-order bits to 0:

MASK=177600
KBB=177562

BIC #MASK, KBB
CMP KBB,#132
BEQ CAPZ

A MOVB instruction can be used to move a character from the buffer to a
byte in memory. Byte 177562 contains the 7-bit ASCII character plus one high-
order bit. This bit should be set to 0 as follows:

KBB=177562
MOVB KBB,CHAR
BICB #200.CHAR

CHAR: .BLKB 1

The Keyboard Status Register

In addition to memory location 177562 (the keyboard buffer), the keyboard
also controls memory location 177560, which is called the keyboard status
register. One of the functions of this register is to indicate that a new character
has been typed. The keyboard status register is as follows:

All bits in the register are always 0, except for two bits, 6 and 7. Bit 7 in the
status register is called the ready bit.* The ready bit is a read-only bit that in
dicates that the keyboard is ready to be read, according to the following rules:

1. When a key is pressed, the ready bit is set to 1 to indicate that a new charac
ter has been typed.

2. When a program fetches a character from the keyboard buffer (memory
cell 177562), the ready bit is set back to 0 to indicate that the buffer now
contains an old character.

In order to read a character, the program tests the setting of the ready bit. If it is
equal to 1, the program can fetch the new character from the buffer. If the
ready bit is 0, the keyboard is not ready, and the program should keep on
testing the ready bit until the operator types a new character, thereby setting the
ready bit to 1. This continual testing of the ready bit is called device polling.

The ready bit can be tested with the following bit test instruction:

KBS=177560
BIT #200.KBS

However, a test byte instruction can be used instead. Recall that word 177560
consists of two 8-bit bytes:

The ready bit happens to be the sign bit for byte 177560. If the ready bit is 0, the
byte contains a positive number, whereas if the ready bit is 1, the byte contains a
negative number. The following two instructions are used to make the pro
cessor wait until the operator strikes a key:

*Documentation from Digital Equipment Corporation may refer to bit 7 as the done bit.

KBS=177560
LOOP: TSTB KBS

BPL LOOP

As long as the ready bit is 0, the program will continually branch back to state
ment L O O P . When the operator strikes a key, the ready bit will be set to 1, byte
177560 will become negative, and the program will fall out of the loop. This
polling loop is generally followed by instructions that empty the buffer, such as:

MASK=177600
KBB=177562

MOV KBB,RO
BIC #MASK. R0

Figure 11.2 contains a subroutine called RCHAR that reads a character
from the keyboard and places it in RO. Note that KBB is defined as KBS+ 2.
The reason for this is that , while the addresses may change, the relative distance
between them is almost always 2.

In addition to the ready bit, the keyboard status register contains an inter
rupt bit (bit 6) that will be described later. However, in order to use device poll
ing, the interrupt must be set to 0 before any characters are typed. As a result,
programs that use device polling to read a character from the keyboard should
usually contain a statement such as CLR KBS near the beginning of the
program.

Figure 11.2 A Subroutine to Read a Character

;THE FOLLOWING SUBROUTINE READS A CHARACTER FROM THE KEYBOARD
;AND LEAVES THE CHARACTER IN REGISTER 0
K B S r 1 7 7 5 6 0
KBB=KBS+2
MASK=177600
R0=J0
PC=X7

.GLOBL RCHAR
RCHAR: TSTB KBS ;WAIT UNTIL CHARACTER TYPED

BPL RCHAR
MOV KBB,RO ;GET THE CHARACTER
BIC #MASK, R0 ; AND CLEAR GARBAGE BITS
RTS PC
.END

The Console Printer

The output device associated with the operator 's console may be a printing
mechanism similar to that of a typewriter or it may be a cathode-ray-tube

display (CRT) that resembles a television set. Although the two output devices
are physically very different, they are controlled or programmed in the same
manner. For simplicity, the output device will be called the console printer or
simply the printer.

Like the keyboard, the printer controls two 16-bit addressable memory
locations. Memory location 177564 is the printer status register, and location
177566 is the printer buffer. The following illustrates these registers:

A character is printed by moving the ASCII code for the character to the
buffer. For example, the instruction:

PRB=177566
MOV #101,PRB

will cause the letter A to be printed because 101 octal is the ASCII code for A.
The move instruction sends a full 16-bit word to the buffer. The buffer ignores
the nine high-order bits and interprets the seven low-order bits (bits 0 through 6)
as an ASCII character.

Neophyte programmers, who may forget that the printer is an ASCII
device, sometimes write instructions such as:

PRB=177566
MOV #123456,PRB

hoping to have the character string 123456 printed. This, of course, will not
achieve the desired result. However, it is instructive to see what the instruction
will do . The octal number 123456 is represented in binary as follows:

The nine high-order bits are ignored. The seven low-order bits, 0101110 in
binary or 056 in octal, are interpreted as an ASCII character. The ASCII code
for a dot or period is 056 octal, so the instruction will cause a . to be printed.

The ready bit (bit 7) in the printer status register indicates when the printer
is ready to print another character. Recall that the processor and memory are
generally much faster than the input /output devices. As a result, instructions
such as the following will not produce the desired result:

PRB=177566
MOV # 1 0 1 f P R B
MOV #102 ,PRB

The first instruction sends the character A to the printer. The second instruction
intends to print the character B (octal 102). However, the B is sent before the A
has been printed. In such cases, the printed results are unpredictable. A single
garbage character may be printed.

When the printer is ready to print a new character, the ready bit is set to 1.
When a character is moved to the buffer, the ready bit is immediately set to 0 to
indicate that the printer is busy printing a character. After the character is
printed, the ready bit is returned to 1 to indicate that another character can be
transmitted. As a result of these conventions, the format of the polling loop for
an output device is almost identical to that of an input device. The following in
structions would be used to print the character A:

PRS=177564
PRB=PRS+2
LOOP: TSTB PRS ; I S THE READY BIT 1

BPL LOOP ; I F NOT, WAIT
MOV # 1 0 1 , P R B ; I F YES, PRINT THE CHARACTER

The printer status register, like the keyboard status register, contains an in
terrupt bit. This bit should be set to 0 at the start of the program with an instruc
tion such as CLR PRS.

Figure 11.3 contains a subroutine called P C H A R that is designed to print
the character contained in register 0. The symbol PRS refers to the Printer
Status register and PRB refers to the keyboard Printer Buffer. Notice the
similarity between the RCHAR subroutine (Figure 11.2) and the P C H A R
subroutine.

Figure 11.3 Subroutine to Print a Character

; T H E F O L L O W I N G S U B R O U T I N E P R I N T S T H E C H A R A C T E R I N RO

P R S = 1 7 7 5 6 4 ; P R I N T E R S T A T U S R E G I S T E R

P R B = P R S + 2 ; P R I N T E R B U F F E R
R0=%0
P C = % 7

. G L O B L P C H A R
P C H A R : T S T B P R S ; W A I T U N T I L T H E P R I N T E R I S READY

B P L P C H A R

MOVB R 0 , P R B ; T H E N P R I N T T H E C H A R A C T E R
R T S PC

. E N D

11.3 O T H E R I N P U T / O U T P U T D E V I C E S

General Input /Output Devices

The strategy used for input and output with the keyboard and printer is used for
many other input or output devices. These devices will have two registers that
are assigned addresses in the addressable space of the machine. The two
registers are a status register and a buffer register. On almost all devices, the
status register uses bit 7 for the ready bit and bit 6 for the interrupt bit. The buf
fer register is used to transmit data in or out in much the same way as with the
keyboard or printer buffer. For example, Figure 11.4 is a subroutine for print
ing a character on the line printer.

Figure 11.4 A Subroutine to Print a Character on the Line Printer

;THE FOLLOWING SUBROUTINE PRINTS THE CHARACTER IN RO
;0N THE LINE PRINTER
LPS=177514 ;STATUS REGISTER
LPB=LPS+2 ;BUFFER REGISTER
R0=%0
PC=%7

.GLOBL PLP
PLP: TSTB LPS ;WAIT UNTIL THE PRINTER IS READY

BPL PLP
MOVB R0,LPB ;THEN PRINT THE CHARACTER
RTS PC
.END

It should be noted that this program is virtually identical to the program in
Figure 11.3. The only difference (other than symbolic names) is that the status
and buffer registers are located at 177514 and 177516 instead of 177564 and
177566. These addresses are the standard addresses for the line printer.

There are, however, some differences between the line printer and the con
sole printer. The main one is that the line printer has an extra bit in the status
register (bit 15), which is the error bit. The error bit is set to 1 if the printer is in
capable of printing. This may mean that the printer is manually turned off, that
it is out of paper, or various other possible conditions that make it nonfunc
tional. Since the error bit is in bit 15, it is in the word sign position of the status
register, and may be tested with a TST instruction, just as the ready bit is tested
with a TSTB instruction.

Some devices have more than one error bit because different kinds of er
rors can occur. For example, the card reader can fail to work because of an
empty hopper, a full stacker, a bad read, and so on. Each of these errors re
quires different remedial action both from the program and from the operator.
Thus more than one error bit is needed.

The buffer registers on different devices tend to be similar; however, the
number of bits changes. While an ASCII device has 7 bits, a byte-oriented

device like the paper tape reader or punch will have 8 bits and the card reader
has 12 bits for the 12 rows on a punched card. (Actually there are two buffer
registers for the card reader. The first contains the 12-bit column image; the sec
ond contains an 8-bit compressed, alphanumeric code.)

The Paper Tape Reader /Punch

The paper tape reader/punch operates in much the same way as the console
keyboard and printer. There are, however, several differences. First, both the
reader and punch have an error bit in the status register to indicate that they are
out of tape. This works much like the error bit on the line printer, and is at bit
15 of the punch status register and the reader status register. A second dif
ference is that eight data bits are input and output through the buffer register.
Otherwise, the punch is essentially the same as the console printer or the line
printer. When a bit pattern is moved to the punch buffer register, that bit pat
tern is punched on paper tape. Bit 7 of the punch status register is the ready bit
which tells when the punch is ready for more data.

There is, however, a significant difference in how the paper tape reader
operates. The reader becomes ready as soon as someone loads tape into the
mechanism. However, one does not want the reader to start reading the tape as
soon as it is ready, because the computer may not be ready to use the data. The
effect would be for the reader to snatch the tape out of the operator 's hands as
soon as it was loaded into the machine.

In order to prevent this, there is another bit (the go bit) in the status
register. The go bit, which occupies bit position 0, is normally set to 0. Nothing
will happen until the go bit is set to 1; then the reader will read one character (or
frame) from the tape. The go bit is immediately reset to 0 so that an examina
tion of the register will never show it to be a 1. (This kind of bit is sometimes
called a write-only bit, because you can write a 1 into it, but you can never read
it back.)

Figure 11.5 shows the four registers for the punched paper tape reader and
punch. Figure 11.6 shows a subroutine that reads a single tape frame into RO. If
there is an error, a whole word of - 1 is returned.

Paper Tape

Figure 11.7 shows a section of paper tape in which the absence of a hole in a par
ticular position corresponds to a binary 0 and the presence of a hole cor
responds to a binary 1. The tape consists of a number of columns across the
tape called frames. In this example, each frame or column contains a single
ASCII character. The tape begins on the left-hand side with a leader that con
sists of blank tape. More accurately, the leader consists of several ASCII null
characters (octal 000). The small holes in this area of the tape are feed holes or
sprocket holes that are used to move the tape. They perform the same function

Figure 11.5 Paper Tape Device Registers

Figure 11.6 Subroutine for Reading a Paper Tape Byte

;THE FOLLOWING SUBROUTINE READS A PAPER TAPE
;BYTE INTO RO. ERRORS SHOW AS - 1 .
MASKA=177400
PRS=177550 ;STATUS REGISTER
PRB=PRS+2 ;BUFFER REGISTER
R0=%0
PC=%7

.GLOBL PTREAD
PTREAD: INC PRS ;SET GO BIT
LOOP: TST PRS ;TEST FOR ERROR

BMI ERROR
TSTB PRS ;TEST FOR READY
BPL LOOP
MOVB PRB,R0 ;FETCH BYTE
BIC #MASKA,R0 ;CLEAR 8 HIGH ORDER BITS
RTS PC

ERROR: MOV #-1 ,R0 ;RETURN -1
RTS PC
.END

Figure 11.7 A Short Section of Paper Tape

as the feed holes on both edges of computer paper.
The 10 frames after the leader contain the ASCII code for the digits 0

through 9 (octal 060 through 071). The next four frames contain spaces or
blanks (octal 040). The spaces are followed by the capital letters A through Z
(octal 101 to octal 132), which are followed by a carriage return and line feed
(octal 015 and 012). A trailer composed of null characters is at the end of the
tape. Most tapes are much longer than the one shown in Figure 11.7. The
leaders and trailers are typically more than one foot long and the tape might
contain several thousand characters.

Following is a single frame of a paper tape:

A O represents an unpunched area of the tape while • represents a hole. The
symbol • represents the feed hole. Each frame contains 8 bits or one byte of in
formation. In the frame shown, only bit 5 is punched (in addition to the feed
hole, which must be punched). This frame contains 00100000 in binary or 040 in
octal. When 7-bit ASCII characters are punched on paper tape, only bits 0
through 6 are used. This is why there are no punches in the bottom row of the
tape in Figure 11.7.

It is important to distinguish between null characters (octal 000) and blank
characters (octal 040). The null character is represented by a frame without any
punches (000). However, printing devices ignore null characters. In particular,
a null character will not cause a printer to leave a blank space.

Exercise Set 1 251

The Line Clock

The line clock is a simple but useful device that can be used for various tim
ing purposes.* The line clock receives timing information from the 60-hertz (60
cycles/second standard) alternating-current power line. This is somewhat dif
ferent from the other devices because, while there is a status register, there is no
buffer register. As the following illustrates, the status register contains a ready
bit and an interrupt bit:

The device simply sets the ready bit to one every sixtieth of a second. (In coun
tries that use 50-cycle electrical power, which includes most of the world outside
North America, the ready bit would be set to 1 every fiftieth of a second.) Since
there is no buffer associated with the device, the program must reset the ready
bit to 0 each time it becomes set.

Controlling the device is quite simple. For example, the following section
of code will delay the program for one second:

LCS=177546 ;LINE CLOCK STATUS REGISTER
MOV #74.R1 INITIALIZE COUNTER TO 60 DECIMAL

RLOOP: CLR LCS ;CLEAR DONE AND INTERRUPT BITS
LOOP: TSTB LCS ;HAS 1/60TH SECOND PASSED

BPL LOOP ; IF NOT, GO BACK
DEC R1 ;DECREMENT COUNTER
BNE RLOOP ;AND GO BACK UNTIL 1 SECOND HAS ELAPSED

This code is not as useless as it may appear. For example, most printing devices
ring a bell or a buzzer when the ASCII bell character (octal 007) is received. If a
device error occurs on the line printer or the paper punch, the code shown could
be used as a timer so that the bell on the console printer could be rung once per
second until the operator corrected the error.

E X E R C I S E SET 1

1 Write a program that prints the 95 printable ASCII characters (octal
040 to 176) on a single line. If your printer does not have room for 95
characters, print the characters on three lines. If your printer does not print

*This kind of line clock is not used on the LSI-11.

lowercase characters, what does it do when your program places the codes
for lowercase characters in the buffer?

2 Some printing devices do not respond to some of the ASCII control
characters such as the horizontal tab (octal 011). Write a test program to
determine which control characters (octal 000 to 037 and 177) your printer
responds to .

3 Write a program that allows you to use the keyboard and the printer as a
typewriter. Your program should do more than simply echo each character
that is typed. For example, when a carriage return is typed, your program
should send a carriage return and a line feed to the printer. If your printer
does not respond to horizontal tab characters, your program should
simulate the tab by sending an appropriate number of blanks to the printer.
Finally, your program should send a bell character (octal 007) to the printer
when the printer is within five positions of the end of the line.

4 Write a program that rings the bell on the printer once per second.

5 Write a program to duplicate a paper tape. Your program should ignore any
null characters that are read. However, the duplicate tape should begin and
end with one foot of blank tape.

11.4 I N T E R R U P T S

Introduction

There are several problems with device polling. First, the polling loop com
pletely ties up the central processor. The processor may have to ask the device
4 'A re you done y e t ? " several thousand times before the device completes the
input /ou tput operation. This wastes the computational power of the processor
and does not allow other tasks to be accomplished. The programmer could at
tempt to avoid this waste by leaving the polling loop for a short period of time
in order to perform other computations. However, there is a danger that infor
mation will be lost. A fast operator might be able to type two characters on the
keyboard before the program returned to poll the status register of the
keyboard. The second character would overwrite the first character in the buf
fer, and the first character would be lost. In addition, attempting to poll a
device periodically generally results in complicated logic that is difficult to
debug, particularly when several devices with differing speeds are active at the
same time.

The solution to many of these problems is to use interrupts rather than
device polling. Instead of repeatedly asking the device "Are you done ye t?" ,
the processor allows the device to "Interrupt me when you are d o n e . " The use
of interrupts is controlled by the interrupt bit (bit 6) in the status register of the

device. If bit 6 is equal to 0, the interrupt system is turned off and device polling
must be used. If the interrupt bit for the device is set to 1, the device will inter
rupt the processor whenever an input /output operation has been completed.
An input device will interrupt whenever a new character is received. An output
device will interrupt whenever the device finishes printing or punching a
character and is therefore ready to print or punch the next character.

When using interrupts, there must be a separate program called an inter
rupt servicing routine for each input /output device that has its interrupt bit
turned on. As long as no interrupt occurs, the processor continues to execute a
main program of some kind. When a device interrupts the processor, the pro
cessor temporarily stops executing the main program and transfers control to
the interrupt servicing routine associated with the device. Once the interrupt
servicing routine has provided whatever service the device needs, the processor
resumes execution of the main program.

In order to implement interrupts, two problems must be solved. First,
when a device interrupts, how does the processor find the starting address of the
interrupt servicing routine? Second, how does the processor save enough infor
mation to return to the main program after the interrupt servicing routine has
been completed? It is obvious that the processor must save the program counter
in order to later return to the appropriate return address. However, other infor
mation must be saved as well. An interrupt may occur at any time. In par
ticular, an interrupt might occur between the time that the main program ex
ecuted the two following instructions:

CMP A, B
< Interrupt occurs here

BLT ALOW

The interrupt servicing routine is almost certain to change the N, Z, V, and C
bits that determine whether to branch or not. (N, Z, V, and C refer to the
Negative, Zero, overflow, and Carry bits that were described in Chapter 5.) As
a result, the current setting of these bits must also be saved when an interrupt
occurs.

The Processor Status Register

In order to facilitate interrupts, the various bits that must be saved when an in
terrupt occurs are stored in a special register called the processor status register.
The processor status register contains 16 bits of information called the pro
cessor status word (PSW). However, as the following illustrates, smaller
PDP-11 processors may only use 8 of the 16 bits:

Bit positions 0 through 3 contain the four condition code bits. These bits are
modified by arithmetic instructions such as A D D and are tested by the various
branch instructions. The T (for Trap) bit in position 4 will be explained later.

The priority bits in positions 5, 6, and 7 allow a program to prevent inter
rupts . When a main program is running, these bits are typically set to 0. This
allows any device to interrupt the main program. However, when an interrupt
routine is running, these bits may be set to Is to prevent the interrupt routine
from being interrupted by another interrupt routine. For example, when the
clock interrupt routine is being executed, these bits might be set to Is to prevent
the paper punch from interrupting the clock interrupt routine. The servicing of
interrupts is delayed by this process rather than lost. The paper punch will con
tinue to request the interrupt. Later, the paper punch will be allowed to acquire
interrupt servicing if the priority bits eventually are set to 0.

Three bits are used for the following reason: On larger PDP-11 processors,
the priority bits can be set to intermediate values between 000 and 111 binary.
These intermediate values allow more important devices to interrupt while less
important devices cannot. For example, if the priority bits are set to 5 octal (101
binary), the line clock can interrupt but the paper tape reader/punch cannot.
For compatibility with smaller PDP-11 systems, only priorities of 000 and 111
(binary) will be used here. On any PDP-11 system, a priority of 000 will allow
any device to interrupt and a priority of 111 will prevent all devices from
interrupting.

The Interrupt Process

Assume that a main program is running and that the current processor priority
is 000 (binary). When an interrupt from a device is received, the processor first
finishes the execution of the instruction that it is currently executing. (This, of
course, leaves the program counter pointing to the next instruction in the main
program.) The processor then saves the current contents of the processor status
register on the stack. Then the processor places the current value of the pro
gram counter on the stack. For example, if the stack pointer (register 6) con
tains 001000 before the interrupt, then the PSW will be saved in memory loca
tion 000776 and the P C will be saved in 000774. This is all the information that
the processor needs to resume executing the main program when the interrupt
routine has been completed.

To complete the interrupt process, the processor must now branch to the
starting address of the appropriate interrupt servicing routine in memory. To
accomplish this, each device is allocated two consecutive words in memory. The
first word contains the starting address of the interrupt routine (the new PC),
and the second word contains the new processor status word that is to be loaded
into the processor status register. These two words are called the interrupt vec
tor for the device. The interrupt vectors for the various devices are located be
tween addresses 000000 and 000374.

For example, the interrupt vector for the line clock begins at address

000100. After the processor has saved the old PSW and the old P C on the stack,
the processor asks the interrupting device to supply the address of its interrupt
vector. (At this point, the processor does not know which device has caused the
interrupt.) In this case, the clock responds by sending the address 000100 to the
processor. The processor loads the contents of memory cell 000100 (the new
PC) into the program counter and loads the contents of memory cell 000102
(the new PSW) into the program status register. This completes the interrupt. If
the contents of memory cells 000100 and 000102 are as the following shows, the
processor will begin executing the interrupt servicing routine that begins at
memory cell 004000:

Address Contents
000076 ??????
000100 004000 New P C
000102 000340 New PSW
000104 ??????

Because the contents of 000102 is 000340, the interrupt servicing routine will
run with the three priority bits in the PSW set to 111 (binary). As a result, the in
terrupt routine itself cannot be interrupted.

At the end of the interrupt servicing routine, the RTI instruction (ReTurn
from Interrupt) is used to return to the main program. Conceptually, the RTI
instruction is similar to the RTS (ReTurn from Subroutine) instruction.
However, the RTI instruction, with operation code 000002, does not have any
arguments. In addition, the RTI instruction removes two words from the stack
since it must restore both the P C and the PSW to their old values. This will
resume the execution of the main program. In this example, the process of
restoring the processor status register to its original value will cause the three
priority bits to be set to 000, which will allow future interrupts to be serviced.

In writing an interrupt servicing routine, the programmer must be cautious
about modifying processor registers R0, R l , and so on. Unlike a subroutine
call, an interrupt can occur at virtually any time. If the interrupt servicing
routine modifies the contents of a register, the results may be catastrophic since
the routine being interrupted may be using that register. There are two standard
ways to solve this problem. First, the interrupt servicing routine can be written
in such a way that registers R0 through R5 are not used. Second, the interrupt
servicing routine can simply save the current contents of any registers that it
modifies and restore the registers to their original values at the end of the inter
rupt servicing routine.

A Clock Interrupt Servicing Routine

A clock interrupt servicing routine can be used to keep track of time. As shown
in Figure 11.8, the interrupt servicing routine simply adds 1 to a counter and
then returns. (When using interrupts with the clock, it is not necessary to reset

Figure 11.8 Clock Interrupt Servicing Routine

;AN INTERRUPT ROUTINE FOR THE LINE CLOCK

CLKINT: INC COUNT
RTI

COUNT: .BLKW 1

the ready bit to 0). Sixty times each second, the main program will be inter
rupted by the clock and the clock interrupt servicing routine will be executed.
The counter can count with unsigned numbers up to 2 1 6 - 1 or 65,535/60 or
1092 seconds, which is approximately 18 minutes. If longer intervals of time
must be measured, a double-precision counter would have to be used.

As shown in Figure 11.9, the main program must set the counter to 0 and
initialize the clock interrupt vector. Before initializing the interrupt vector, the
status register is cleared to make sure that the interrupt bit is off.* This prevents
any premature interrupts. The interrupt vector for the clock is located at ad
dresses 000100 and 000102. The starting address of the interrupt servicing
routine, CLKINT, is loaded into memory cell 000100. Memory cell 000102 is
initialized to 000340 to prevent the clock interrupt servicing routine from being
interrupted by another interrupt. (The clock interrupt servicing routine is so
short that there is no real advantage to allowing interrupts within it.)

The last step of the initialization process is setting the interrupt bit (bit 6) in
the clock status register to 1.* The first interrupt may occur at anytime in the

Figure 11.9
;THIS IS THE MAIN PROGRAM THAT PERFORMS
;INITIALIZATION FOR THE CLOCK INTERRUPT ROUTINE
CLKST=177546 ;ADDRESS OF CLOCK STATUS REGISTER
CLVEC=100 ;ADDRESS OF CLOCK INTERRUPT VECTOR
START: CLR CLKST ;TEMPORARILY PREVENT INTERRUPTS

CLR COUNT ;SET TIME TO ZERO
MOV #CLKINT, CLVEC ;SET UP INTERRUPT VECTOR
MOV #340, CLVEC+2
BIS #100, CLKST ; ALLOW INTERRUPTS

COMPUT: .
Rest of the Main Program

;THIS IS THE CLOCK INTERRUPT ROUTINE
CLKINT: INC COUNT

RTI
COUNT: .BLKW 1

.END START

*On the LSI-11, clock interrupts cannot be enabled or disabled with software, because
there is no status register. Instead, there is a switch on the front panel which turns off the
clock.

next one-sixtieth of a second. The interrupt might occur before the statement
labeled C O M P U T in the main program is executed. Alternatively, several hun
dred statements in the main program might be executed before the first inter
rupt. This unpredictability can make debugging difficult. It is not at all unusual
to have a program that runs correctly on one occasion and fails on others.

The main program in Figure 11.9 could use the value of COUNT in a vari
ety of ways. It could be used to compute the time required to execute certain
sections of the main program. If the main program can obtain the current time
of the day from the computer operator, the program can use COUNT to keep
track of time for the operator. (For this application, a double-precision counter
should be used because there are more than 65,535 sixtieths of seconds in a
day.)

Printing a Message with Interrupts

Figure 11.10 contains a main program and an interrupt servicing routine that
will print a message on the operator 's printer. When bit 6 in the printer status
register is 1, the printer will interrupt whenever it finishes printing a character.
In other words, if the interrupt bit is 1, the printer interrupts when the done bit
makes a transition from 0 to 1. The printer interrupt servicing routine simply
sends the next character of the message to the printer buffer and then returns.
When the printer finishes printing the new character, another interrupt will
occur.

The interrupt servicing routine that begins at P R I N T saves the value of RO
on the stack at the beginning of the routine and then restores RO to its original
value just before the RTI instruction. As a result, the main program is free to
use RO for its own purposes. The rest of the interrupt servicing routine is
straightforward. The variable POINTR contains the address of the next
character. If the character is not a null, the interrupt servicing routine sends the
character to the printer buffer and returns. Because a character has been sent to
the buffer, another interrupt will occur sometime in the future when the
character is printed. However, if the character is a null, the interrupt servicing
routine sets the flag FINISH equal to 1 and returns without sending anything to
the buffer. As a result, no more interrupts will occur (which is, of course, ap
propriate since the message has been printed).

The main program begins with the standard initialization sequence for an
interrupt servicing routine. After setting the interrupt bit to 0 to prevent any
possibility of premature interrupts, the interrupt vector is initialized. The inter
rupt vector for the console printer occupies memory cells 000064 and 000066.
After initializing the pointer and the finish flag, the program turns the interrupt
bit on. Normally, a device interrupts when the interrupt bit is 1 and the ready bit
makes a transition from 0 to 1. However, devices also interrupt when the ready

Figure 11.10 Printing a Message Using Interrupts

.TITLE PRINT ROUTINE WITH INTERRUPTS
;THIS IS THE MAIN PROGRAM THAT PERFORMS INITIALIZATION FOR THE
;PRINTER INTERRUPT ROUTINE AND THEN PERFORMS SOME OTHER CALCULATIONS
;WHILE THE PRINTER INTERRUPT ROUTINE DOES THE PRINTING

PRS=177564 ;PRINTER STATUS REGISTER
PRB=PRS+2 ;PRINTER BUFFER
PRVEC=64 ;ADDRESS OF THE PRINTER INTERRUPT VECTOR
R0=%0
R1=%1
SP=%6
PC=%7
START: CLR PRS ;TEMPORARILY PREVENT INTERRUPTS

MOV SPRINT,PRVEC ;SET UP THE INTERRUPT VECTOR
MOV #340,PRVEC+2 ;SET UP THE INTERRUPT VECTOR
CLR FINISH ;SET TO ONE WHEN PRINTING COMPLETE
MOV #MESS, POINTR ;ADDRESS OF THE NEXT CHARACTER
BIS #100,PRS ;ALLOW THE PRINTER TO INTERRUPT

;THE FIRST INTERRUPT WILL OCCUR IMMEDIATELY

Part of the main program

LOOP: TST FINISH ;WAIT UNTIL PRINTING IS COMPLETED
BEQ LOOP

More of the main program

MESS: .ASCII /THIS IS A SAMPLE MESSAGE/
.BYTE 1 5 , 1 2 , 0
.EVEN

POINTR: .BLKW 1 ;POINTS TO THE CURRENT CHARACTER
FINISH: .BLKW 1 ;SET TO ONE WHEN PRINTING COMPLETE

;THIS IS THE INTERRUPT ROUTINE THAT PRINTS THE MESSAGE

PRINT: MOV R 0 , - (S P) ;SAVE RO ON THE STACK
MOV POINTR,R0 ;AND GET THE POINTER
TSTB (R0) ; I F THE CHARACTER IS NOT A NULL
BNE PRNTIT ;GO PRINT IT
INC FINISH ;ELSE SET THE FINISH FLAG
BR OUT ;AND RETURN

PRNTIT: MOVB (R0)+,PRB ;PRINT THE CHARACTER
MOV R0,POINTR ;UPDATE THE POINTER

OUT: MOV (SP)+,R0 ;RESTORE RO
RTI ;RETURN FROM INTERRUPT
.END START

bit is 1 and the program changes the interrupt bit from 0 to 1. As a result, the
first interrupt occurs immediately after the bit set instruction.

The main program proceeds to execute the section of code labeled "pa r t of
the main program. ' ' After each character is printed, an interrupt occurs and the
interrupt servicing routine sends the next character to the printer. However, the
interrupt servicing routine only requires a small fraction of the processor's
time, and the processor spends most of its time in the main program. By using
statements such as those at L O O P , the main program can determine if the
message has been printed. This would be necessary if the main program wished
to print a second message. To print a second message, the main program would
simply turn the interrupt bit off, place the starting address of the new message
in POINTR, clear FINISH, and then turn the interrupt bit back on.

When using interrupts with other input or output devices, the programmer
must allow for obvious differences between devices. If the status register of a
device contains error bits, the interrupt routine should check the setting of these
bits. The address of the interrupt vector is different for each device. In addi
tion, care is sometimes required to ensure that the first interrupt and the last in
terrupt are processed correctly. Other than this, the assembly language
statements required to use interrupts with other devices are very similar to those
illustrated in Figure 11.10.

Traps

When the processor detects an error of some kind, it initiates an interrupt. For
example, if the processor detects an illegal operation code, it initiates an inter
rupt using the interrupt vector in memory cells 000010 and 000012. The inter
rupt servicing routine whose starting address is contained in memory cell
000010 can then print a message to the computer operator about the illegal
operation code.

To distinguish interrupts initiated by the processor from those that are ini
tiated by input or output devices, the processor initiated interrupts are called
traps (because they " c a t c h " errors). Traps are identical to normal interrupts ex
cept in two ways: (1) There is no status register or buffer associated with a t rap.
(2) The priority bits in the processor status register have no effect on a t rap.
When the error occurs, the old program counter and the old processor status
word are saved on the stack and a new program counter and processor status
word are obtained from the interrupt or t rap vector.

There are a variety of traps in addition to the illegal instruction t rap. For
example, an illegal memory reference will cause a t rap to occur using the trap
vector in addresses 000004 and 000006. A power failure will cause a t rap to
occur using the t rap vector in addresses 000024 and 000026. (The processor can
execute at least several instructions before the power fails completely.)

Traps can also be caused by special instructions. For example, the EMT
(EMulate Trap) instruction causes a trap to occur using the t rap vector in

000030 and 000032. This particular instruction is used to request services from
the operating system. For example, with the RT-11 operating system, EMT 340
asks the operating system to read a character from the input device, EMT 341
prints a character, and EMT 350 causes a program to terminate. These instruc
tions are contained in the expansion of the .TTYIN, .TTYOUT, and .EXIT
macros. The operation codes for the EMT instruction range 104000 to 104377.
(The first eight bits are really the operation code and the last eight indicate the
particular service that is desired.) One advantage of this approach is that your
program does not have to know the starting address of each service routine. The
EMT processor whose starting address is contained in memory cell 000030 can
examine your request and then branch to the appropriate service routine. The
E M T concept is sometimes called a software interrupt and is the basis of most
modern operating systems.

The T R A P instruction is another such instruction, and is identical to the
E M T instruction except that the operation codes range from 104400 to 104777
and the trap vector begins at 000034. By convention, the EMT instruction is
reserved for communication with the operating system. The T R A P instruction
is provided for general use by users.

In addition to the T R A P instruction, there is a trap bit (bit 4) in the pro
cessor status register. When the trap bit is set to 1, a trap to the vector at address
000014 will occur after each instruction is executed. This makes it possible to
trace or *'single s t ep" through the main program one instruction at a time.

11.5 O T H E R C O N S I D E R A T I O N S

Using Interrupt Routines with an Operating System

Special care must be used when writing interrupt routines that are to run under
an operating system such as RT-11. This care is required because the operating
system itself uses interrupts, so the user should be sure not to conflict with
system use. For example, RT-11 performs all of its input and output using inter
rupts. The clock interrupt is always enabled and the console keyboard interrupt
is always enabled. Other device interrupts may be enabled, and all of these and
some other devices are supposed to have their interrupt vectors loaded with ad
dresses and priorities determined by the RT-11 system.

If the casual user changes the contents of interrupt vectors, or enables
various device interrupts, it is likely to cause the operating system to fail. In
order to be in full compliance with all of the conventions used by the RT-11
system, the reader should consult the RT-11 Advanced Programmer's Guide,
published by the Digital Equipment Corporat ion. However, sometimes it may
be possible to avoid all of the burdensome conventions of RT-11 by exercising
care.

Sec. 11.5 Other Considerations 261

First, the programmer should save every interrupt vector before reloading
it with new data . Then, before exiting, all the vectors should be restored to their
original values. If there is any doubt as to whether your program executed
enough instructions to do this, you should re-boot the system. This is really a
courtesy to subsequent users, because these kinds of errors may not show up
immediately and may eventually cause some other user's program to fail.

Direct Memory Access Devices

Interrupts and single-byte or word transfers work well for slow or medium-
speed input /output devices. However, a different approach is needed for high
speed devices such as magnetic tape or disk. These devices are capable of
transferring hundreds of thousands of bytes of information per second, which
is faster than the maximum interrupt rate on many PDP-11 computers.

This problem is solved by using direct memory access devices. Such devices
can transfer information to and from memory without using the processor. For
example, assume that a block of 1000 (octal) characters is to be read from
magnetic tape and placed in memory cells 040000 through 040777. The pro
cessor initiates the data transfer by moving the byte count (001000) and the start
ing address (040000) to special registers associated with the tape unit. While the
processor executes a program, the tape unit proceeds to transfer all 1000 (octal)
bytes into memory. The transfer is achieved in the following way: When the
tape unit has another character to transfer to memory, the tape controller asks
for permission to use wires which connect the processor to the addressable loca
tions. These wires are called the bus.* If the processor is currently performing a
fetch or store operation, the processor completes the operation and then grants
permission to use the bus. The tape controller then uses the bus for perhaps a
millionth of a second to transfer the byte to memory. The tape controller then
returns control of the bus to the processor, which continues to execute the pro
gram until the tape again requests to use the bus. Once all 1000 bytes of infor
mation have been transferred to memory, the tape unit interrupts the processor
(using the interrupt vector beginning at address 000224) to indicate that the in
put operation has been completed. Additional information on direct memory
access devices can be found in the PDP-11 Peripherals Handbook.

Other Input /Output Strategies

Even more complicated input /output strategies are used on some computers.
For example, many large computers use special devices called channels to per
form input and output . A channel is simply a special-purpose processor de-

*On larger PDP-11's the bus is called the UNIBUS®. The LSI-11's use a different bus
called the Q-BUS®.

262

signed to execute special input /output instructions. The instructions that a
channel executes are called channel commands to distinguish them from the
machine language instructions that are executed by the central processing unit.

Assume, for example, that a channel is designed to control magnetic tape
units. The channel would have a command that instructs it to read a block of
characters from a tape and place the block of characters into a designated area
in memory. The channel would also have commands to allow simple branching
and looping. To read a series of blocks from a tape unit, a channel program
composed of these channel commands is created and the central processing unit
instructs the channel to execute the program. The central processing unit could
then perform computational tasks while the channel reads a series of blocks
from the tape. When the channel has finished executing the channel program,
the channel interrupts the central processing unit.

The more sophisticated input /output strategies tend to require less in
tervention by the central processing unit. With some less sophisticated
strategies, such as device polling, the processor is totally dedicated to the in
pu t /ou tpu t operation. With interrupts, processor intervention is required only
after each character is read or written. When direct memory access is used, pro
cessor intervention is required only after an entire block of characters is
transferred. With channels, a large number of blocks of information can be
transferred without intervention by the central processing unit.

The strategies just discussed are not exhaustive, but they do illustrate the
complexity of input /output operations on modern computer systems. Even
more complex strategies are used on some computer systems. However, a
discussion of these is beyond the scope of this text.

E X E R C I S E SET 2

1 Using interrupts, write a program that rings the bell on the console printer
once per second.

2 Using interrupts, write a program that allows you to use the keyboard and
the printer as a typewriter. As in exercise 3, page 252, your program should
process carriage returns and horizontal tabs in the obvious manner. In addi
tion, your program should ring the bell when the printer is within five posi
tions from the end of the line.

3 Using interrupts, write a program that keeps two input and two output
devices running simultaneously. For example, if your system has a
teletypewriter and a high-speed paper tape reader and punch, your program
should allow you to duplicate a paper tape at the same time that you are
copying from the keyboard to the printer.

4 Write a program that determines the largest legal memory address on your
computer system. In order to do this, your program should use the illegal

address t rap vector at memory addresses 000004 and 000006. Simply ex
ecute the following main program segment until the t rap occurs (or until all
addresses have been tested). After the illegal address t rap , RO contains the
smallest illegal address.

CLR R0
LOOP: TST (R0)+

TST R0
BEQ ALLOK
BR LOOP

CHAPTER 12

FLOATING POINT
NUMBERS AND
EXTENDED
INSTRUCTIONS

12.1 I N T R O D U C T I O N

In Chapter 6, numbers were discussed in terms of the basic integer operations.
In this chapter, we will look at how fractional quantities are handled and how
this is done in the PDP-11 in particular. We will also look at the floating point
and extended instruction sets that are available on the newer PDP-1 Ts and the
more expensive, older PDP-1 ` ' s . In addition to providing instructions for
multiplication and division of integers, instructions are also provided for
handling fractions encoded in the floating point format.

12.2 F I X E D A N D F L O A T I N G P O I N T N U M B E R S

Fractions

In order to use fixed and floating point numbers effectively, it is important to
understand the principles of their operation. In order to keep the discussion
simple at first, we will discuss fixed and floating point in terms of a decimal
representation. We will then go into PDP-11 representation and see how some
rather clever tricks are employed to make the representation efficient.

There are various ways to express fractional quantities. The most basic
method is in terms of pairs of integers: 1/2, 5/12, 537/8946, and so on. This
method of representing fractions could be implemented quite easily in a com
puter. However, it is not normally used either in computers or in real life be
cause of an inherent awkwardness. Instead, a preferred method is to restrict
fractions to a set of standard denominators such as tenths, hundredths, thou
sandths, and so on. Because these denominators are powers of 10, fractions us
ing them are called decimal fractions. They are usually represented with a
decimal point or radix point, such as 5.4, 7.92, 0.093, and so on. There are
other fraction schemes using denominators such as 12,14,16, 32,60, and so on.
Although some of these are going out of use with the introduction of the metric
system, others still linger. Most computers use either decimal fractions or
binary fractions (which will be discussed later).

Fixed Point Numbers

In computers, two methods are commonly used for dealing with fractional
quantities. These are the fixed and floating point methods. The simpler of these
methods is the fixed point. This operates on the basis that often there is a
smallest fraction, so there would never be a need to consider anything smaller.
A good example of this is money calculation. Most normal U.S. money calcula
tion deals with units of dollars, and the smallest unit considered is one cent, or
1/100 of one dollar.*

Because there is no need to deal with fractions of a cent, the whole problem
could be reformulated in terms of integer numbers of cents. For example,
$537.23 is the same as 53723 cents. However, since most people get confused
when talking about large numbers of cents rather than dollars, a preferred
method for talking about the same thing is to say that the number 53723 has an
assumed decimal point two places from the right. This number therefore
represents 537.23 dollars. This is therefore called the fixed point system because
the decimal point is assumed to be at some fixed place in the number.

The fixed point system is very useful for dealing with money, and is
therefore used extensively in business languages such as COBOL. Fixed point
numbers can also be used for scientific calculations by scaling the problem into
appropriate units. Consequently, scientific problems are often stated in terms
of integral numbers of:

milliamperes

microseconds

centimeters

kilograms

tonnes (a metric ton = 1000 kilograms)

*Certain tax computations and interest computations do deal with fractions of cents,
such as the mil. The fixed point scheme described here would have to be modified to han
dle these cases.

The last two items on the list are a variation of what was described previously
because the decimal point is effectively moved to the right off the end of the
number. Therefore instead of counting fractions of a unit, we are counting
multiples of a unit. At times this is necessary in order to prevent the numbers
from becoming so large that multiple precision is required in the machine un
necessarily. For example, if the weight of a supertanker were expressed in
milligrams, many digits of unnecessary precision would be required. Conse
quently, tonnes or even kilotonnes would be used.

The problem of scaling things to the correct units can be quite complex and
was, in fact, one of the hardest parts of programming some of the early com
puters. The difficulty lies in the fact that many scientific problems involve both
very large and very small numbers. For example, a problem involving a nuclear-
powered ship might use kilotonnes for the ship, but would use milligrams for
the fuel pellets, and thus the units of mass would be inconsistent from one part
of the problem to another.

Floating Point Numbers

A solution to this problem is the use of floating point numbers. A floating point
number actually consists of two parts . One part contains the sign and digits of
the number. The other part states where the decimal point is assumed to be. A
method similar to this is often used by scientists in normal writing so that their
calculations can all be made in standard units. This scientific notation
represents numbers as certain significant digits times a power of 10. For
example:

- 5 . 3 4 7 x 10 1 5 = -5347000000000000

or

4.912 x 10-9 = 0.000000004912

In effect, what we have is ±a x \0±b, where a and b are numbers in some
limited range. Note that there is a sign associated with each number.

The representation of floating point numbers in a computer requires that
the two signed numbers ±a and ±b be stored somewhere. There must also be
an understanding of what the numbers mean. Although it is possible to store
the two numbers in two separate memory locations, this is inefficient because b
tends to be relatively small and it would be wasteful to use a whole word to store
it. Instead, some means of packing a and b together is usually used. Let us
imagine that we have a machine that has eight-digit, signed, decimal words, for
example, +73214692. (Remember that we will use decimal for a while.)

A nice compromise for packaging a and b into this word would be to use
two digits for b and the remaining six for a. This gives us six significant digits in
the number and a range of values spanning a factor of 10" . Thus, the computer
word +51314159 would let +314159 represent a and 51 represent b.

There are two questions that should arise here. The first is "Where is the

decimal point assumed to be in a ? " Although the decision is arbitrary, most
computer manufacturers place it at the far left. Therefore, a = +0.314159.
The second question is " W h a t happened to the sign of bV The computer word
only had one sign and we used it for a. However, if we are to represent small as
well as large numbers, we must have a sign for b as well. The usual technique is
to store in the two digits a number that is a fixed amount larger than the
actual value of b. Using 50 as the fixed amount , the number 50 indicates that b
is 0, the number 51 indicates that b is 1, the number 52 indicates that b is 2, and
so on. Numbers smaller than 50 represent negative exponents. For example, the
number 49 indicates that b is - 1, and the number 41 indicates that b is - 9 .
Since the number 51 gives a value for b of 1, the word +51314159 represents
+ 0.314159 x 101 or simply 3.14159. Figure 12.1 shows examples of floating
point numbers along with their equivalents.

Figure 12.1 Decimal Floating Point Representations

Floating Point
-46134926
+ 50934821
+ 50999999
+ 51100000
-53426910

Scientific Notation
-0.134926 x 10"4

+ 0.934821 x 10°
+ 0.999999 x 10°
+ 0.100000 x 101

-0.426910 x 103

Normal Decimal
-0.0000134926

0.9344821
0.999999
1.000000

-426.910

As we can see from Figure 12.1, there are three explicit portions of a
floating point word—the sign of a, the digits that represent ft, and the digits that
represent the magnitude of a. The latter is usually referred to as the fraction
part because of the assumed placement of the decimal point in a. The digits
representing ft are usually called the exponent because they represent a power of
10. Figure 12.2 shows the named parts in the floating point format.

Figure 12.2 Floating Point Format

Normalized Floating Point Numbers

A final note about floating point representations has to do with normalization.
From the previous discussion, it can be seen that +51100000 represents
0.1 x 101 = 1. Similary, + 54000100 represents 0.0001 x 104 = 1. Consequently,
+ 51100000 and + 54000100 both represent the same number. To prevent possi
ble confusion, most floating point systems insist that numbers be adjusted so
that the leftmost digit of the fraction is not 0 (as in + 51100000). This is called
the normalized floating point representation. The primary importance beyond
preventing confusion is that normalized floating point numbers preserve the

maximum number of significant digits. Accuracy or precision could be lost with
unnormalized numbers such as +54000100. The one exception to the nor
malization rule is 0, which has a normalized representation of + 00000000.

We can now look at the range of numbers possible with this floating point
representation. Figure 12.3 shows the range of numbers. Note that there is a
gap between ±10" 5 1 and 0. This means that very small numbers should be
avoided since the information content of the word may be insufficient to allow
their representation.

Figure 12.3 Range of Normalized Decimal Floating Point Numbers

Smallest number -99999999 = -0.999999 x 104 9 « - 1 0 4 9

Largest negative number -00100000 = -0.100000 x 10"50 = -10~ 5 1

Zero +00000000 = 0.000000 x 10° = 0
Smallest positive number +00100000 = 0.100000 x 10"50 = +10" 5 1

Largest number +99999999 = 0.999999 x 104 9 * +10 4 9

12.3 F L O A T I N G P O I N T O P E R A T I O N S

Being able to represent numbers in the floating point form is really of no use
unless there is some way of performing operations on the numbers. The usual
operations available in computers are addition, subtraction, multiplication,
and division. (Other mathematical operations and functions are programmed
from these four.) In this section, we will see how these operations can be per
formed on the decimal floating point representations of the previous section.

Addit ion and Subtraction

First, let us consider addition and subtraction. (These operations go together,
the difference being only in how the signs are treated.) Recalling a rule learned
early in our schooling, the first step in adding numbers with decimal points is to
line up the points. Thus:

573.426 573.426
+ 8.93425 must be rewritten as + 8.93425

582.36025

Then simple digit-by-digit addition is performed. A similar kind of rule applies
to either scientific notation or floating point encodings of numbers. Two
numbers in this notation cannot be added unless their exponents are first made
the same. Therefore, for a similar example:

.573426 x 10 3 . 573426 x 103

+ .893425 x IP 1 must be rewritten as + .00893425 x 103

.58236025 x 103

Let us now go through a step-by-step process with these same two numbers in
the floating point format and see how the process could operate in a computer.

Step a: Align the two numbers one above the other:

+ 53573426
+ 51893425

Step b: Unpack the numbers to separate the fraction and exponent parts:

53 +573426
51 +893425

Step c: To line up the smaller number with the larger, exchange the numbers,
if necessary, so that the number with the larger exponent is first:

53 +573426
51 +893425

Step d: Compute the difference in the exponents:

53 +573426
- 51 +893425

2

Step e: Shift the second number right by the amount of the difference, and
make the exponents the same:

53 +573426
53 +008934(25*

Step f: Add the fraction parts. The exponent of the result remains the same:

53 +573426
53 +008934
53 +582360

Step g: Repack the result into the floating point format:

+ 53582360

*These digits are lost except in double-precision operations. Alternatively, we could
round the number up when the leftmost digit is 5 or greater. This truncation or rounding
results in unavoidable computational error.

Complications with Addit ion and Subtraction

This process clearly works for the example given. However, two complications
can arise that require two additional steps.

The first problem is that the sum of two numbers may require more digits
than either of the original numbers. For example, suppose we add + 53573426
and 53698421. Applying steps a through e, we find that no shifting was
necessary and we get:

53 +573426
53 +698421

Now apply step f:

53 +573426
53 +698421

+ 1271847

We now note that the resulting fraction part has more than six digits. This
would prevent us from repacking the word into an eight-digit register. The solu
tion is to shift the fraction part one place to the right and add 1 to the exponent
as follows:

Step f1: 54 +127184J7*

Step g: Repack the result into the floating point format.

+ 54127184

The second problem is in a sense the opposite. This occurs with subtrac
tion, or adding numbers with unlike signs. Again steps a through e are the same;
but when we perform the subtraction at step f, we may end up with fewer than
six digits. For example, if we add + 53573426 and - 53573213, we would have
the following at step f:

53 +573426
53 -573213
53 +000213

Note that if we repacked this number, the result would not be normalized. We
must therefore normalize the result to get:

Step f2. 50 +213000

Note that the trailing zeros indicate a loss of accuracy. This usually happens

*This digit is lost. It could be saved with double-precision arithmetic or used to round up
the result to +127185. This is similar to what happens in step e and also contributes to
unavoidable error.

when two nearly equal numbers are subtracted. Step f2 must take into account
that the result could be zero. In that case, the normalized form is:

00 + 000000

Multiplication and Division

The rules for floating point multiplication and division come straight from the
rules of scientific notation. When you multiply, you add exponents; when you
divide, you subtract exponents. The fraction parts are either multiplied or
divided. For example:

(0.5 x 10 1 5) x (0.8 x 10 4) = (0.5 x 0.8) x 10 1 5 + 4 0.4 x 10 1 9

Similarly:

(0.4 x 10 1 9) H- (0.5 x 1 0 1 5) = (0.4 -5- 0.5) x 10 1 9 " 1 5 = 0.8 x 10 4

The rules for multiplying floating point numbers are as follows:

Step a: Align the two numbers one above the other:

+ 65500000
+ 54800000

Step b: Unpack the numbers as for addition:

65 +500000
54 +800000

Step c: The fractions are then multiplied. No adjustments are necessary for
the exponents or fraction parts (note where the decimal point occurs
in the result, that is, 0.50 x 0.80 equals 0.4000):

65 +0.500000
54 x +0.800000

+ 0.400000

Step d: The exponents are added, but each exponent has an excess of 50, so
the result would have an excess of 100. Therefore we must subtract 50:

65
+ 54

119
- 50

69 +400000

Step e: The result is then repacked:

+ 69400000

Since the fraction parts are always less than 1, the product of two fraction
parts must be less than 1. Consequently, the problem that arose in the example
of step f i in addition does not arise. However, the product could be smaller than
0 .1 . Therefore, normalization is sometimes necessary. This operates the same
way as for step f2 of addition. For example, if +51150000 is multiplied by
+ 52200000, we have:

Steps c and d: 51 +150000
+ 52 x +200000 (Note tha t0 .15 x 0.20

103 is equal to 0.0300)
- 50

53 +030000

Normalization is needed to get:

Step d1: 52 +300000

producing a result of + 52300000. Note that the example is, in fact, 1.5 x 20 =
30.

Division operates in much the same form as multiplication. The details of
division are left as an exercise for the reader.

Discussion

This floating point representation may seem awkward. From left to right, a
floating point number consists of the sign of the fraction, a two-digit exponent
in excess 50 representation, and a six-digit fraction. This format was chosen to
simplify the process of comparing two floating point numbers.

Assume that we wish to determine if a floating point number X is larger
than a floating point number Y. This can be done by computing Y - X with
floating point subtraction and testing to see if the result is negative. However,
there is a faster and easier way. Treat the representations of X and Y as if they
were signed 8-digit integers and compute Y - X using integer subtraction. If
the resulting integer is negative, then X (as a floating point number) is larger
than Y. For example, assume that X equals 10.0 and that Y equals 1.0. The
floating point representations of X and Y are +52100000 and +51100000,
respectively. Subtracting +52,100,000 from +51,100,000 as signed integers
yields -01,000,000 indicating that X (10.0) is larger than Y (1.0). (In this case,
X and Y are both positive and the exponent of X exceeds the exponent of Y by
1, so X is larger.)

The reader should verify that this shortcut works for any pair of floating
point numbers provided that both numbers are normalized. In order for this
shortcut to work, the exponent must be placed between the sign of the fraction
and the fraction itself. This is also the reason that an excess representation (in
this case excess 50) is used for the exponent. On computers that do not have a

machine language instruction for comparing floating point numbers, variations
of this shortcut are used to generate efficient software for comparing floating
point numbers. On computers that have such instructions, variations of this
shortcut are used to simplify hardware design.

E X E R C I S E SET 1

1 Convert the following numbers into the normalized, decimal, floating point
representation as described in this chapter:

(a) 5 (b) 374

(c) 3.14159 (d) 0.0005

(e) 0.8035 x 10 2 3 (0 0.4923 x 10" 1 5

(g) 8.496 x 10 1 8 (h) 954.2 x 10" 1 2

2 Convert the following decimal floating point numbers to scientific notation
and to ordinary decimal notation (no exponent):

(a) +51300000 (b) -53742000

(c) +50894026 (d) +45805216

(e) -56293465 (0 -57100000

(g) +38950125 (h) -64790881

3 Perform the indicated operations on the following pairs of decimal floating
point numbers. Show your steps along the way. Express your results as a
normalized floating point number:

(a) +53215904 + +53116895 (b) +52159099 + +49889621

(c) +50912065 - +54891126 (d) -52998046 + -50479138

(e) -53885304 53885034 (0 +57900000 x +48800000

(g) +51426931 x -44357926 (h) -43250000 x -41250000

(i) -55255000 - +51500000 G) -41800000 - -44200000

4 List all the steps for performing floating point division. What conditional
steps are there? Is normalization a problem (assume that the operands are
normal)? Does fraction part overflow occur as in step f, of addition?
Assuming that the operands are normalized, how much overflow can
occur?

5 A popular method for computing square roots on the computer is to use the
so-called Newton-Raphson formula. To compute the square root of TV, you
guess a value (call it X). Then you apply the formula

1 N
.Ynew = — (Xo\d + - J } L)

2 v A^ld

The new value of X will be much closer to the correct square root than the
old value. The formula can be applied repeatedly to obtain an answer that is
as accurate as desired. The speed of the method depends upon the number
of times the formula needs to be applied, and this depends upon the ac
curacy of the original guess and final accuracy desired.

(a) Mathematically, what is the square root of a number expressed in
scientific notation? That is, how are the exponent and fraction of the
square root related to the exponent and fraction of the original
number?

(b) How could the answer to part (a) provide a simple method for obtain
ing a good guess for the square root of a floating point number?

(c) In the worst cases, how far is your guess from the correct answer?

(d) Using the worst cases, how many iterations of the Newton-Raphson
formula are needed to produce an answer that is accurate to six digits?
(Use a calculator or a computer to test the worst cases.)

*6 Write a PDP-11 assembly language program that reads a character string
representing a signed decimal number. The string will consist of a sign,
decimal digits, and an imbedded decimal point, such as +89.462,
- 0 . 0 0 9 4 6 1 , and so on. The program will then print out the equivalent nor
malized, decimal, floating point representation, such as +52894620,
- 48946100, respectively. Your program should loop to work out at least 20
different examples. Hints:
(a) Ignore leading zeros (except as noted in hint c).

(b) Stack up the six digits in an array of six bytes.

(c) Count digits before the decimal point or leading zeros after the decimal
point in order to determine the exponent.

*7 The same as exercise 6, except that your program will accept any legal FOR
TRAN REAL constant, including E notation.

12.4 P D P - 1 1 F L O A T I N G P O I N T N U M B E R S

Binary Floating Point

PDP-11 's with the FIS (Floating Point Instruction Set) option have instructions
for adding, subtracting, multiplying, and dividing floating point numbers.
PDP-1 Ts without FIS use software to simulate the floating point instructions.

Floating point numbers in the PDP-11 operate in much the same way as
those described in the previous section. However, since the PDP-11 is a binary
computer, floating point numbers are encoded in binary rather than decimal.

This means that the fraction is expressed as a binary number, and that the expo
nent is a power of 2 rather than a power of 10.

Binary Fractions

Recall from Chapter 2 the binary number

Binary fractions work much the same way, but with negative exponents. There
fore:

Binary fractions may seem strange at first, but in fact they are in quite common
use—the normal division of inches in the English measuring system is into
binary fractions. It would not be unusual for a machinist to have a drill with a
diameter of 35/64 of an inch. Most home carpentry sets have drills measured in
sixty-fourths of an inch up to 1/4 inch.

One point to note is that not all fractions can be expressed as a binary frac
tion exactly. We should expect this because of our familiarity with decimal frac
tions. We all know that 1/3 cannot be expressed in decimal. The best we can
do is something like 0.333333. This is not exact. We can make it better by add
ing three's , but no finite number of three's will make the number exact. As we
would expect, it is also impossible to express 1/3 exactly in binary. However, it
may come as a surprise that the fraction 1/5 cannot be expressed exactly either.
We are used to decimal where 1/5 = 0.2; but in binary, we cannot do this. The
following table shows how 1/5 can be sandwiched by binary fractions but will
never be equal to any of them:

Floating Point Representation

As in decimal, binary floating point numbers have an exponent and fraction.
For example, if the exponent were + 9 and the fraction were + 35/64, we would
have the number

Now let us look at how these are distributed in a floating point word. First
we need a sign for the fraction. One bit suffices for this. Next we need an expo
nent. If we use a range from 2" 1 2 8 to 2 + m , this is roughly equivalent to a decimal
range from 10" 3 8 to 10 + 3 8 —a range that is fairly adequate. Since the range from
- 128 to -h 127 has 256 steps, eight bits are needed for the exponent.

The PDP-11 uses a method for signs for the exponents that is similar to the
excess 50 used in the previous section. It is, however, an excess 128 decimal
(10000000) 2. Therefore, we have the following table for exponents:

Decimal Binary Octal
Exponent Representation Representation

+ 127 11111111 377
+ 1 10000001 201

0 10000000 200
- 1 01111111 177
- 1 2 8 00000000 000

If the sign requires 1 bit and the exponent 8, then all that would be left in a
16-bit word for the fraction is 7 bits. This gives barely two significant digits.
Clearly this is not enough for any serious computat ion. Therefore floating
point words consist of two PDP-11 words or 32 bits. This allows 23 bits for the
fraction part .

However, the PDP-11 designers have found a clever way to add an extra
bit, making 24 bits for the fraction part . Recall that in the normalized floating
point representation, the leading digit of the fraction is never zero. Now, in the
binary system, the only two possibilities are 0 and 1. Therefore, if we exclude 0,
the leading digit must be 1. If the digit is always 1, we need not explicitly say so
on every number. Therefore, this bit is left out and is called the hidden bit.

The only problem with assuming that a certain bit is always 1 is that we
cannot represent 0. The PDP-11 gets around this by reserving the expo
nent - 1 2 8 to mean that the number is 0. Now let us look at the example
+ 35/64 x 2 9 :

The sign bit is 0 for + (1 for -) .
The exponent is 10001001 for + 9 .
The fraction is 0.100011000000000000000000 for

Packed together into 32 bits, this becomes:

0 10001001 00011000000000000000000
Sign Exponent Fraction

(Note: The leading 1 is hidden)

Stored as two PDP-11 words, this is:

Binary Octal
0100010010001100 042214
0000000000000000 000000

The FIS Option

There are several ways that floating point numbers can be handled in PDP-11's ,
depending upon the model. Some models have no floating point operations,
and all must be done in software. Newer or more exotic processors such as the
PDP-11 /23 , 11/34, 11/45, 11/50, and 11/70 have an extensive set of floating
point instructions available. The older or more modest machines such as the
PDP-11 /03 , 11/40, and the LSI-11 can optionally have four floating point in
structions. This is known as the Floating point Instruction Set or FIS option.
These instructions are:

FADD Floating add

FSUB Floating subtract

FMUL Floating multiply

FDIV Floating divide

These instructions operate in essentially the same fashion, where two
floating operands are combined to form a floating result. The floating
operands and result are in the 32-bit format described previously.

The two operands must be placed in a four-word area anywhere in memory
called the floating point operand stack. The organization of the stack is as
follows:

First location—High part of second operand

Second location—Low part of second operand

Third location—High part of first operand

Fourth location—Low part of first operand

So that the instruction can know where the stack is, a register R0-SP must be
used to point to the top of the stack (the first location).

After the instruction is completed, the result will appear in the third and
fourth locations of the stack, and the register will be adjusted to point to the
third location of the stack. Since the use of the operand stack is consistent with
the regular PDP-11 stack, the SP can easily be used for pointing to the operand
stack, making it reside on top of the regular stack. Figure 12.4 shows a simple

set of instructions for accomplishing the computation equivalent to the FOR
TRAN statement X = Y + Z.

Figure 12.4 Floating Point Sum of Two Numbers

MOV Y + 2 f - (S P) ;PUT Y ON STACK
MOV Y , - (S P)
MOV Z + 2 , - (S P) ;PUT Z ON STACK
MOV Z , - (S P)
FADD SP ;Y+Z
MOV (S P) + f X ;MOVE RESULT TO X
MOV (SP)+,X+2

X: .BLKW 2 ;LOCATIONS FOR X
Y: .BLKW 2 ;LOCATIONS FOR Y
Z: .BLKW 2 ;LOCATIONS FOR Z

The condition codes N and Z are used to indicate whether the floating
point result is negative or zero. Errors can occur from such things as trying to
divide by 0, or creating too large or too small a number. These errors cause a
trap or simulated interrupt to a vector at location 244. (See Chapter 11 for an
explanation of interrupts and vectors.) If you are using an operating system
such as RT-11, an error message will be printed indicating the error. The four
instructions are summarized in Figure 12.5. The op codes for these instructions
occupy the upper 13 bits of the 16-bit word, leaving 3 bits to designate the
register that points to the floating point operand stack. The symbol R is used to
indicate this place in the op code.

Figure 12.5 The Floating Point Instruction Set

Mnemonic Op Code Instruction N Z V C
FADD 07500R floating add * * 0 0
FSUB 07501R floating subtract * * 0 0
FMUL 07502R floating multiply * * 0 0
FDIV 07503R floating divide * * 0 0

Floating Point Constants

Floating point constants can be entered in assembly language using the
.FLT2 directive. This operates like the .WORD directive, except that its argu
ment is a FORTRAN-style REAL constant. A two-word floating point number
will be placed in the next two locations to be assembled. For example:

X: .FLT2 3 .579E-3

will cause the two-word floating point equivalent of 0.003579 to be placed in
locations X and X + 2, respectively. Another directive, .FLT4, allows one to
enter four-word, double-precision floating point numbers into the program.
However, the FIS instructions do not use double-precision operands. Therefore
these numbers can only be used with software operations, or with the Floating
Point Processor of the larger PDP-11 's such as the 11/45 and 11/70.

E X E R C I S E SET 2

1 Show how the following numbers would appear in the PDP-11 floating
point format. Show your answer both as 32-bit binary strings and as pairs of
16-bit words in octal.

(a) 1/2 (b) 893 / 1024 x 215

(c) -977 / 1024 x 2 - 2 0 (d) 3.125

(e) 0.2 (0 0.0005

2 The following pairs of PDP-11 words shown in octal represent floating
point numbers. Show them as 32-bit binary numbers and as decimal
numbers:

(a) 040200 000000 (b) 140720 000000

(c) 037060 000000 (d) 042513 460000

(e) 040052 525252 (0 140327 651342

3 Using the FIS instruction set, write FORTRAN callable subroutines that
add, subtract, multiply, and divide floating point numbers supplied as real
arguments. Write a FORTRAN main program that calls and tests your
subroutines, and then execute it.

4 See exercise 5 on page 274. Write a FORTRAN-callable subroutine that
computes square roots using the Newton-Raphson formula:

Your subroutine should return six real (floating point) values:

(a) Your initial guess at the answer.

(b) A^new after one application of the formula.

(c) Ajnew after two applications of the formula.

(d) Xnew after three applications of the formula.

(e) Aiiew after four applications of the formula.

(0 Aiiew after five applications of the formula.

Write a FORTRAN main program that calls and tests your subroutine for a
wide variety of values that vary by many orders of magnitude, such as 10 2 0

and 1 0 - 2 0 . Compare all six of your returned values with that returned by the
standard SQRT function. If you use the initial-guess strategy outlined in ex
ercise 5 on page 274 you should converge on the correct answer in three or
four applications of the formula. (Your answer may differ very slightly
from the SQRT value due to round-off or truncation errors.)

*5 Write a FORTRAN-callable subroutine that adds two floating point
numbers without using FADD or any of the floating point instructions.
Write a FORTRAN main program that calls and tests your subroutine for
several values.

*6 Write a program that reads decimal numbers and converts them to PDP-11
floating point format. The program can either be tested by linking to a
FORTRAN main program or by comparing against a table generated by
.FLT2 directives. Optionally, your program can accept the following input
types which are listed in order of increasing difficulty:

(a) Unsigned whole numbers (no sign, no decimal point)

(b) Signed whole numbers

(c) Signed numbers with an imbedded decimal point, such as 53.742

(d) Full E format, such as 42.7E-15

(Hint: See Figure 8.10 on page 188.)

12.5 E X T E N D E D I N S T R U C T I O N SET O P E R A T I O N S

The extended instruction set (EIS) is an option available on the LSI-11 and
some of the larger PDP-11 's . When this option is installed, the programmer can
use certain arithmetic instructions, such as multiply, divide, some shift instruc
tions, and exclusive OR (XOR).* The use of these instructions eliminates the
need for the slower, programmed operations (see Chapter 6). The extended in
struction set consists of the following five instructions:

MUL Multiply

DIV Divide

ASH Shift arithmetically

ASHC Shift arithmetically, combined

XOR Exclusive OR

*Some processors may accept the exclusive OR (XOR) instruction even though the rest of
EIS is not present. Its inclusion here is primarily because the format of XOR is essen
tially the same as the other EIS instructions.

EIS Format and Exclusive OR

As with the floating point instructions, there are not enough bits in the PDP-11
word to allow these instructions to address two general mode operands. To get
around this, these instructions address one general register, and one general
mode operand. Thus the format for the EIS instructions is a 7-bit operation
code, a 3-bit register designator, and a 6-bit general mode operand designator.
To see how this works, let us look at the XOR instruction, which is the simplest
of this group.

In several ways, the XOR instruction is similar to the BIS instruction.
First, both are bit-by-bit operations in that each bit of the result is determined
by looking at the corresponding two bits of the input operands. Second, the
rules for combining the bits are similar. In the BIS instruction, the resulting
destination bit is a 1 if either the source bit is a 1 or the destination bit is a 1 or
both the source and destination bits are 1. In fact, the similar instruction on
many machines is called the OR instruction because of its similarity to the
logical OR operation. In logic the exclusive OR means one or the other but not
both. As a result, the XOR instruction sets the destination bit to 1 if either the
source bit or the destination bit (but not both) is equal to 1. If both bits were Is
(or Os), the resulting bit would be 0. The following example illustrates the
operation:

Binary Octal
Source operand 0 000 001 010 011 100 001234
Destination operand 0 000 001 001 001 001 001111
New value in destination 0 000 000 011 010 101 000325

Other than the slight difference in operation itself, there is a major dif
ference in use. BIS can have any general form of operand for its source and
destination, for example, BIS #777, (R3)+. However, the XOR instruction can
only have a register for the source operand. For example:

XOR R0,X

XOR R1,(R3)+

XOR R2,R4

Note that the XOR instruction does not have a byte counterpart.

Multiplication

Multiplication is somewhat more complex. Recall that if two 16-bit quantities
are multiplied, the result may require as many as 32 bits. The PDP-11 multiply
instruction may be used to multiply together two 16-bit signed (in two's comple-

ment) numbers to yield a signed 32-bit product. The product occupies a pair of
processor registers. As the following shows, the register on the left, which con
tains the high-order bits of the product, must be an even-numbered register.
The register on the right, which contains the low-order bits of the product, must
be the higher-numbered register (which must, of course, be an odd-numbered
register):

In order to obtain a 32-bit product, one of the 16-bit numbers is placed in
the even-numbered register with an instruction such as MOV. The MOV is then
followed by the MUL instruction. The source operand of the MUL instruction
is, of course, the other 16-bit number. The destination of the M U L instruction
must be the even-numbered register of the register pair. For example, if 3002 is
multiplied by 5000, the octal result is 17012000. Thus, the following program
segment:

MOV #3002,R0
MUL #5000,R0

will cause 012000 to be left in R1 , and 000074 to go into R0. Note that the result
in R0 may look a bit odd unless we recall that PDP-11 words do not divide
evenly into octal digits. Thus, the problem about unpacking double-precision
words is similar to unpacking bytes as shown in Chapter 8 (see page 171). The
result may be clearer in binary:

(3002) 8 = 11000000010
x (5000) 8 = 101000000000

111100 001010000000000
(000074) 8 (012000) 8

In order to get a full 32-bit result, the destination register must be an even-
numbered register, such as R0, R2, or R4 (but not R6 = SP). If you are sure that
the magnitude of the result is less than 2 1 5 , or if you are content with the low-
order bits, an odd-numbered register can be used. The 16-bit result will then oc
cupy that single register. In either case, the C bit is set if the result extends (or
would extend) into the high-order word. The N and Z bits are used in the usual
fashion. The V bit is always cleared, because the result can never overflow 32
bits.

Division

Division is essentially the opposite of multiplication. A 32-bit signed dividend is
divided by a 16-bit signed divisor to produce a 16-bit signed quotient. Since

division may not come out even, a 16-bit remainder is also produced. As with
multiplication, the 32-bit dividend occupies an even register and the next odd
one. The least significant part is in the odd register. However, since division
always requires a double-precision dividend, the divide instruction must always
refer to an even register.

The results appear in these same registers. The quotient is in the even
register; the remainder is in the odd register. The remainder is computed so that
its sign is the same as the quotient, and its magnitude is less than the divisor.
The Euclidean formula applies so that:

The divisor is a general operand, so the following instructions would divide
7005 by 100 in octal:

The quotient 000070 would be in R0, and the remainder 000005 would be
in R l .

The N and Z bits behave in the normal manner. The V bit may be set,
because if the divisor is too small (in magnitude), the quotient might be too
large (in magnitude) to fit in a 16-bit signed word. The C bit is set if you attempt
to divide by 0.

Negative Numbers

In both multiplication and division, signed operations are dealt with according
to the normal rules of algebra. In other words, the product of two positive, or
two negative, numbers is positive. The product of a positive and a negative
number is negative. Similarly, with division, the quotient and remainder will be
positive if the dividend and divisor have the same sign. They will be negative if
the dividend and divisor have opposite signs. (Note that a possible exception to
this rule occurs when either the quotient or remainder is zero. However, the rule
still applies to the nonzero member of the pair.)

A second consideration has to be kept in mind with the 32-bit numbers.
These really just operate as ordinary two's complement numbers, as described
in Chapter 6. Carries and borrows propagate through all 32 bits, and the left
most bit of the low-order part is not the sign but is just another bit in the
number. The sign bit will extend to the right as far as necessary, as in all two's
complement numbers. Thus, for example, the 32-bit binary representations of
+ 5 and - 5 appear as:

Dividend = Divisor x Quotient + Remainder

CLR RO ; CLEAR THE 16 HIGH ORDER BITS
MOV #7005 , R1 ;DIVIDEND IN THE 16 LOW ORDER BITS
DIV #100,R0

Extended Shift Instructions

The arithmetic shift instructions shown in Chapter 6, ASL and ASR, can only
shift left or right one place. This means that the programmer must use repeti
tion or a loop for multiple shifts. The extended instructions ASH and A S H C
both allow an arbitrary amount of shifting, either left or right. These instruc
tions can only be used to shift the contents of general registers, but the amount
of shift is a general operand. For example:

ASH #6,R0

will cause the contents of RO to be shifted left six bit positions. Negative
numbers cause a right shift so that:

ASH # -5 ,R3

will cause the contents of R3 to be shifted right five places.
In effect, the ASH instruction operates like repeated operations of ASL or

ASR (see Chapter 6, page 130 ff). Therefore the effect is like multiplying or
dividing by a power of 2. For example:

ASH #6 , R0 Multiplies R0 by 64

ASH # - 5 , R3 Divides R3 by 32

Carefully review how fractions are truncated when shifting two's complement
numbers (see pages 131-132).

For either a left or right shift, the last bit shifted out is left in the C bit. The
N and Z bits show whether the result is negative or zero. A left shift can cause
overflow, because the number is becoming larger. Note that when overflow
occurs with two's complement numbers, there is an unexpected sign change.
Therefore, the V bit is set if the sign changes at any time during the shifting.

Because the hardware only examines the low-order six bits of the shift
count, the values must be in the range from - 32 to + 3 1 . This is not really too
much of a problem since a shift of 16 or higher shifts out the entire number.

The ASHC (Arithmetic SHift Combined) instruction is essentially the
same except that it operates on two registers that form a double-precision
number. As with multiplication and division, the more significant part is in the
even-numbered register, and the least significant part is in the next register. For
example:

ASHC #14,R0

would multiply the double-precision number in R0 and R1 by 4096. As with
ASH, negative shift counts produce right shifts.

Because of a quirk in the way that A S H C works, it can be used with an odd
register to get a right rotate. For example:

ASHC #-15 ,R3

would rotate the contents of R3 right 13 (or 158) places. Note that a right rotate
of 13 is the same as a left rotate of 3. The extended instruction set is summarized
in Figure 12.6.

Figure 12.6 The Extended Instruction Set

Mnemonic Op Code Instruction Operation N Z V C
MUL 070RSS multiply r - r x s * * 0 *
DIV 071RSS divide r - r/s * * * *
ASH 072RSS shift arithmetically * * * *
ASHC 073RSS arith shift combined * * * *
XOR 074RDD exclusive OR d - r ^ d * * 0 -

E X E R C I S E SET 3

1 What would be the result of the exclusive OR operation (XOR) on the fol
lowing pairs of operands (given in octal)?

(a) 1 0 1 0 1 0 (b) 1 2 3 4 5 6
1 1 0 0 1 1 0 1 0 1 0 1

(c) 1 2 3 4 5 6 (d) 1 2 3 4 5 6
1 2 3 4 5 6 0 5 4 3 2 1

(e) 1 7 7 7 7 7 (0 0 5 0 3 0 2
0 1 7 4 3 2 1 7 7 7 7 7

2 Do the following two program segments always store the same value in Z? If
so, explain why. If not, show an example where they do not. (Assume that
X, Y, Z are memory locations.)

(a) MOV X,R0 (b) MOV X,R0
MOV Y,R1 MOV Y,R1
XOR R0,R1 XOR R l f Z
XOR R1,Z XOR R0,Z

3 (a) Assume that your computer has no XOR instruction. How could you
reprogram the following line of code to work on your machine? (Be
careful not to destroy the contents of any register, even R0.)

XOR R0,X

(b) Write a macro for XOR that will work for any valid substitution for the
parameter X, for example, (Rl) + .

4 Multiply the following pairs of 16-bit numbers (shown in octal). Show the

result as a 32-bit binary number, and as a pair of 16-bit words in octal. Com
pute the result as the MUL instruction would.

(a) 000024 x 000011 (b) 000024 x 100001

(c) 000024 x 177777 (d) 177777 x 177777

(e) 177776 x 177677 (0 123456 x 010000

5 (a) Figure 8.10 on page 188 shows a program for reading decimal numbers.
Simplify this program by using the MUL instruction as appropriate.
Combine the program with output and control as necessary to execute
and test it.

(b) Modify the program to accept input in any base from 2 through 10. Also
execute and test it.

6 Write a FORTRAN-callable subroutine to raise an integer to an integer
power, for example I**J. Write a FORTRAN main program that tests your
subroutine. Link them and execute some tests.

7 Use the DIV instruction to construct a routine for outputting decimal
numbers. Combine that with the input routine from exercise 5a above. Test
your program by reading decimal numbers, adding them, and printing the
results.

8 (a) Write and test a program that takes two double-precision (32-bit two's
complement) integers and multiplies them producing a 64-bit result.

(b) Include multiple-precision decimal input and output routines in your
program.

CHAPTER 13

ADVANCED
ASSEMBLY
LANGUAGE TOPICS

13.1 I N T R O D U C T I O N

One topic that becomes clear when studying assembly language is often hidden
when using high-level language. This is the relationship between programs and
data. We have seen in previous chapters that instructions (the program) and
data utilize the same memory in the computer. In fact, this is true not only of
the PDP-11 , but also of most general purpose computers, both large and
small.*

In effect, this means that there is little difference between programs and
data. This chapter will look at the ramifications of this, and we will see how
various parts of an operating system treat programs that people write as
data. In fact, your program can always be thought of as data that are input to
one of various processors. These processors have all been used in the material in
the previous chapters, but the processes have not been fully identified. This
chapter will proceed in that direction. In addition, we will look at some topics
involved with program manipulation, such as writing position-independent
code.

*Some special purpose microcomputers such as the Texas Instruments TMS-1000 have
separate program and data areas. However, many of the principles described here still
apply.

13.2 P R O G R A M F O R M A T

General Forms

An assembly language or FORTRAN program normally goes through various
stages of translation before it can be executed. At each stage, the program is
treated as data in a specific form. We will look at each of these forms and their
structures, as well as how the various processors deal with them.

On the PDP-11 , assembly language and FORTRAN programs have the
following forms:

1. Source code. This consists of the alphabetic strings that make up the state
ments of the language.

2. Object code. This is a translated program with all operations converted to
binary, PDP-11 op codes. However, although some addresses are trans
lated into binary addresses, others are not. This is because the assembler
(compiler) does not assign values to global symbols, and also because pro
gram addresses may need to be relocated. As a consequence, information
must be provided to tell the linker how to complete the program translation.

3. Core image file or absolute loader file. The linker takes one or more object
files, relocates the program areas so that they all will occupy unique, usable
areas of memory. Global symbols are assigned binary values. The result is a
core image or absolute loader file that contains binary codes which can be
loaded into memory without further modification.

4. A loaded program. This is a specified area of memory in the computer
which contains a program that is ready for execution. The difference be
tween a loaded program and a core image file or an absolute loader file is
where each resides. The loaded program is in memory, whereas the files
reside on some input /output or mass storage media. There is a small pro
gram called the loader which loads a program from a core image or ab
solute loader file into memory.

Source Code

Source code in the PDP-11 consists of an indefinitely long string of ASCII
characters. This string is broken into pieces called statements or lines. The exact
format of a line of source code depends upon the language (such as assembly
language or FORTRAN). However, each line is terminated by one or more con
trol characters. In the PDP-11 , this is normally a carriage return/line feed pair.
Usually line lengths are limited to some fixed upper bound, such as 80
characters.

There are a number of processors that operate on source code. These are
programs that, in effect, treat the source code as data, that is, a string of

characters upon which to perform certain operations. Some of these programs
perform relatively simple operations, such as P IP which is a program for copy
ing a file from one place to another. P IP is used when you type a COPY com
mand (see Appendix D). Other programs such as the editor (see Appendix E) or
the assembler perform specific operations on the source text itself.

Source Editing

The editors TECO or EDIT are generally used to modify and update source
code. However, neither TECO nor EDIT are keyed into any particular
language; they can operate with any line-oriented ASCII text. The editors do
recognize carriage return/line feed pairs and form feeds as special, but other
characters are just treated as ordinary data . The way the editors work is that
they copy the entire program into memory as one big array of characters.
(Large programs may not fit and must be broken into pages, each of which is
edited separately.) The various edit commands are interpreted to cause the
editor to locate places in the array of characters and to insert or delete
characters from the array. Insertion and deletion are often slow, because the en
tire tail end of the array must be recopied in order to make or take up space.
However, the PDP-11 is fast enough so that the user does not usually notice any
delays unless inserts or deletes are repeated. When editing is finished, memory
is then copied back out to a mass storage file.

The Assembly Process

We should already be somewhat familiar with the assembly process because it
has been covered in various chapters from Chapter 4 on. However, certain
points come into focus if we look at the process in terms of data operations. As
with most processors, the assembler reads data from input files* and writes data
to output files. In its simplest operation, there is one input file that contains
source code. There are two output files. The first receives the translated pro
gram in object format, the object file. The second output file receives the
listing. Both files receive similar information, but there are some differences,
and the format is completely different, as we shall see in the next section.

As we have stated before, assembly on the PDP-11 is a two-pass process.
That is, the input file must be read all the way through by the assembler two
times. This is because the assembler cannot assign addresses to locations that
are defined later in the program. These are known as forward references, and
they occur in situations such as shown in Figure 13.1. The symbol N E X T is

*For our purposes here, we will consider a file to be a collection or string of data that
comes from or goes to some input/output device such as the card reader, the line printer,
a disk, or a tape.

referred to by the BGT instruction. However, the code for this instruction can
not be assigned because the assembler has not yet read the line that defines
NEXT. Although it might appear in this example that the assembler need only
look ahead a little to resolve the forward reference, we must remember that for
ward references may often reach ahead many pages in a long program.

Figure 13.1 A Forward Reference

BGT NEXT

NEXT:

The solution used on the PDP-11 is to look ahead once through the whole
program. During this first pass, the symbol table is created. The assembler then
uses a second pass to substitute numbers for names to create the machine
language program. The remarkable thing is that in the PDP-11 assembler, the
processes for pass 1 and pass 2 are almost identical. The main difference is that
during pass 1, all output is suppressed. If output were generated during pass 1,
there would be an undefined symbol error message for each forward reference.

During the second pass, the same process is repeated. However, now there
is already a complete symbol table left from the first pass. This symbol table
will contain the resolved values of all forward references. The object file and
listing can be output during the second pass, because there will not be any
undefined symbols unless the programmer really left them undefined.

It should be noted that the PDP-11 's use of a two-pass assembler is not the
only solution to the forward reference problem. There are other solutions. One
would be to insist that programmers avoid forward references. Most users
would not like this. Another solution is to produce code during the first pass,
making note of forward references. Then, when forward references are re
solved, the object file is fixed as dictated by the noted references. This is
sometimes called a one-and-a-half pass assembler. Still another solution is to
leave the resolution of forward references to another processor such as the
linker, the loader, or the processor itself through some indirect addressing
scheme.

Data for the Assembler

As we stated before, the input and output files for the assembler are really data
input and output for a program. Two of the three data files, namely the source
and listing files, are meant to interface to human users. Therefore these files are
character files that can be printed as characters on a page. The reader should
already be familiar with the appearance of both of these files. However, a file's
appearance to a person is quite different from the way that the computer must

access the data. We are used to looking at words, lines, and pages as single ob
jects. The computer is much more restricted, so that alphabetic data must be
processed by a program character by character, or at best in small strings of
characters (two or three at a time on the PDP-11).

As the assembler reads the source file, it must be able to distinguish the
various fields on a line. These are the label field, op code field, operand field,
and comments. There are two popular methods for identifying fields. One is to
use fixed fields that start at particular character positions on a line. For exam
ple, FORTRAN statements occupy positions (columns) 7 through 72 of a line.
Essentially, FORTRAN has this rule because the language was originally im
plemented in a punched card environment. Similarly, early IBM assemblers had
fixed field locations.

The second method to identify fields is to use punctuation such as the co
lons, semicolons, commas, spaces, and so on as used in the PDP-11 assembly
language. This method tends to be more desirable for some minicomputer ap
plications because input is from a teletypewriter, where character positions are
less easily identifiable than with cards. However, with modern data entry hard
ware and editing software, there is more flexibility. As a consequence, many
assemblers use a combination of partially fixed fields and punctuation. For ex
ample, the CDC COMPASS assembler requires labels to start in column 1, and
op codes to start later than column 1. Consequently, there is no need for a
colon.

We can now roughly outline the functions of the subroutine that performs
pass 1 and pass 2 in the PDP-11 assembler. At each cycle of its process, the
assembler fetches a line of source code and examines it character by character.
Initial spaces* are ignored. The first nonblank character is assumed to be the
start of a symbol. The assembler stores successive characters until a punctua
tion character is found. This is usually a space, a colon or an equal sign.

If the character is a colon, it means that the accumulated symbol is a label,
and an entry is made in the symbol table. The process then goes back to look for
initial spaces. If the terminating character is an equal sign, the assembler ex
pects to see an expression that is evaluated and entered in the symbol table. If
the terminating character is a blank, the assembler assumes that the ac
cumulated symbol is an op code . t Op codes and assembly directives are
grouped into classes. For example, A D D , MOV, and SUB are similar, and BR,
BEQ, and BNE are similar. Each class of op code has a special subprocessor
that deals appropriately with the operand field and generates object code. The
entire line of code is then terminated either by a carriage return/l ine feed or a
semicolon. Comments are, in effect, ignored by the assembler.

If this is the second pass, the generated object code (if any) is output to the
object file, and a listing line is generated. The listing line consists of a line

•Horizontal tabs and spaces are treated essentially the same.
t There is a provision for having expressions in the op code field. However, as it has not
been previously used, we will not introduce the concept here.

number, the octal value of the address, and the object code (with relocation
marks) followed by the source code as it appears on the input line for each line
of source code. This overall cycle repeats and is eventually terminated by proc
essing the .END directive.

Macro Expansion

The macro processor is virtually a separate entity that is, in effect, an extension
to assembly language. As described in Chapter 10, there are two parts to macro
processing: macro definition and macro calling or expanding. When a macro is
defined, the lines following .MACRO up through the corresponding .ENDM
are simply copied to a macro definition area.

When the macro is called, its name is in the op code field of an input line.
This causes the macro expansion processor to be entered. The expansion pro
cessor copies the lines of alphabetic text in the definition area to an expansion
area. While doing this, substitutable parameters are replaced by arguments in
the calling line. In most cases, this is a character string for character string
substitution with no interpretation.

After the expansion is complete, control is returned to the subroutine that
processes the assembly passes. However, there is a slight difference. If there is
any code in the macro expansion area, lines are fetched from there rather than
the source file. Otherwise the processor proceeds as before. This continues until
the expansion area is empty, and then lines will again be taken from the source
file. This action is the same on both passes.

If one of the lines of the macro expansion happens to be a macro call, the
same expansion process occurs, except that the expanded macro is always
added to the beginning of whatever may be left in the expansion area. This
allows macros to call macros, which call macros, and so on. There is no limit,
except for the memory limit of the expansion area. Because the macro expan
sion area operates as a push down stack, macros can even be recursive and call
themselves. Note that a recursive macro must have its call to itself in a condi
tional block so that the process can terminate.

E X E R C I S E SET 1

1 Write a program that prints out the contents of all its own locations (both
instruction and data) in both octal and binary. The program should also
print out the contents of the eight general registers in octal and binary as
well.

(a) Identify which parts of your program (if any) function as instructions
only, data only, or both instructions and data. Why?

Exercise Set 1 295

(b) Does your printout have any strange features? Why? Can anything be
done about them?

2 Write a simple editor program that operates somewhat like the BASIC
language system editor.

(a) Each line is preceded by a six-digit octal number.

(b) The lines can be entered in any order, but will be printed with increas
ing line numbers.

(c) If a line is entered with a line number that is the same as an earlier line,
the earlier line will be deleted.

(d) A line number of 177777 terminates input and causes the edited data to
be printed.

(e) To verify your program, input lines should be printed as well as edited
lines.

For example, the input:

000100 FIRST LINE
000070 SECOND LINE
000120 THIRD LINE
000130 FOURTH LINE
000120 FIFTH LINE
177777

would cause the following printout:

000070 SECOND LINE
000100 FIRST LINE
000120 FIFTH LINE
000130 FOURTH LINE

3 The following instructions would be found in different groups because of
the different operand structures they have:

CLR ADD BR JMP

JSR RTS EMT HALT

Describe the operands of each instruction, being as general as possible.
Describe what the assembler would do in its operand processing.

4 Describe the functions of the following assembly directives. What processes
would be performed during each pass?

.LIST .WORD .REPT .ASCII

5 Hand assemble the following program step-by-step showing the macro
definition area and macro expansion area as each line is processed.

.MACRO FAC A,N

. I F EQ, N
A = 1

. I F F
FAC A,N-1

A=A*N
.ENDC
.ENDM
FAC NUM.3
.END

Note: . IFF means "if false," and causes code to be assembled when the
original condition is false.

13.3 OBJECT C O D E

Binary Files

Since the source code and listings are meant to communicate with people, they
are generated as character files in ASCII . However, the object code is not
generally intended to be seen by humans, but rather to be read into the com
puter during linking. As a result, it is preferable to use a data format that is bet
ter for machine use than ASCII . Character files are not very compact because
they usually use spaces, tabs, and other punctuation to make the data readable
(by humans) . For example, a 16-bit binary number could be expressed as a
6-digit octal number with one space to separate it from the next number. This
would require seven ASCII characters or seven bytes of data. However, in its
internal representation, a 16-bit binary number only occupies two bytes. Conse
quently, data items are much more compact and can be transmitted much more
efficiently if they are kept in internal binary form. Files stored in this manner
are called binary files.

Normally the large amounts (or potentially large amounts) of data that are
stored in binary files need to be broken down into smaller pieces in the same
way that character files are broken into lines. These identifiable strings of data
are referred to as records. There are essentially two methods of segmenting a
binary file: fixed length records and variable length records. With fixed length
records, there is an understanding that all records are exactly a certain fixed
size. Consequently, there is no need to provide any control information to
delineate the data. For example, in RT-11. SAV files, every record is exactly 256
words (512 bytes) long, and the records are simply placed one after another.

In object files, as we shall see, there is a need for various kinds of data in
differing amounts . As a consequence, variable length records are more ap
propriate. There are two main ways to delimit variable length records. The first

Sec. 13.3 Object Code 297

is to use a length count which is part of the data in the record. This is similar to
what is done in FORTRAN with the H notation. (H stands for Hollerith.) For
example:

17HHERE'S A MESSAGE.

The initial 17H defines the length of the message that can contain any
characters.

The other method to delimit records uses control characters such as the
carriage control/l ine feed used with ASCII text. One problem with this method
is that it becomes awkward to deal with text that itself contains control
characters. This is especially important with binary files where any combina
tion of bits can be valid information. One solution to this problem is to use dou
ble control characters to indicate a single control character in the text. This is
used in FORTRAN when one wishes to use apostrophes to delimit a string that
contains an apostrophe. The previous example can be rewritten:

'HERE' 'S A MESSAGE.'

Two apostrophes in a row are treated as a single apostrophe of text.

Formatted Binary Files

The standard way to handle files with variable length records in the PDP-11 is
with formatted binary files. The PDP-11 formatted binary files use a length
count for specifying the length of a record. Because these files were originally
used extensively with punched paper tape, there are provisions for leader and
trailer, and unused gaps in the file that are probably not needed or used much
with more modern media such as disk or magnetic tape. The file is byte-
organized to allow text to be any number of bytes from none at all to over
65,000.* Odd-numbered lengths are acceptable and since these are binary files,
the text bytes can be any of the 256 possible combinations of eight bits. Figure
13.2 shows the general record structure.

The portions of the binary record are as follows:

Leader: To accommodate loading paper tape, a leader of blank tape is
allowed at the beginning of the file, and in fact, in front of any record. Files not
on paper tape do not need a leader and often start with the first byte of the
header.

Header: In order to signal the end of the leader, a nonzero byte is needed.
The PDP-11 uses two bytes, a 001 followed by a 000.

Byte count: The next item in the record is the byte count. This is a 16-bit
word that appears as the least significant eight bits followed by the most signifi-

*Usually sizes range from 1 or 2 bytes to no more than around 100.

cant eight bits in the normal PDP-11 fashion. The byte count is actually four
greater than the number of text bytes because the header and byte count are in
cluded in the count. Therefore, the minimum byte count would be 000004 in
dicating a zero length record.

Figure 13.2 Record Structure for Formatted Binary File

Text: The text can be virtually any length and its bytes can be any data. The
byte count indicates the actual length.

Check sum: In order to verify the accuracy of the transmission of the
binary data, a check sum is placed at the end of the record. If all of the bytes are
added together (using byte addition*), starting with the 001 byte in the header,
and including the check sum itself, the sum should end with eight bits of zero.
This is the same as an 8-bit two's complement zero. Note that the check sum is
an extra byte and is not included in the byte count. This means that if the text is
an even number of bytes, the total record size will be an odd number.

Trailer: A string of zero bytes can follow a record and would in effect
become the leader for the next record. Usually, there is no leader or trailer be
tween records. However, the last record must often be trailed by zeros. This is
because most PDP-11 devices operate with 256-word fixed length blocks. Con
sequently, the last record must be trailed out to use up the last block. Some
systems insert a one byte trailer when necessary in order to assure that all
records start on an even byte boundary. However, the present version of

*Because there is no ADDB instruction in the PDP-11, data must be shifted in order to
use the ADD instruction to add the bytes.

MACRO-11 does not do this. Thus if the text fields of a file consist of an even
number of bytes, every other record starts on an odd byte boundary. Figure
13.3 shows a formatted binary record that contains the text 123 005 377 000.

Figure 13.3 Formatted Binary Record

The Object Module

The object module is a formatted binary file that is produced by the assembler
during the assembly process. The object module contains all the binary machine
language produced by the assembler. However, additional information is
needed. Recall that assembly language programs are usually assembled so that
they can be loaded at differing places in memory, and so that several modules
for programs and subroutines can be linked together.

Therefore, the PDP-11 object modules normally have three areas. The
first provides general information about the program and its use of global sym
bols. The second is the translated machine language, and the third area tells
how the machine language must be modified in order to relocate the program to
any memory area, and where global addresses or parameters must be provided.
More specifically, these three sections are identified as the global symbol direc
tory, the text, and the relocation directories.

Global symbol directory: The global symbol directory is one or more* for
matted binary records. These records are made up of four word segments that:

1. Specify the length of the program and the lengths of all program sections
(as defined with .PSECT).

2. Specify the relative locations of all defined global symbols.

3. Name all undefined global symbols referred to in the program.

4. Provide miscellaneous information such as the program name from the
.TITLE directive.

*The present version of the assembler produces records no larger than 56 (base 8) bytes.
Consequently, a large global symbol directory will require several records.

Text: The translated binary language is called the text and consists of a
number of formatted binary records. Each record, which is called a text block,
contains the relative address where the text is to be stored as well as some binary
machine language.

Relocation directories: Each text block is optionally followed by a format
ted binary record that contains coded directions for modifying the preceding
text block. These are some examples of the kinds of directions that are found
in relocation directories:

1. Modify a given address in the preceding text block by adding the actual
program origin. Recall that the assembler normally assigns an origin of
000000 to programs and this is usually modified when the program is ac
tually loaded.

2. Replace a given address in the text block with a computed displacement
from the value of the program counter when the instruction is executed.

3. Replace an address with the actual location assigned to a global symbol.

There are other variations of these kinds of relocation, but they are too
numerous to discuss here.

The binary records in the object module all contain codes that identify the
type of record. In addition, there are codes to identify ends of sections, and the
end of the module itself. This allows several modules to be concatenated
(joined together) into a single file.

The Linking Process

Linking several object modules together into a single, absolute, machine
language program is essentially a two-pass process. This is required for the
same reason that assembly uses two passes (see notes on page 291). Global sym
bols may be used by one module, but not defined until a later module.

During the first pass of linking, allocating space and defining global sym
bols is performed. The information needed to do this is contained in the global
symbol directories of the modules. As the linker reads through the global sym
bol directories, it can allocate space in the computer 's memory based on the size
information provided for each program section. Then actual addresses can be
assigned, and global symbols are assigned absolute addresses. It then becomes
possible to perform the modifications specified in the relocation directories.

Thus, during the second pass, the text blocks are assigned actual, rather
than relative, addresses. Specific locations are modified in accordance with the
relocation directories. The result is absolute machine language that can be

loaded directly into a specified area of the PDP-11 memory and executed
without modification.

Program Sections

Program sections are blocks of code in a program that are used for some par
ticular purpose requiring that they have an integrity of their own. When pro
ducing hand-written code a programmer can avoid the use of program sections
by writing different pieces of the program on different pieces of paper. He then
arranges the sheets of paper by hand so that the code has the proper order. For
example, he would put definitions on one sheet, the main program on a second,
internal subroutines on another, then data blocks composed of words, and then
blocks of bytes. From time to time while writing the program, the programmer
might refer to one sheet or another. When done, he would enter the program
from the sheets in order.

When programs are generated automatically by some processor, such as
the macro expander or FORTRAN compiler, it is often useful to produce code
for these different blocks, and this can be done with program sections. Code
can be entered a few lines at a time into each program section using the .PSECT
directive. When the program is linked, the blocks of code are rearranged so that
they appear in the appropriate program sections.

Essentially, there are three major types of program section.* First, ab
solute sections are assigned an absolute location in memory. The addresses of
absolute sections and any global symbols defined in them are predefined during
assembly, and the linker does not need to process these addresses further. Sec
ond, there are concatenated sections. These are local blocks within a given pro
gram module that are not used by other program modules. They have names to
distinguish them, but the names are local to the module. Finally there are
overlaid sections. These are like FORTRAN common blocks and contain data
or instructions that are shared by several program modules. These sections have
global names so that the linker will allocate the same space for similarly named
sections from other modules.

During the first pass of linking, the linker must allocate space for the pro
gram sections. Recall that the global symbol directory of a module has the size
of each program section along with its type. The linker allocates the absolute
sections to the specified addresses, but keeps track of the address used so that
the relocatable sections can be moved out of the way. Concatenated sections are
placed one after the other and space is allocated for each differently named,
overlaid section. The linker now has a full memory map for this entire program,
which can be printed upon request, and we are now ready for pass 2 of linking.

*Actually, in the PDP-11, there are 5 binary attributes giving 32 different types of pro
gram sections. However, for most purposes, we can simplify the number to three.

Subroutine Libraries

Most systems operate with a library of preassembled (compiled) subroutines.
For example, in the RT-11 system, there is a system library that contains the
following kinds of subroutines:

1. Standard FORTRAN subroutines and functions like SIN, SQRT, EXIT,
and so on.

2. Internal FORTRAN subroutines and functions. These are automatically
called by more complex statements such as READ and WRITE. In fact, if
your PDP-11 does not have the extended instruction set, simple operations
such as multiplication and division will require a subroutine. In order to
avoid confusion with user subroutines, the internal FORTRAN subrou
tines all have odd global names containing periods or dollar signs such as
MUF$MS or CIF$.

3. Special subroutines. These are FORTRAN or assembly language-callable
subroutines for performing special PDP-11 functions. For example, there
is a FORTRAN subroutine that allows the programmer to perform a func
tion quite similar to the .TTYIN macro.

These subroutines are assembled into a special kind of object file that has
features which aid in searching for global symbols. The way this is used is that
at the normal end of pass 1 of linking, if there are any undefined global sym
bols, a library search is initiated. Recall that the global symbol directories con
tain lists of undefined global symbols as well as symbol definitions.

If there are any undefined global symbols, the library is searched for object
modules that define these symbols. As such object modules are found, they are
added to the program. Modules that do not define missing global symbols are
not added because this would make the overall program larger than necessary.

Note, however, that the modules added to the program may themselves
refer to undefined global symbols. These symbols have to be added to the list
that is searched for. Because of this, it is usually necessary to define these addi
tional global symbols later in the library so that it is not necessary to make
multiple passes over the library. As a consequence, the order of the object
modules in a subroutine library can be very important.

13.4 L O A D FILES

General Formats

The output from the linker is a file that can be directly loaded into memory by a
small, simple program. These are called load files. There are three main formats

for load files used by the PDP-11 systems. The first two are oriented to paper
tape systems, but can be used in other environments. The third format is
basically intended for use with disk systems.

The first format is called the bootstrap loader format. This is intended to
be read in by the paper tape bootstrap loader. This loader is virtually the
simplest program possible, consisting of only 14 words of code. The bootstrap
loader is usually loaded in by hand from the operator 's console. The normal use
for the bootstrap loader is to load in a more complicated loader called the ab
solute loader.

Bootstrap loader tapes are distinguishable by the fact that instead of a
blank leader, they have 351s punched for several inches as a leader. The nature
of the format can be determined by studying the code for the bootstrap loader
that is given on the PDP-11 programming card. This is left as an exercise for the
reader.

The second format is the absolute loader format. This format uses format
ted binary records as described on page 297. The text of each record consists of
a 16-bit address (two bytes) followed by a block of code that is to be loaded
starting at the given address. For example, consider a record that has the
following six bytes of text:

300 004 123 211 012 377

The two bytes 300 and 004 combine to be the word 002300. (Note that the
least significant byte is first.) Therefore the block of code will be loaded starting
at the address 002300. The byte-by-byte contents will therefore be:

002300 123

002301 211

002302 012

002303 377

The end of the file is identified by a short record that has an address, but no
code. The total formatted binary record will have a byte count of six. All other
records must have at least one byte of code and will have byte counts greater
than six. The address in the last record is called the transfer address and in
dicates where program execution is to begin. If execution is not desired, the
number 000001 is used for the transfer address. This is an odd number, and
therefore not a valid location to jump to . Note that if no symbol is placed on the
.END card of an assembly language program, 000001 is shown on the assembly
listing.

The third format is core image format. The core image file has a simple
structure of fixed length records of 256 words or 1000 octal bytes. This is the
size of a block of information on a disk. In the RT-11 .SAV files, block 0 is
loaded into locations 000000-000777. Block 1 is loaded into 001000-001777,
and so on. Reserved locations in block 0 give the length of the program and the
transfer address. These are locations 000050 and 000040, respectively. Other

locations in the range 000040 through 000057 are used for other system infor
mation as can be noted from the RT-11 handbooks.

Locat ions 000000-000777 are somewhat special. In part icular ,
000000-000377 are used for interrupt vectors, and 000400-000777 are normally
used for the stack. As a consequence, block 0 of a .SAV file is treated specially.
The remaining blocks, however, are simply placed into consecutive 256-word
blocks of memory.

13.5 P R O G R A M E X E C U T I O N

Hardware Operation

In Chapter 3, the instruction cycle was discussed in general terms. At this point,
it is intended to extend the concept in more detail. Figure 13.4 shows a general
flowchart for the instruction cycle of the PDP-11 , or in fact most computers.*

Figure 13.4 The Instruction Cycle

In the PDP-11 there are instructions of different numbers of words. Con
sequently, it may seem that updating the program counter is not a well-defined
operation. However, from the point of view of this flowchart, all instructions
are assumed to be one-word long, but the execution of the instruction may re
quire fetching additional woids from the program. Consequently, updating the
program counter means P C «- P C + 2.

Decoding the instruction may then appear to mean choosing from the
65536 possible 16-bit words. However, this is not the case, because certain pat
terns form groupings of similar kinds of operations. For example, the machine
language instructions 005037 and 005002 are both CLR instructions but have
different operand modes. Accordingly, the instructions on the PDP-11 are

*Some computers update the program counter after execution, that is, before the fetch.

grouped into single operand instructions, double operand instructions, and
others that fall into several classes. Some simple rules identify how the instruc
tions fall into these classes. First, all of the double operand instructions have a
second octal digit (bits 12-14) in the range from 1 through 6. If the second digit
is 7, the instruction is an extended instruction set or floating point instruction.
All other instructions have 0 for a second digit. The single operand instructions
have a third digit of 5 or 6.

Quite often the first digit (bit 15) indicates whether the instruction is a byte
or word instruction: 1 is for byte, 0 is for word. For example, 0050dd is CLR,
whereas 1050dd is CLRB. However, there are some exceptions such as 16ssdd,
which is SUB.

The number of bits used in distinguishing the op codes varies for the dif
ferent classes of instructions. For example, double operand instructions use
only 4 bits, single operand instructions use 10 bits. The remaining 12 or 6 bits
are used for determining the mode and register of the operand(s). Nonetheless,
each instruction must have a unique code and this can be seen from the
"numerical op code l ist" on the PDP-11 Programming Card at the front of the
book.

The different codes are decoded by a logic circuit that activates the
necessary circuit for executing each instruction.

Position-Independent Code

One particular advantage of the PDP-11 architecture lies in the ability to use the
program counter as an ordinary index register. This allows addressing data and
instructions relative to where the program is currently executing. The advan
tage of being able to do this is that when programs address their own locations
relative to the program counter, the relative addresses do not change if the pro
gram is relocated.

For example, assume that a program is executing an instruction with the
program counter equal to 001024, and that instruction is accessing data at
001546, the relative location from the program counter is 001546-001024 =
000522. In fact, this is the same kind of addressing used with the PDP-11 mode
67. (See Chapter 7 page 158.) Now if the program is relocated 1000 locations
higher, both the program counter and the data address will move to 002024 and
002546, respectively, but the difference will remain at 000522. As a result, this
program could be loaded anywhere in memory without requiring this particular
instruction to be modified. If the entire program is written this way, it is said to
be in position-independent code. In order for a program to be in position-
independent code, the programmer must take special care in using only those
instructions that are position-independent. The following set of rules gives the
most important cases:

Rule 1: Addressing a location within your program. As shown before, all ad
dresses in your program must be accessed using mode 67 addressing.

However, since this is the normal mode (AMA not enabled), nothing
special needs to be done. MOV A,B works all right.

Rule 2: Addressing a fixed location in memory, or a device register at a fixed
address. Mode 67 no longer works, because the P C added to a fixed
displacement addresses different locations when the program is
moved. However, mode 37 works, because this is followed by the ac
tual (fixed) address. Mode 37 can be forced by placing @# before the
address. For example, assume that PRS and PRB are fixed locations
in memory and that A is an address inside your program. Then both
TSTB @#PRS and MOVB A,@#PRB are position independent.

Rule 3: Branch and jump instructions. Branch instructions are program
counter relative over a short range and give no added problems. The
jump instructions use general operands and therefore use either mode
67 or 37, depending on whether the jump is within the program or to a
fixed place in memory.

Rule 4: Addressing arrays in the program. Arrays cause a special problem
because the actual address is needed either for register-deferred ac
cess, or index register mode instructions. Essentially, to get around
this, it is necessary to use a trick that relies on the fact that the location
counter in the assembler has a value close to that of the program
counter. Thus, if you want to load the address A into RO you can first
load A - . into RO. (Since both A and the location counter are
relocatable, the difference between them is absolute.) Then add the
program counter to RO. The only problem is that the result will be off
by six, because the program counter will have been incremented a few
times. Therefore, the following instructions are used:

MOV #A-.-6,R0
ADD PC,R0

Now the address of A is in R0, and register-deferred instructions such
as MOV (R 0) + , B can be used to perform array operations on A.

Position-independent code can be very useful for operating systems pro
grams. For example, in the RT-11 system, the systems programs are capable of
being loaded wherever there is free space. Many of these programs such as in
pu t /ou tpu t device handlers and user service routines are dynamically brought
into memory as they are needed, using available space.

E X E R C I S E SET 2

1 Design a variable length record binary file format that uses control charac
ters instead of byte counts. The format should be usable from paper tape,

Exercise Set 2 307

meaning that it is necessary to have a leader and trailer possible. All bit pat
terns must be allowable for data bytes.

2 Write a program that punches out and reads binary files in the format you
designed in exercise 1, above.

3 Write a program that reads formatted binary files from punched paper tape
in the standard DEC format. The records should be dumped on the printer
in octal, showing record boundaries. Test your program using some ab
solute loader files punched out by the assembler in ABS mode (use the direc
tive .ENABL ABS).

4 Write a program that reads a program from paper tape in absolute loader
format, loads it, and runs it. Generate a program to test your loader using
the assembler in ABS mode.

5 The following is the code for the paper tape bootstrap loader as it would ap
pear entered at location 077744:

Address Contents Address Contents
077744 016701 077762 116162

077746 000026 077764 000002

077750 012702 077766 077400
077752 000352 077770 005267
077754 005211 077772 177756

077756 105711 077774 000765
077760 100376 077776 177550

(a) Hand disassemble the program into assembly language.

(b) Explain how it works.

(c) Is the program position-independent? Why or why not?

(d) How does the program stop?

*6 Write a program that converts a program in absolute loader format into a
format that can be loaded by the bootstrap loader. What restrictions are
there to the programs you can write to be loaded this way?

7 Take a program written for some previous exercise and rewrite it so that it is
in position-independent code. Test it by including it as part of a program
that moves the program and runs it from the moved place.

APPENDIX A
Running Machine Language
Programs with On-Line
Debugging Technique

It is possible to create and run machine language programs from the operator 's
console by using a program called ODT (On-line Debugging Technique).

ODT is a machine language computer program and, in order to use it, it is
necessary to load the ODT program into memory and execute it. The procedure
for doing this varies from one PDP-11 installation to another. In order to run
ODT from an LSI-11, it is simply necessary to halt the machine. This may be
done on some systems by pressing the break key on the console typewriter.

If you are running a standard PDP-11 using the RT-11 operating system,
you must use the software version of ODT. To do this, you must first make
ODT runnable by typing:

LINK/BOTTOM:2000 SY:0DT

You can then type RUN ODT and ODT will start executing.
Once it is executing, ODT will print an asterisk(*) or an at sign (@) on the

console printer to indicate that it is ready to accept commands from you. If you
type an octal address (such as 1000) followed by a slash (/) , ODT will print out
the contents of the designated memory cell. If you press the carriage return key,
which is often marked CR or RETURN, ODT will print another asterisk (or at
sign) indicating its willingness to accept another command. The printed output ,

which the following shows, indicates that memory cell 001000 currently con
tains 177134:

•1000/17713 1 * cr (Note: cr represents the carriage
• return key; do not type a

c and an r!)

(You typed the underlined characters. Characters not underlined are printed by
the computer.)

If you wish to examine the contents of a series of memory cells, type a line
feed key (often marked LF) instead of CR. ODT will print out the next con
secutive address along with its contents instead of printing the asterisk. For ex
ample, to examine the contents of memory cells 001000, 001002, and 001004,
type:

•1000/17713 1 * If (Note: If represents the line
001002/004767 If feed key; do not
001004/001744 cr
• type an l and an f!)

Notice that , as long as you continue to type line feeds, ODT will keep on print
ing the addresses and contents of consecutive memory cells. When you want to
give ODT a new command, type a carriage return instead of a line feed, and
ODT will respond by typing an asterisk (or an at sign). In this example, memory
cells 001000 through 001004 contain 177134, 004767, and 001744, respectively.
When you run ODT, of course, the results may be different.

In order to change the contents of a memory cell, simply type the new con
tents before you type If or cr. For example, a trivial machine language program
that moves the number 000020 to memory cell 001010 and then halts can be
entered into memory beginning at address 001000 by typing the following:

•1000 /177134 012737 If
001002/004767 000020 If
001004/001744 001010 If
001006/011300 000000 cr
•

The third line of output should be interpreted as follows: The address 001004,
as well as the old contents, 001744, were typed by ODT. The user typed the new
contents, 001010, as well as the line feed.

Care should be taken in modifying the contents of memory cells. In some
systems, the ODT program itself may be using memory, and if one of these
memory cells is modified, ODT could stop functioning. For the procedures
described here, memory cells 001000 through 001600 should be safe.

It is possible to execute the machine language program in memory cells
001000 through 001006 by giving ODT the command:

Running Machine Language Programs with On-Line
Debugging Technique

Software ODT LSI-11 ODT
*1000;G @1000G

This command tells ODT to Go execute the machine language program be
ginning in memory cell 001000. This command causes control to be transferred
from ODT to our machine language program. The machine language instruc
tion in memory cells 001000 through 001004 will cause the number 000020 to be
moved to memory cell 001010, after which the H A L T instruction in memory
cell 001006 will halt the machine.

At this point, we would like to examine the contents of memory cell 001010
to see if the program has worked properly. This is done by simply typing 1010/
in response to the asterisk or at sign. The response should be:

#1010/000020

if your program worked properly.
However, something more is needed if you are running the software ver

sion ODT. This is because the H A L T instruction will literally have halted the
machine and ODT commands will no longer work. To avoid this situation, the
following command must be issued before you type 1000;G:

#1006;B

Memory cell 001006 will be designated as a Breakpoint. The H A L T instruction
in memory cell 001006 will not be executed. Instead, control is returned to the
ODT program. At this point, it is possible to issue ODT commands to examine
or change the contents of a memory cell, execute the program a second time,
change the location of the breakpoint, and so on. When you are finished with
the ODT program, depress the CONTROL button on the terminal as though it
were a SHIFT button and type the letter C. This action is called control C and
will properly terminate the execution of ODT. Figure A. 1 is a summary of ODT
commands.

Figure A.1 OD T Commands

Command Description

For all ODT systems:

@ or #1000/123456 cr Examine the contents (123456) of memory cell
001000.

@ or #1000/123456 3 cr Change the contents of memory cell 001000 from
123456 to 000003.

@ or #1000/123456 3 lf Same as above, but display the contents of memory
cell 001002 next.

Figure A. / (continued)

Command Description

For software ODT systems only:

*1020;B Make memory cell 001020 a breakpoint. That is,
when the processor is about to execute the instruc
tion in 001020, immediately return control to ODT.

* ;B Eliminate all existing breakpoints.
* 1000; G Execute (GO) the program beginning in memory cell

001000.
* c o n t r o l C Terminate the execution of ODT (hold down the

control key and type the letter C)

For LSI-11 ODT:

@ 1000G Execute (GO) the program beginning in memory cell
001000.

APPENDIX B
Routines for Reading
and Printing Numbers

This appendix gives two subroutines that can be used by students so that they
can read and print numbers in early exercises. The subroutines are simply
copied into the student 's program as is. Two versions of both subroutines are
given. One version is intended for RT-11 users. The other is for use with no
operating system. Figure 5.12 on page 116 shows how these subroutines are
placed in a program.

The subroutines are used as follows.

Reading

To read an octal number from the console typewriter, execute the instruction:

JSR PC,RNUM

The number will be placed in R0. The number should be typed as a 6-digit octal
number (fewer digits can be used if desired). The octal digits should be followed
by a carriage return. An asterisk is typed showing the user that a number is be
ing requested.

If you are using a batch system, simply type the numbers on cards starting
each number in column 1 of a separate card. The data cards are placed after a
$DATA card, which is placed after your program. See Appendix C for the
batch deck arrangement. (Note, if you are running batch, you should leave out
the line that produces the prompting asterisk. See Figure B. l .)

Printing

To print an octal number, simply put the number into RO, and then execute the
instruction:

JSR PC,PNUM

The numbers will appear one per line on either the console typewriter or the
batch log file. Figures B.l and B.2 show these subroutines for use with RT-11
and without an operating system, respectively. When using the subroutines in
Figure B.2, it is recommended that locations KBS and PRS be cleared at the
beginning of your program. Also note that subroutine RNUM in Figure B.2
calls subroutine P C H A R which is defined at the end of subroutine PNUM.

Figure B.l RT-11 Input/Output Routines

;SUBROUTINE RNUM READS AN OCTAL NUMBER, LEAVING ITS
;BINARY VALUE IN RO

.MCALL .TTYIN,.TTYOUT ;GET THE MACRO .TTYIN AND .TTYOUT
RNUM: MOV R 1 , - (S P) ;SAVE R1 ON THE STACK

CLR R1 ;CLEAR ACCUMULATED RESULT
.TTYOUT #52 ;TYPE * AS A PROMPTt

RNUML: .TTYIN ;READ CHARACTER INTO RO
CMPB R0,#15 ;WAS IT CARRIAGE RETURN?
BEQ RNUME ;YES f EXIT
BIC #177760,R0 ;NO t CHANGE CHARACTER TO DIGIT
ASL R1 ;MULTIPLY ACCUMULATION BY 2
ASL R1 ;AND 2 MORE = 4
ASL R1 ;AND 2 MORE = 8 (DECIMAL)
ADD R0,R1 ;ADD NEW DIGIT TO 8 * ACCUMULATION
BR RNUML ;LOOP UNTIL END OF NUMBER

RNUME: .TTYIN ;DUMMY READ OF LINE FEED
MOV R1,R0 ;PUT RESULT IN RO
MOV (SP)+,R1 ;RESTORE R1
RTS PC ;RETURN

Read Routine

tThis line should be omitted if using a batch system.

Figure B. 1 (con tin ued)

;SUBROUTINE PNUM PRINTS OUT THE CONTENTS OF RO IN OCTAL

.MCALL .TTYOUT ;GET THE MACRO .TTYOUT
PNUM: MOV R0, - (SP) ;SAVE RO ON THE STACK

MOV R 1 , - (S P) ;SAVE R1 ON THE STACK
MOV R 2 , - (S P) ;SAVE R2 ON THE STACK
MOV R0,R1 ;R1 HOLDS NUMBER BEING PRINTED
MOV #6,R2 ;R2 COUNTS DIGITS
MOV #30,R0 ;RO GETS 6 ASCII CODE BITS
BR PNUMM ;FIRST DIGIT HAS ONLY ONE BIT

PNUML: MOV #6,R0 ;RO GETS 4 ASCII CODE BITS
ASL R1 ;SHIFT R1 LEFT WITH HIGH BIT
ROL R0 ; G O I N G TO C BIT AND THEN TO RO
ASL R1 ;GET THE SECOND BIT
ROL R0

PNUMM: ASL R1 ;GET THE THIRD BIT
ROL R0
.TTYOUT ;PRINT THE OCTAL DIGIT
DEC R2 ;DECREMENT CHARACTER COUNT
BNE PNUML ;AND LOOP SIX TIMES
.TTYOUT #15 ;THEN OUTPUT CARRIAGE RETURN
.TTYOUT #12 ;AND LINE FEED
MOV (SP)+,R2 ;RESTORE ALL THREE REGISTERS
MOV (SP)+,R1 ;FROM STACK
MOV (SP)+,R0
RTS PC ;AND RETURN

Print Routine

Figure B.2 Nonsystem Input/Output Routines

;SUBROUTINE RNUM READS AN OCTAL NUMBER. LEAVING ITS
;BINARY VALUE IN RO (CODE FOR PNUM IS ASSUMED TO BE
;INCLUDED)

RNUM: MOV R 1 , - (S P) ;SAVE R1 ON THE STACK
CLR R1 ;CLEAR ACCUMULATED RESULT
MOV #52,0 ;TYPE * AS A PROMPT
JSR PC,PCHAR

Read Routine (continued on page 316)

(Note: The read routine uses the print routine; therefore, the print routine must always
be included.)

Figure B.2 (continued)

RNUML: JSR PC,RCHAR ;READ CHARACTER INTO RO
CMPB R 0 f # 1 5 ;WAS IT CARRIAGE RETURN?
BEQ RNUME ;YES, EXIT
BIC # 1 7 7 7 6 0 . R 0 ;NO, CHANGE CHARACTER TO DIGIT
ASL R1 ;MULTIPLY ACCUMULATION BY 2
ASL R1 ;AND 2 MORE = 4
ASL R1 ;AND 2 MORE = 8 (DECIMAL)
ADD R0,R1 ;ADD NEW DIGIT TO 8 * ACCUMULATION
BR RNUML ;LOOP UNTIL END OF NUMBER

RNUME: MOV # 1 2 , R 0 ;ECHO LINE FEED
JSR PC,PCHAR
MOV R1.R0 ;PUT RESULT IN RO
MOV (S P) + , R 1 ;RESTORE R1
RTS PC ;RETURN

;RCHAR READS A SINGLE CHARACTER INTO RO
K B S r 1 7 7 5 6 0 ;LOCATIONS OF STATUS AND
KBB=KBS+2 ;BUFFER REGISTERS
RCHAR: TSTB KBS ;TEST KEYBOARD STATUS

BPL RCHAR ;LOOP UNTIL SOMETHING IS TYPED
MOVB KBB,R0 ;GET CHARACTER
BIC # 1 7 7 6 0 0 , R 0 ;CLEAR HIGH ORDER BITS
JSR PC,PCHAR ;ECHO CHARACTER
RTS PC ;RETURN

Read Routine (continued from page 315)

SUBROUTINE PNUM PRINTS OUT THE CONTENTS OF RO IN OCTAL

PNUM: MOV R 0 , - (S P) ;SAVE RO ON THE STACK
MOV R 1 , - (S P) ;SAVE R1 ON THE STACK
MOV R 2 t - (S P) ;SAVE R2 ON THE STACK
MOV R0,R1 ;R1 HOLDS NUMBER BEING PRINTED
MOV # 6 , R 2 ;R2 COUNTS DIGITS
MOV # 3 0 , R 0 ;R0 GETS 6 ASCII CODE BITS
BR PNUMM ;FIRST DIGIT HAS ONLY ONE BIT

PNUML: MOV # 6 , R 0 ;R0 GETS 4 ASCII CODE BITS
ASL R1 ;SHIFT R1 LEFT WITH HIGH BIT
ROL R0 ; GOING TO C BIT AND THEN TO RO
ASL R1 ;GET THE SECOND BIT
ROL R0

PNUMM: ASL R1 ;GET THE THIRD BIT
ROL R0
JSR PC,PCHAR ;PRINT THE OCTAL DIGIT

Print Routine (continued on page 317)

Figure B.2 (continued)

DEC R2 ;DECREMENT CHARACTER COUNT
BNE PNUML ;AND LOOP SIX TIMES
MOV #15,R0 ;THEN OUTPUT CARRIAGE RETURN
JSR PC,PCHAR
MOV #12,R0 ;AND LINE FEED
JSR PC,PCHAR
MOV (SP)+,R2 ;RESTORE ALL THREE REGISTERS
MOV (SP)+,R1 ;FROM STACK
MOV (SP)+,R0
RTS PC ;AND RETURN

;PCHAR PRINTS A SINGLE CHARACTER
PRS=177564 ;LOCATION OF STATUS AND
PRB=PRS+2 ;BUFFER REGISTERS
PCHAR: TSTB PRS ;TEST PRINTER STATUS

BPL PCHAR ;LOOP UNTIL READY
MOVB R0,PRB ;OUTPUT CHARACTER
RTS PC ;RETURN

Print Routine (continued from page 316)

APPENDIX C

C . l R U N N I N G A S S E M B L Y L A N G U A G E A N D
F O R T R A N P R O G R A M S U S I N G RT-11 B A T C H

When running programs in the RT-11 batch system, the program is punched
onto Hollerith cards. Although there are no specific card columns that have to
be used for the various assembly language fields, the program listings are
almost impossible to read unless the fields are lined up . Employing the follow
ing list of columns will usually provide understandable listings:

Labels column 1
Op codes and directives column 9
Operands column 17
Comments column 33

See Figure C. 1 for an example of how to punch an assembly language program.
In addition to the assembly language, a number of control cards are

needed. They tell the batch system how to sequence the program. In order to
distinguish control cards, they all have a dollar sign in column 1. To avoid con
fusion, no other cards should have a dollar sign in column 1. The control cards
you need are:

$ J O B Indicates the beginning of your job .
$ M A C R O / L I S T / R U N Indicates the beginning of your assembly language.

It also indicates that you want to run the program.

The / R U N and /L IST are optional. Thus,
S M A C R O / R U N would run the program, but give
no listing.

$DATA Indicates the beginning of data cards.
$EOJ Indicates the end of the job .

Figure C. / Assembly Language on a Punched Card

In addition to the control cards, one special card called an end-of-file card
is needed at the very end of your deck. This card is formed by multipunching &,
- , 0, 1, 6, 7, 8, 9, all in column 1. (The symbol & represents a 12 punch and -
represents an 11 punch.) Often an installation will have these prepunched and in
a different color to help separate decks. Figure C.2 shows the full arrangement
of a deck.

When debugging programs, it is sometimes useful to take a memory dump
of your program or data areas. This can be done using the RT-11 E command.
The E command is followed by two octal addresses separated by a hyphen
(or minus sign). A space must follow the E. For example, the command
.E 1000-1500 will cause locations 001000 through 001500 to be dumped in

Sec. C. 1 Running Assembly Language and Fortran Programs
Using RT-11 Batch

Figure C.2 Sample Batch Job

$JOB
$MACRO/LIST/RUN

.TITLE TEST PROGRAM
START:

Macro-11 Program

.END START
$DATA
005763
$E0J

End-of-file Card
octal. To use the E command, you must enter the RT-11 mode after your pro
gram has run. RT-11 mode commands must be preceded by a period. Figure
C.3 shows how the E command can be used in a batch system.

Several assembly language programs may be independently translated and
linked together. However, the previous procedures have to be modified
slightly. First, each assembly language program must be preceded by a card
punched S M A C R O / L I S T / O B J E C T . Note that / O B J E C T is used instead of
/ R U N , because the program cannot be run until all object files are generated
and linked together.

Figure C.3 Use of the E Command in Batch

$JOB

$MACRO/LIST/RUN

Macro-11 Program

$DATA

Program Data
$RT11
.E 1000-1500
$E0J

Then, after the last program, you must place the card $ L I N K / M A P / R U N
before $DATA. Figure C.4 shows a job with linked programs.

The / M A P on the SLINK card requests the print out of the memory map
of the programs and global symbols. Like the listing, the map is optional and
the / M A P can be omitted from the SLINK card.

FORTRAN programs can be run or linked with M A C R O programs by
placing the card: S F O R T R A N / L I S T / R U N or S F O R T R A N / L I S T / O B J E C T in
front of the FORTRAN programs. Note that while one SMACRO card is
needed for each assembly language program, any number of FORTRAN pro
grams and subprograms can be placed after one SFORTRAN card.

Figure C.4 Batch Job with Three Linked MACRO Programs

$JOB
$MACRO/LIST/OBJECT

First Program

$MACRO/LIST/OBJECT

Second Program

$MACRO/LIST/OBJECT

Third Program

$LINK/MAP/RUN
$DATA

Data Cards

$EOJ

C.2 N O T E S FOR T H E I N S T R U C T O R

Running programs in batch is perhaps the easiest way to deal with a large
number of students running programs on a PDP-11 . A small PDP-11* with a
card reader and line printer can easily service the needs of more than 100
students per semester, using the RT-11 version of batch.

The authors encountered some problems in establishing a functional batch
system in a student environment. Our solution to the problems was to use a file
of job control cards (an indirect file) for bringing up the system, and a looping
control file for keeping the card reader running. Figures C.5 and C.6 show the
files used. Our main system has an RK05 disk that allows programs to cycle
through at a rate of about one per minute.

If less throughput can be tolerated, a floppy-based system could be used.
Figure C.7 shows the minimum file configuration for a system to run MACRO
only. Figure C.8 shows the modified startup file. This system requires a scratch
floppy to be placed in D X 1 : . This floppy will be erased every time the system
iterates.

*The authors' experience is with an 11/05. An LSI-11 could be used, but DEC does not
make a card reader for it. However, there are software compatible card readers available
from some manufacturers.

Sec. C.2 Notes for the Instructor

Figure C.5 Indirect Control File for Bringing up the Batch Stream

SET CR: CRLF
SET CR: NOIMAGE
SET CR: CODE=29
SET CR: HANG
SET LP: HANG
SET LP: NOCTRL
SET LP: FORMO
SET LP: LC *
SET LP: NOTAB *
SET LP: WIDTH=132 *
SET LP: CR *
LOAD BA:,LP: ,CR:
ASSIGN LP: LOG
ASSIGN LP: LST
R BATCH
CRDSYS.CTL/T:1

*These choices may vary depending upon printer model.

Figure C. 6 Listing of CRDS YS. CTL Batch Control File for Looping the Card Reader

\LLOOP \@ BATCHSTREAM STARTING.
\F\ER BATCH
\DCR:/S
\@ JOB COMPLETE
\JLOOP \@\L$$$$$$\F\ER BATCH
\D/R
\ E \ F

(Note: The use of spaces in this job is critical in places.)

Figure C. 7 Directory of Minimum Floppy Batch System

28-FEB-79
DXMNSJ .SYS 86 14-AUG-77 TT .SYS 2 14-AUG-77
NL .SYS 2 18-SEP-78 CR .SYS 3 18-SEP-78
LP .SYS 2 13-MAR-78 BA .SYS 7 30-NOV-78
PIP .SAV 16 30-NOV-78 DIR .SAV 17 30-NOV-78
MACRO .SAV 45 30-NOV-78 CREF .SAV 6 30-NOV-78
LINK .SAV 29 30-NOV-78 DUMP .SAV 7 30-NOV-78
BATCH .SAV 25 30-NOV-78 DUP .SAV 17 30-NOV-78
SYSMAC , SML 40 17_jAN-79 CRDSYS .CTL 1 05-FEB-79
STARTS .COM 1 05-FEB-79 LP .COM 1 05-FEB-79
NOLP .COM 1 05-FEB-79
2 3 FILES, 356 BLOCKS
124 FREE BLOCKS

Figure C. 8 STARTS.COM for Minimum Floppy Batch System

SET TT: QUIET
ASSIGN DX1: DK:
SQUEEZE/NOQUERY DK:
INSTALL CR:
SET CR: CRLF
SET CR: NOIMAGE
SET CR: CODE=29
SET CR: HANG
LOAD B A : , T T : f CR:
ASSIGN TT: LOG
ASSIGN TT: LST
R BATCH
SY:CRDSYS.CTL/T: 1

(a) Without a Line Printer
(file NOLP.COM)

SET TT: QUIET
ASSIGN DX1: DK:
SQUEEZE/NOQUERY DK:
INSTALL CR:
SET CR: CRLF
SET CR: NOIMAGE
SET CR: CODE=29
SET CR: HANG
SET LP: HANG
SET LP: NOCTRL
SET LP: FORMO
SET LP: LOC *
SET LP: NOTAB *
SET LP: WIDTH=132 *
SET LP: CR *
LOAD BA:,LP: ,CR:
ASSIGN LP: LOG
ASSIGN LP: LST
R BATCH
SY:CRDSYS,CTL/T:1

(b) With a Line Printer
(file LP.COM)

These choices may vary depending upon printer model.

APPENDIX D
Running Assembly
Language and FORTRAN
Programs from the
Console Typewriter with
the RT-11 System

D.1 C O M M U N I C A T I N G W I T H T H E RT-11 SYSTEM

Before proceeding further, it is important to understand the protocol used by
the RT-11 system. First, when typing into the system, you should observe a
prompt character. The RT-11 system uses a period to tell you to type a system
command. An asterisk is used to tell you to respond to a program. Messages are
also used that ask a question. These are usually self-explanatory, such as: Are
you sure? You should answer either YES or N O .

When typing commands or answers, mistakes are often made. There are
two ways of correcting mistakes. The first is to type the RUB OUT or DELETE
key. This erases the previous character. If you are typing at a video terminal,
you may actually see the character disappear. At a hard copy terminal, a back
slash is typed followed by the deleted character. You may erase all the way to
the beginning of the line if you want. A second back slash is typed when you
start typing again. For example, if you type:

the effect would be the same as if you typed H E L L O . A video screen would
display HELLO, but a hard copy terminal would have:

HEXY\YX\LLO

The second way to correct errors is to erase the entire line and start over.

To do this, hold the control key down and type U. The resulting character is
called "control U " (see Chapter 8). (Note that the control key is like a shift key.
It does nothing, but must be held down while a letter is typed.) The terminal will
echo / \ U and then start you on a new line. You must keep on typing because
you do not get another prompt character.

D . 2 FILES

When using the RT-11 system, the user must deal with data and programs in
terms of files. Files are blocks of information that are stored on a disk or other
device. Files contain a variety of kinds of information—programs, data, and so
on. This may be ASCII character information that could be printed and read by
a person. It could also be binary information that contains any possible bit pat
tern. Binary files usually produce gibberish if sent directly to a printer.
Assembled or compiled programs are in the form of binary files.

Mass storage devices such as disk or magnetic tape can contain many files.
To identify these files, they must have names. RT-11 names consist of a two- or
three-letter device designator, a one to six character file name, and a three-letter
file type. For example:

DXO:PROG.MAC

names a file on floppy disk zero. The name is PROG and the type is MAC,
meaning that it is a M A C R O assembly language program. In effect, the MAC is
really part of the name, so that the same disk could contain files P R O G . M A C ,
P R O G . O B J , and PROG.SAV. While the system merely considers these to be
three different files, the intent is that they are three different forms of the same
program:

PROG.MAC is the M A C R O assembly language
PROG.OBJ is the relocatable object code produced by the assembler
PROG.SAV is the absolute core image produced by the linker

In order to copy files, there is a system command called COPY. When the
system wants you to type in a system command, it will type a period. This tells
you that it is ready. You may then type a command such as COPY. Each com
mand must be followed by a carriage return before the system will react.

When you type COPY, the system will ask you where the information is
coming from. You must then type a complete file name such as:

a. DXO:PROG.MAC

b . RK:PROG.MAC

c. PROG.MAC

d. CR:

Sec. D.3 Running a Program 327

Note in example b that there is no number after RK. Zero is always as
sumed, so this is the same as RKO. In example c, there is no device name. This
implies the user device DK:, which is where your particular system places user
files. In the last example, there is no file name, because the card reader always
reads the next deck of cards as a file and names have no significance.

Next, the system will ask you where the file is copied to. Your answer
should have the same form as before. Note, however, that you could not send a
file to CR:, the card reader. But you could send a file to LP: , the line printer. In
fact, this is one way that you could print out your program. Figure D. 1 shows a
list of the device names and file types that you are most likely to encounter.

When copying files onto a device, it is important to be able to see what files
there are. This can be accomplished with the DIRECTORY command. Type
DIRECTORY, followed by a space, and then the device name. For example,
DIRECTORY DXO: would cause the names of the files on DXO: to be typed out .

Figure D. 1 Device Names and File Types

DXn: Floppy disk n (DX01)
DYn: Floppy disk n (DX02)
RKn: Single platter disk n (RK01)
DLn: Single platter disk n (RL01)
DPn: Multiple platter disk n
CTn: Cassette tape n
MTn: Magnetic tape n

*TT: Console teletypewriter
*PC: Paper tape reader/punch
*LP: Line printer
*CR: Card reader
tSY: System device
tDK: Standard user device

MAC Assembly language program
FOR FORTRAN program
BAS BASIC program
DAT Data
TXT Text
BAK Editor backup file
LST Listing
MAP Memory map from linker

t SYS System file
X OBJ Object code (relocatable

program)
X SAV Core imagine (absolute core

load)
X LDA Absolute program (formatted for

paper tape)

These devices need no file name.
fThese devices are usually assigned by the system to RKO:, DXO:, DX1:, and
so on.
tThese files contain binary rather than ASCII information, and therefore
should not be copied to a listing device (TT: or LP:).

D . 3 R U N N I N G A P R O G R A M

In order to run an assembly language program, the program should first be
copied onto a multifile device, such as a disk. If your program is on cards or a
punched paper tape, you could use the COPY command to produce a file on the
disk. More likely than not, you want to type the program in at the typewriter. It

is possible to COPY from the TT: to the disk, but this is usually awkward due to
typing errors. A better method is to use the editor described in Appendix E. In
any case, the program should be entered on the disk with a name of your choos
ing (such as P R O G A) but the type should be M A C . You can then run your pro
gram by typing:

EXECUTE PROGA (Your program is assumed to be on DK:)

The system will see that the type of P R O G A is MAC and use the MACRO
assembler to translate the program to object code. The linker will then be used
to relocate the object module into an absolute program that will then be loaded
and executed.

If you then take a directory, you will see that two new files have been
created. These are PROGA.OBJ and PROGA.SAV. These files contain your
relocatable object language and absolute machine language, respectively. Now,
if you want to run your program again, you need only type:

RUN PROGA

This only works if the file PROGA.SAV is on DK:. Therefore, you must use
E X E C U T E once, and then you can use RUN. The advantage of RUN is that it
is almost instantaneous, whereas EXECUTE involves translation and is there
fore quite slow.

One thing the previous sequence lacks is that a listing of the program
source code is not produced. This is easily remedied with a modified EX
ECUTE command. Instead of the previous, type:

EXECUTE/LIST PROGA

A program listing will then be produced on the line printer. (If you have no line
printer, control statements can be used to produce listings on the console
teletypewriter.*)

If your program uses the input /output routines shown in Appendix B, then
when RNUM is called, an asterisk will be typed at the teletypewriter. You
should respond by typing an octal number followed by carriage return. This
may be repeated as your program requires.

If your program does not work correctly, you can attempt to correct it by
invoking and then using the editor (see Appendix E) and then invoking the EX
ECUTE command again. The old OBJ and SAV file will be replaced with new
ones, and your revised program will be executed. This process can be repeated
as needed.

As an aid to debugging, it is sometimes useful to see the contents of
memory after your program has terminated. This can be done using console

*A11 line printer output from the system can be directed to the teletypewriter by using the
command ASSIGN TT: LP:. This command could be placed in the startup command file
STARTS.COM or STARTF.COM.

switches or, on an LSI-11, ODT (see Appendix A). A better method, if your
program has not crashed the RT-11 system, may be to use the RT-11 E com
mand. This will allow you to dump areas of memory. Simply type E, a space,
and two octal addresses separated by a hyphen. For example, E 1000-1500 will
dump locations 001000 through 001500.

If your program is hung in an endless loop, it may be necessary to type con
trol C once or twice to get back to the RT-11 operating system. You may then
use the E command to examine memory.

The EXECUTE command can also be used for independently translated
programs that will communicate via global symbols. (See Chapter 7.) Each pro
gram must be in a separately named file. Then type a command such as:

EXECUTE/LIST/MAP MAIN,SUB 1,SUB2

The programs MAIN, SUB1, and SUB2 will be translated to produce
MAIN.OBJ , SUBl .OBJ , and SUB2.0BJ . The M A C R O assembler or FOR
TRAN compiler will be used depending upon whether the program file types are
MAC or FOR. Types may be mixed, that is, MAIN might be FORTRAN, while
SUB1 and SUB2 were assembly language.

The OBJ files are then relocated and linked together along with whatever
might be needed from the FORTRAN library. This produces a single SAV file
called MAIN.SAV. The name of the SAV file will be the same as the first source
program file in the EXECUTE command.

The / M A P on the command is optional and causes a memory map of the
results of the relocation to be printed.

After the translation and linking are complete, the program is executed.
Since the SAV file is MAIN.SAV, the program is rerun by typing:

RUN MAIN

Sometimes it is desirable to perform the steps of the EXECUTE command
separately. There are various ways to do this, but one is to use the commands
MACRO, FORTRAN, LINK, and RUN. These translate assembly language,
compile FORTRAN, link object files, and run SAV files, respectively. The
previous EXECUTE command could be replaced by the five following
commands:

FORTRAN/LIST MAIN
MACRO/LIST SUB 1
MACRO/LIST SUB2
LINK/MAP MAIN,SUB1,SUB2
RUN MAIN

APPENDIX E
Using The RT-11 Editor

E.1 F U N C T I O N OF T H E E D I T O R

As we saw in Appendix D, unless you are using the batch system, programs
must reside on a file such as P R O G . M A C (or FPG.FOR for FORTRAN pro
grams). Although it is possible to create such a program using the COPY com
mand, there are difficulties in doing so. For example, you could enter the
command:

COPY TT: PROG.MAC

You would then type your entire program and signal the end by typing control
Z. However, if there were any mistakes in your program, you would have no
choice but to retype the entire program. The editor allows you to enter and
modify programs so that correcting mistakes or adding features to programs is
relatively easy.

The editor is used for creating and modifying strings of text. This text is
considered to be an arbitrary string of characters. No distinction is made as to
whether the text constitutes a valid M A C R O program, a FORTRAN program,
a nursery rhyme, or whatever. In fact, many people use the editor for dealing
with English prose, such as business letters. There is a growing use of computers
for this purpose coming under the general name of word processing. The im
portant point to remember is that the editor does not know that you are writing

M A C R O programs, therefore symbols such as .TITLE, .END, colon, semi
colon, and so on, have no recognizable meaning.

E.1 C R E A T I N G A P R O G R A M

In order to create a program using the editor, you must type the following
RT-11 command (or its equivalent):

EDIT/CREATE PROG.MAC

P R O G . M A C is the name of the file you are using for your program. Note that
the full name is necessary because the editor will not assume a file type.

The editor will now respond on the console device with an asterisk. This
means that the editor is expecting an edit c o m m a n d . ! Since you are just be
ginning to create a program, the only useful command at this point is I for in
serting new text. Immediately after you type I, you continue to type your entire
program just as you wish it to appear. The TAB key can be used to space to the
next field, and each line ends by typing the RETURN key. (Note that the system
automatically adds a line feed when you type carriage return.) When you reach
the end of your program (do not forget the RETURN after .END), you must
get back to command mode by typing the ESC or ALT MODE key twice. In the
editor, all commands are terminated by two escapes. Escape is used because
carriage return is often part of the text. Figure E. 1 shows a sample dialogue for
creating a simple program. Note that there are some typing errors, and that the
editor echoes dollar signs when you type escape. The final asterisk indicates that
the editor is awaiting another command.

Figure E.1 Entering a Simple Program with Some Typing Errors

*I .TITLE EXAMP SIMPLE EXAMPLE
SSTART: MOV A,C THIS PROGRAM

ADD B,C ;ADDS TWO PLUS TWO
HALT ;AND HALTS
STOP

A .WORD 2
B: .BLKW 2

.END START
$$

*

1The commands described here are for the newer editor called TECO. It is assumed that
the installation manager has placed SET EDIT TECO in the startup command file. For
those preferring to use the older editor, EDIT, there is a correspondence table for com
mands at the end of this appendix.

E.3 C O R R E C T I N G ERRORS

When correcting errors, you must first point to the place the error is and then
make the correction. To facilitate this, the editor has a pointer that can be
moved left, right, up , and down with appropriate commands. When you finish
inserting text, the pointer will always be at the end of what you inserted. Assum
ing that you have just finished the dialogue of Figure E. 1, then the pointer will
be at the very end. To move it back to the very begnning, use the J command by
typing:

J escape escape

This would appear as:

*J$$
*

In the dialogue, the asterisks come from the editor and the dollar signs indicate
escapes. To simplify illustrations, the dollar sign will be used to mean the escape
key for the remainder of this appendix.

The first error we see is that the word START is misspelled by having an
extra S. This mistake is at the beginning of the next line. We must therefore
move the pointer down a line. This is done with the command:

1L$$

A number of lines followed by L$$ causes the pointer to move down that many
lines. Negative numbers move you up so many lines.

After moving down a line, we want to delete one character. This is done
with the command

1D$$

We can now see our correction by using the V command (for Verify). V$$
causes the line on which the pointer resides to be typed. In this case, the follow
ing would be typed:

*V$$
START: MOV A,C THIS PROGRAM
ft

The area around the pointer can be verified (typed) by putting a number, n,

before the V. This will verify n - 1 lines before and after the pointer as well. For
example:

*2V$$
.TITLE EXAMP SIMPLE PROGRAM

START: MOV A,C THIS PROGRAM
ADD B,C ;ADDS TWO PLUS TWO

Another error (not the next) is that there is an unwanted line that says
STOP. This is three lines down. So we can get there with 3L$$. We can then Kill
one line with the command 1K$$. However, since the kill command could
destroy a fair amount of typing, it is a good idea to verify the line first. The total
dialogue would appear as:

*3L$$
*V$$

STOP
«1K$$

E.4 I N S E R T I N G A N D L O C A T I N G
T H E P O I N T E R IN A L I N E

On the next line, there is another error. A colon is needed after the A. In fact,
since we killed the line with STOP on it, the pointer is now at the beginning of
the line with the missing colon. You may want to use V to make sure. However,
we do not want to insert the colon here because it would be at the beginning of
the line, before the A. We move the pointer one character position with the
command 1C$$. We then use I (for insert), just as in the original creation:

*V$$
A .WORD 2
*1C$$
* I : $ $
*V$$
A: .WORD 2
*

Note that there is no carriage return after the I. We only want to insert a colon.
If we included a carriage return, that would be inserted also.

There is also an error on the next line. BLKW should be changed to
W O R D . Here, we should:

a. Go down a line

b . Go over to the BLKW

Sec. E.5 Combining Commands 335

c. Delete it

d. Insert W O R D

Here, step a is 1L$$, but for step b , how far do we go across? The key to the
answer is to remember that TAB is one single character; therefore we move four
characters:

B : tab .

Of course, this is a place where we would like to be sure. But V$$ does not help
us find the pointer because it prints the entire line without any marks to indicate
where the pointer is. We need the command T$$. This types the line from the
pointer to the end of the line. The dialogue might look like this:

*1L$$
*4C$$
*T$$
BLKW 2
*4D$$
*IWORD$$
*V$$
B: .WORD 2
*

E.5 C O M B I N I N G C O M M A N D S

Notice that the dialogue is getting quite lengthy. One simplification is that
several commands can be combined on one line. They are simply placed one
after another without escapes, except that text strings such as found after I must
be followed by one escape. Note also that a count need not be expressed if it is
one.

L is the same as 1L. Thus, the preceding dialogue could be reduced to the
following:

*L4CT$$
BLKW 2
*4DIWORD$V$$
B: .WORD 2
*

The next error is that a whole line that defines C is missing. This line should
go before the .END line, and can be inserted as before, but note that we must
insert a carriage return because that is part of a whole line. The following
dialogue shows this:

Note that since the pointer is on the last line, the 3V can only list backward.

E.6 T H E S E A R C H C O M M A N D

The only error left is a missing semicolon on the second line. To fix this, we can
go back to the beginning, go down one line, and move over to the comment.
The third step is hard, because it involves careful counting. To help out, the
editor has a search command which looks for a character string that indicates
the right place to edit. For example, we can see that the point where we want to
edit is immediately preceded by the four characters:

A , C t a b

This is a sufficiently unique combination of characters that we are unlikely to
get a bogus hit. In fact, those four characters appear as a string nowhere else.

To search, use the S command followed by the string to be matched fol
lowed by at least one escape (as for insert). The following dialogue shows how
this is done:

*JSA,C $T$$
THIS PROGRAM
*I ;$V$$
START: MOV A,C ;THIS PROGRAM
*

Searching is useful not only for finding a place in a line, but also for
finding a line or area of a large program. For example, to find the data area of a
program, you could use the command S.WORD$$.

E.7 T E R M I N A T I N G T H E E D I T R U N

Now that you have corrected all the errors, two additional tasks probably need
to be done. The first is to get a current listing of your program so that you can
check to be sure that all the errors were found and corrected. The second is to
exit and save the file.

.END START
*IC: .BLKW 1
$3V$$
B: .WORD 2
C: .BLKW 1

.END START

Sec. E.8 Editing a Preexisting Program 337

In order to list a file, the command HT$$ is typed. This will type out an en
tire program. Then the command EX$$ can be used to terminate editing and
save the program in the file you have named. It should be noted that until the
EX has finished, you have not saved your program, and halting the machine or
typing control C could cause everything to be lost.

Figure E .2 shows the final dialogue for listing the program and exiting.
Note that when the prompt character changes from asterisk to period, it means
that you are out of the editor and back in RT-11.

Figure E.2 Exiting from the Editor

*HT$$
.TITLE EXAMP SIMPLE EXAMPLE

START: MOV A,C ;THIS PROGRAM
ADD B,C ;ADDS TWO PLUS TWO
HALT ;AND HALTS

A: .WORD 2
B: .WORD 2
C: .BLKW 1

.END START
*EX$$

E.8 E D I T I N G A P R E E X I S T I N G P R O G R A M

In order to edit a preexisting program, you must enter the editor without the
/ C R E A T E option. It may be necessary to type the command A$$ to make the
editor read the old program. After that , editing is the same as described before.
When you type EX$$, the modified program is saved with your program name.
However, for safety purposes, the old version of the program is saved with the
file type .BAK.

Figure E.3 shows a sequence for doing this. Your old program must
originally be called P R O G . M A C . After you are done, your old program is
backed up as PROG.BAK, and your new program is stored as P R O G . M A C .

*EX$$

Figure E.3 Edit Sequence for Editing Existing Program

.EDIT PROG.MAC
*A$$

. Normal Edit Commands

*EX$$

E.9 I M M E D I A T E M O D E E D I T I N G

If you are fortunate enough to have a system with interactive graphics or an ad
vanced graphics terminal, editing can be greatly simplified. Such terminals in
clude the VT-11, VT-52, and VT-100. These terminals allow various forms of
immediate mode editing. In immediate mode, the text surrounding the pointer
is continuously displayed. The pointer itself is marked as a flashing line.
Whatever you type is automatically inserted, and there are special keys for eras
ing characters or lines, moving the pointer, and other edit functions.

It is also possible to get out of immediate mode back to the normal edit
command mode, and vice versa. Consequently, the immediate mode editing
does not restrict the user. As each device has its own rules for using immediate
mode, they will not be discussed here. However, immediate mode can easily
be related to the command mode and learned quickly with a little practice.

Summary of Edit Commands*

A Read the old program into the editor.
nC Move the pointer n characters to the right (left if n is negative).
nD f Delete n characters to the right of the pointer (left if n is

negative).
EX Exit from the editor and save the program.
ltext$ Insert text into program.
J Move the pointer to the beginning.
Z J Move the pointer to the end.
nK Kill n line(s) starting at the pointer.
nL Move the pointer down n lines (up if n is negative, and to the

beginning of the same line if n = 0).
StextS Search for the string text.
nT Type n lines starting at the pointer.
H T Type the whole program.
nV Verify n - 1 lines either side of the line the pointer is on.

*These commands are greatly simplified here for the purpose of brevity. For more detail
and for many other commands, refer to the TECO Manual distributed by Digital Equip
ment Corporation.
fIt is possible to delete either the carriage return or the line feed at the end of a line of
text. As far as the editor is concerned, these are just single characters as are any other
control characters such as TAB. If you inadvertently delete a carriage return or line feed
it can be reinserted, but note that the RETURN key on the console produces a carriage
return/line feed pair; therefore, it is tricky to repair the damage.

Sec. E.9 Immediate Mode Editing 339

Equivalence of T E C O and E D I T (old editor) Commands

TECO EDIT Note

A R
nC nJ
nD nD
EX EX
ltext$ \text$
J B
Z J 999A Advance a large number of lines such as 999.
nK nK
riL nA
Stext$ Gtext$
nT nL
HT /L Pointer must be at the beginning in EDIT.
V V No number is allowed in EDIT.

GLOSSARY

Absolute A value or address that is constant and does not change even if the
program is relocated in memory.

Address A number that identifies a particular word location or byte location
in memory. In the PDP-11 , words must have even addresses, whereas
bytes may have even or odd addresses.

Address Expression An expression the value of which is an address.

Argument A parameter that is provided in an assembly directive or macro
call.

Array A collection of words or bytes used for a coordinated purpose.

ASCII A standard code for representing alphabetic information. In the
PDP-11 , ASCII characters are represented one per byte, or two per word.

Assembly Directive A command to the assembler to perform a certain func
tion regarding translation. These include changing assembly modes or
listing modes, allocating memory, and indicating the end of your program.

Assembly Language A language for simplifying the process of producing
machine language programs for a computer. Basically, each line of assem
bly language corresponds to a single machine language instruction, except
that numerical op codes and addresses are replaced with symbolic names.

Auto-Increment (Decrement) An indexing mode where the index register is
automatically incremented (decremented) as the instruction is executed.

Binary A number system based upon powers of two using the digits 0 and 1.
Also, describes any event that can be characterized in exactly two ways.

Boolean (Operations and Values) Operations that treat the values of 0 and 1
as meaning falsity and truth. The Boolean operations most used are AND,
OR, NOT, and exclusive OR.

Borrow The deficit from subtraction that cannot be obtained from a digit
(register) and must be obtained from the next digit (register).

Branch (Conditional) A branch instruction is an instruction that alters the
sequence of your program by jumping to another location. A conditional
branch is one that may or may not operate based upon some computed
condition. In the PDP-11 , branch instructions operate over a limited
range of - 127 to +128 words.

Buffer In an input or output device, the buffer is the register that contains the
information to be input or output .

Byte A short sequence of bits (usually 6, 7, or 8) that is treated as a single unit
of information by the processor. Bytes are often used to contain character
codes. In the PDP-11 , bytes are 8 bits long.

Carry The excess from addition that will not fit into a digit (register) and must
be added to the next digit (register).

Code Assembly language or machine language text.

Computer A machine for performing computations. Most modern computers
are automatic, and operate under control of a programmed set of instruc
tions.

Condition Code A set of bits that indicates the state or condition of the pro
cessor at a given time. In the PDP-11 , there are four condition code bits,
N, Z, C, and V, which indicate the result of the previous operation.

Conditional Assembly A block of program that may be eliminated from your
total program based upon some information available at assembly time.

Contents The number or data represented in a memory location or register.

CRT Cathode-ray tube, that is, a television picture tube. In computer termi
nology, this refers to a device for receiving messages from a computer (or
teletypewriter) to be displayed on a television screen. Most CRTs also in
clude a keyboard for data entry as well.

Decimal A number system based upon powers of 10 using the digits 0, 1, 2, 3,
4, 5, 6, 7, 8, and 9.

Deferred Address An addressing mode where the instruction does not directly
locate the operand, but locates the address of the operand.

Destination The location or register where the result of a computation is
stored.

Device Polling A technique that may be used by the processor to determine
when an input or output operation is completed. The processor continually
asks the device if the input /output operation has been completed. Contrast
with Interrupt.

Direct Addressing An addressing mode where the instruction contains the
actual numeric value of the address of the operand.

Directive See Assembly Directive.

Effective Address An address that is computed at execution time, often by
adding the contents of an index register to a base address.

Execute Cycle The period of time that the computer is executing the operation
specified by an instruction. See also Fetch Cycle.

Exponent Part The part of a floating point number that indicates the position
of the radix point (decimal point).

Expression A combination of symbols, numbers, and algebraic operators
denoting the computation of some value. In the PDP-11 assembly lan
guage, expressions are evaluated at translation time.

Fetch Cycle The period of time that the computer is fetching an instruction
from memory prior to execution. See also Execute Cycle.

Fixed Point A number representation system where the radix point (decimal
point) is assumed to be at a fixed place in a word. Fixed point representa
tion is used for integers and occasionally for fractions.

Floating Point A number representation system where the radix point (deci
mal point) can be placed anywhere over a wide range. Usually used for
FORTRAN REAL numbers. See also Exponent Part and Fraction Part .

Fraction Part The part of a floating point number that indicates the signifi
cant digits of the number.

Global Symbol A symbol defined in one program module for use in other
independently assembled program modules.

High Order The most significant digits in a number or word.

Hexadecimal A number system based upon powers of 16 using as digits: 0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F .

Immediate Operand An operand that is contained in an instruction, which
therefore does not need to be read from memory during the execute cycle.

Index Register A register that is used to point into an array to assist with array
operations.

Instruction A coded command to the processor to perform a specific oper
ation.

Integrated Circuit An electronic circuit made of microscopic parts photo
graphically placed on a very small die of silicon or sapphire. An integrated
circuit that is only 0.04 square inches may have more than 50,000 tran
sistors on it.

Interrupt A signal sent by an input or output device to the processor to indi
cate that an input /output operation has been completed. Normally, this
causes the processor temporarily to suspend the execution of the currently
executing program in order to execute a special program, called an inter
rupt routine, that services the input /output device.

Link To relocate individual program modules to their own memory space,
and to insert the addresses of global locations into instructions that refer to
global symbols.

Load To place a linked program into memory so that it can be executed.

Location Counter A counter in the assembler that keeps track of the memory
location into which code is being assembled.

Loop A part of a program that is executed repeatedly.

Low Order The least significant digits in a number or word.

Machine Language A sequence of numeric codes that direct the operation of
a processor.

Macro A named block of code with substitutable parameters that can be in
serted into a program by referring to the name.

MACRO-11 The name of the PDP-11 assembler.

Mask A word where the bits are used to zero out or fill in selected portions
of another word.

Memory A collection of addressable locations that contain the representa
tions of numbers or data.

Microcomputers A computer that is extremely small and inexpensive. A
microcomputer is built from one or a few integrated circuit chips, and usu
ally has a simple instruction set and a small word size such as eight bits. As
technology improves, it becomes difficult to distinguish between micro
computers and minicomputers.

Modules Main programs and subroutines that can be assembled indepen
dently, and later linked together to form a total program.

Monitor A program that controls the loading, execution, and input /output
functions of user programs.

Normalized Number A floating point number that is adjusted so that the
most significant digit of the fraction part is not zero. In the PDP-11 float
ing point representation, all numbers are normalized.

Object Code The output of the assembler. Object Code is relocatable ma
chine language that must be linked so it can be run. See also Link.

Octal A number system based upon powers of eight using the digits 0, 1, 2, 3,
4, 5, 6, and 7.

One's Complement A system for representing negative numbers in the binary
number system. The negative of a number is formed by changing all ones
in the original number to zeros, and all zeros to ones. This is also equiva
lent to the Boolean NOT operation on each bit.

Operand The data that an instruction operates on. This may be input data o
a computed result.

Operating System The collection of programs that allows the user access U
the computer. These include monitors, translators, loaders, linkers,
input /output routines, editors, debugging aids, and so on. Some operating
systems may have very few programs, while others are extremely sophis
ticated. Operating systems widely used on the PDP-11 are RT-11, RSTS,
and RSX-11.

Operation Code A numeric code that indicates which instruction is to be ex
ecuted by the computer. Also, a symbolic name used in assembly language
to designate a machine language, numeric, operation code.

Overflow A condition that occurs when a computed result is too big to fit into
a word, byte, or floating point representation.

Parity An error detection scheme where an extra bit is added to make all
words or bytes have an odd (or even) number of ones.

Pass During the assembly process, the assembler reads through the input
code twice in what are called passes. On the first pass, symbols are defined;
on the second pass, the object code and the listing are generated.

PDP Programmed Data Processor, a trade name of the Digital Equipment
Corporation used to identify computer models. The numbers following
P D P are chronological so that the PDP-1 was the earliest, the PDP-11 is
later. The size and power of the computers vary. The PDP-6 was very big
and powerful, the PDP-8 was very small. Newer products have dropped
the P D P nomenclature, such as the VAX 11-780 and the DEC System 20.

Peripheral Device An input or output device such as a card reader, printer, or
CRT.

Processor The portion of a computer that executes instructions, performs
calculations, and controls the other portions of the computer.

Processor Register The PDP-11 has eight registers located in the processor
that are available to the program and can be accessed without going
through memory. These are designated RO, R l , R2, R3, R4, R5, SP, and
P C .

Processor Status Register A register in the processor that contains coded bits
which indicate the current state of the processor. On the PDP-11 , the pro
cessor status register contains the current processor priority as well as the
condition code bits (the C, Z, V, and N bits).

Program A sequence of instructions for directing the operation of a com
puter.

Program Counter A register in the processor that contains the address of the
next instruction to be executed. In the PDP-11 , the program counter is one
of the processor registers designated as PC .

Program Section A block of code that can be filled from various places in an
assembly language program, but is eventually loaded as a contiguous
block.

Q-BUS Q-BUS is a trademark of the Digital Equipment Corporation that
refers to the cable and protocol for transmitting data and addresses back
and forth from the processor to the memory and other peripheral devices.
The Q-BUS is used on most of the LSI-11 based computers such as the
PDP-11/03 and PDP-11 /23 . See also UNIBUS.

RAD50 In the PDP-11 , a character code that allows character strings to be
represented with three characters per word.

Recursive A subroutine, macro, or other process that calls itself.

Register A physical device that contains the representation of a number or
piece of data. On the PDP-11 , the term register usually refers to the eight
processor registers R0-R5, SP, and P C . Each contains a 16-bit word.

Relative Addressing An addressing mode where the instruction contains the
difference between the address of the operand and its own address. Use of
relative addressing helps eliminate the need for modifying the program
when it is relocated.

Relocatable A value is relocatable if it must be modified when the program
is relocated.

Relocation Modifying a program if necessary so that it can be executed from
a different area of memory than that assigned during assembly.

Repeat Block A block of code that is automatically repeated by the assembler.

Shift To move the digits (bits) in a word left or right.

Signed Number A number with an algebraic sign, plus or minus.

Source The input data used by an instruction that is not modified by the
operation.

Status Register In an input or output device, the status register contains var
ious bits that indicate the status of the device. On the PDP-11 , these bits
may include the ready bit, the interrupt bit, the start bit, as well as error
bits.

Stack An array of data that is used in such a way that the last piece of data to
be added to the stack is the first to be removed.

Store The operation of modifying or replacing the contents of a memory
location.

Subroutine A program segment that can be entered from various places and
will return when finished.

Teletypewriter A machine resembling a typewriter for transmitting type
written messages over an electrical connection. Often, teletypewriters are
used to type messages into a computer or to receive computer printout.

Trap A forced iaterpretojtion of a program due to an error or some other
condition. In* ^ -"

Two's Complement A system for representing negative numbers in the binary
number system. The negative of a number is formed by subtracting the
number from zero, and ignoring the borrow that propagates off the left
end of the register.

UNIBUS UNIBUS is a trademark of the Digital Equipment Corporation
that refers to the cable and protocol for transmitting data and addresses
back and forth from the processor to the memory and other peripheral
devices. The UNIBUS is used on most of the larger P D P - l l ' s , such as
the PDP-11/34. See also Q-BUS.

Unsigned Numbers A positive number that cannot have an algebraic sign.

Word A sequence of digits that is treated as a single unit of information by the
processor. In the PDP-11 , words are 16 bits long.

INDEX

Absolute address, 68, 81
Absolute addressing, 156
Absolute expressions, 224
Absolute loader, 303
Absolute loader file, 290
ADC instruction, 139
ADD instruction, 40
ADD number instruction, 49
Addition, 17

floating point, 269
Address, 34
Address assignments, 240
Address expressions, 146
Address space, 57
Address,

absolute, 81
relocatable, 81

Addressing mode,
absolute, 156
auto-decrement, 153, 156
auto-decrement deferred, 156
auto-increment, 152, 156
auto-increment deferred, 156

immediate, 156
index, 147
index register, 156
index register deferred, 156
indirect, 155
register, 106, 156
register deferred, 151, 156
relative, 157
relative deferred, 157

Addressing modes, summary,
154, 156

Addressing,
direct, 97
relative, 97

Aiken, Howard, 2
Algorithm, 15
AND operation, 28
Argument, 68
Arithmetic, multiple precision,

137
Arrays, 143
ASCII, 165, 239
ASCII character set, 168

.ASCII directive, 176
ASCII keyboard, 169
.ASCIZ directive, 178
ASH instruction, 285
ASHC instruction, 285
ASL instruction, 130
ASR instruction, 131
Assembly directive, 68
Assembly errors, 71
Assembly language, 4, 63

syntax, 67
Assembly passes, 71, 225, 292
Assembly process, 291
Auto-decrement addressing, 153
Auto-increment addressing, 152

BASIC to machine language
conversion, 52

Batch control cards, 319
Batch system files, 320
BCC instruction, 121
BCS instruction, 121
BEQ instruction, 89, 123

BGE instruction, 100
BGT instruction, 100
BHI instruction, 125
BHIS instruction, 125
BIC instruction, 184
Binary arithmetic, 22
Binary counting, 21
Binary event, 21
Binary files, 296

formatted, 297
Binary fractions, 276
Binary numbers, 20
Binary to hexadecimal con

version, 30
Binary to octal conversion, 23
BIS instruction, 184
Bit, 23
BIT instruction, 184
Bit manipulation instructions,

183
BLE instruction, 100
.BLKB directive, 177
.BLKW directive, 68, 145
BLO instruction, 125
BLOS instruction, 125
BLT instruction, 100
BMI instruction, 123
BNE instruction, 89, 123
Boolean logic, 28
Bootstrap loader, 303
Borrow, 17
BPL instruction, 123
BR instruction, 89
Branch instruction

displacements, 96
Branch instructions, 87

guidelines, 126
machine language, 95

Buffer register, 241, 245, 249
Bus, 261
BVC instruction, 121
BVS instruction, 121
Byte, 34, 172
.BYTE directive, 175
Byte instructions, 172

C bit, 121, 139
CALL statement, 210
Calling subroutines, 111
Carriage return, 167

Carry, 17
Character files, 292
Characters, 166
Check sum, 298
Clock, 251, 255
CLR instruction, 91
CMP instruction, 98, 123

machine language, 99
order of operands, 101, 103

COM instruction, 185
Common block, 212
COMMON statement, 212
Compiler, 5
Computer program, 2, 34
Computers (other than the

PDP-11), 56
Condition codes, 122
Conditional assembly, 232
Conditional blocks, nesting,

234
Console keyboard, 241
Console printer, 244
Console typewriter, 325
Contents of memory, 37
Control characters, 166
Conversion,

binary to hexadecimal, 30
bytes to words, 35
octal to binary, 23
octal to decimal, 20

Core image file, 290, 303
Counting, 17, 21
CRT, 170
Cursor, 170

DEC instruction, 93, 126
Decimal fractions, 266
Decimal numbers, 16
Deferred addressing, 151, 155
Destination, 49, 63
Device names, 327
Device polling, 239
Direct addressing, 97
Direct memory access, 261
Divide instruction, 284
Dividend, 129
Division, 129, 134, 283

floating point, 272
Divisor, 129
Done bit, 243

Dot symbol, 221, 306
Double operand instructions,

188
Double-precision, 137
Doublewords, 59

EAM, 1
EBCDIC code, 192
Echoing, 182
Eckert, Presper, 2
EDIT, 339
Editing, 331
EIS option, 281
Electronic accounting

machinery, 1
EMT instruction, 79, 259
.ENABL directive, 68, 156
Encoding, octal, 23
.END directive, 68
.ENDC directive, 233
.ENDM directive, 231
.ENDR directive, 220
Equal sign, 108
Equals symbol, 222, 242
Error trap, 74
.EVEN directive, 175
Exclusive OR operation, 29
.EXIT macro, 115
Exponent part, 268
Expressions, 146, 223

FADD instruction, 278
FDIV instruction, 278
Fetch operation, 33, 39
Fields, 293, 320
File types, 327
Files, 326

binary, 296
character, 292

FIS option, 275, 278
Fixed point numbers, 266
Floating point,

binary, 275
PDP-11, 277

Floating point addition, 269
Floating point division, 272
Floating point multiplication,

272
Floating point numbers, 267
Floating point subtraction, 269

Floppy disk, 13
.FLT2 directive, 279
.FLT4 directive, 280
FMUL instruction, 278
Forward reference, 291
Formatted binary files, 297
FORTRAN to machine

language conversion, 52
Fraction part, 268
Fractions, 265

binary, 276
decimal, 266

FSUB instruction, 278
Full duplex, 182
Functions, FORTRAN, 213

Global symbol directory, 299
Global symbols, 206
.GLOBL directive, 207

Halfwords, 59
HALT instruction, 41
Hardware, 4
Hexadecimal, 58
Hexadecimal numbers, 30
Hexadecimal to binary con

version, 30
Hidden bit, 277
Higher-level language, 5
Hollerith code, 190
Hollerith, Herman, 1, 190

IBM card code, 192
.IF directive, 233
Immediate addressing, 156
INC instruction, 92, 126
Index addressing, 147
Index register, 147
Indexing, 146
Indexing byte instructions, 176
Indirect addressing, 155
Input device, 33
Input, no operating system, 181
Input with RT-11, 179
Instruction, 34
Instruction cycle, 304
Integrated circuit, 3
Interrupt routine, 255, 258
Interrupt vector, 254
Interrupts, 252

JMP instruction, 97
JSR instruction, 111, 197, 201
Jump instructions, 87

Keyboard, 241
Keyboard buffer register, 182
Keyboard status register, 182

Label, 66
Leader (paper tape), 248
Line clock, 251, 255
Line feed, 167
Line printer, 247
Linker, 83, 207, 300
Linking process, 300
Loader, 83, 303
Location counter, 70, 221
Looping, 88

example of, 94, 98, 104

Machine language, 4, 42, 102
branch instructions', 95
CMP instruction, 99

Machine language programs,
43, 52

Macro, 109
.MACRO directive, 231
Macro definition, 229
Macro expansion, 229, 294
Macro parameters, 230
Macro-11, 64
Macros, 229

nesting, 234
recursive, 234

Mask, 184
Matrix, storage allocation, 160
Mauchly, John, 2
.MCALL directive, 108, 179
Memory, 33
Memory cell, 44
Memory interpretation, 47
Memory mapped input/output,

240
Memory representation, other

computers, 56
Microcomputer, 57
Mnemonic operation code, 64
Mode (see Addressing mode)
Modular programs, 78
Modules, 206

MOV instruction, 41
MOV number instruction, 49
MOVB instruction, 172
MOVB with processor registers,

174
MUL instruction, 283
Multiple-precision, 137
Multiplication, 129, 133, 282

floating point, 272
Multiply-dimensioned arrays,

160

N bit, 122
NEG instruction, 126
Negative numbers, 27

32 bit, 284
No-op, 97
Normalized numbers, 268
NOT operation, 28
Number representation, 15
Numbers,

binary, 20
decimal, 16
hexadecimal, 30
octal, 17

Object code, 83
Object file, 290
Object module, 299
Octal counting, 17
Octal encoding, 23
Octal numbers, 17
Octal to binary conversion, 23
Octal to decimal conversion, 20
ODT, 309
One's complement, 27, 186
Operand, 45
Operating system, 11
Operation code, 42, 63
Operation codes, 102
OR operation, 28
Output device, 33
Output, no operating system,

181
Output with RT-11, 179
Overflow, 46, 120

Paper tape, 248
Parity, 186
Parity bit, 171

PC, 110, 156, 203
PCHAR subroutine, 181
PDP-11, 7, 35
Peripheral devices, 12
Phase error, 227
PNUM subroutine, 112, 116,

314
Polling loop, 244
Position independent code,

159, 305
Print operation, 33
Printer buffer register, 181
Printer status register, 181
Priority, 254
Processor, 8, 33
Processor register, 87, 105
Processor status register, 253
Program counter, 43, 110, 156,

203
Program modification, 47
Program sections, 212, 301
.PSECT directive, 212, 299
PSW, 253
Punch card, 191

Quotient, 129

RAD50 code, 193
Radix point, 266
RCHAR subroutine, 182
Read operation, 33
Ready bit, 243
Records, 296
Recursive macros, 234
Recursive subroutines, 200, 214
.REGDEF macro, 108
Register, 26
Register 6 (see Stack pointer)
Register 7 (see Program

counter)
Register addressing, 106
Register deferred addressing,

151
Register symbols, 107
Register, index, 147
Relative addressing, 97, 158
Relocatable address, 81
Relocatable expressions, 224
Relocation, 79
Relocation directories, 300

Remainder, 129
Repeat blocks, 220
.REPT directive, 220
RETURN statement, 210
Returning from subroutines,

111
RNUM subroutine, 112, 116,

313
ROL instruction, 132
ROR instruction, 132
Rotate instructions, 132, 285
Round off, 131
Routine, interrupt, 255, 258
RSTS, 12
RSX-11, 12
RT-11, 12, 79

defining registers, 108
exiting, 115
input and output, 179

RT-11 commands, 325
RTI instruction, 255
RTS instruction, 111, 198, 201
Running a program, 319, 325

SBC instruction, 139
Scaling, numbers, 266
Scientific notations, 267
Scrolling, 170
Selection sort, 143
Sentinel value, 177
Shift instructions, 130, 285
Shifting, multiple-precision, 140
Signed branch, example of, 124
Signed conditional branch in

structions, 100
Signed numbers, 45, 119
Signed overflow, 120
Signed vs. unsigned instruc

tions, 126
Single operand instructions, 94,

188
Software, 11
Sorting, 143
Source, 49, 63
Source code, 290
SP, 109, 198
Stack, 153, 198

illustration, 199
use of, 200

Stack pointer, 109, 198

Status register, 243, 245, 249,
251

Storage allocation, arrays, 145
Store operation, 33, 39
Stored program, 2
SUB instruction, 41
SUB number instruction, 49
Subroutine libraries, 302
Subroutines, 111, 197

argument passing, 203
example of, 113
FORTRAN, 209
recursive, 211, 200

Subtraction, 17
floating point, 269

Symbol table, 65, 70
Symbolic address, 53, 65
Symbolic name, 63, 66
Syntax errors, 71
Syntax of assembly language,

67

TECO, 332
Teletypewriters, 166
.TITLE directive, 68
Transfer address, 303
Trap bit, 260
TRAP instruction, 260
Traps, 74, 259
TST instruction, 89, 93, 123
.TTYtN macro, 179
.TTYOUT macro, 179
Two's complement, 26, 186
Two's complement numbers,

120

Undefined symbols, 71
UNIBUS, 9
Unit of addressable storage, 56
Unsigned branch instructions,

125
Unsigned numbers, 45, 119
Unsigned overflow, 120
Unsigned vs. signed instruc

tions, 126

V bit, 121
VAX-11/780, 9
Vector, interrupt, 254
von Neumann, John, 2

Word, 35, 57
.WORD directive, 69, 175
Word size, 8

XOR instruction, 282

Z bit, 122
029 code, 192

Summary of Edit Commands

A Read the old program into the editor.
nC Move the pointer n characters to the right (left if n is negative).
nD Delete n characters to the right of the pointer (left if n is

negative).
EX Exit from the editor and save the program.
ltext$ Insert text into program.
J Move the pointer to the beginning.
Z J Move the pointer to the end.
nK Kill n line(s) starting at the pointer.
nL Move the pointer down n lines (up if n is negative, and to the

beginning of the same line if n = 0).
Stext$ Search for the string text.
nT Type n lines starting at the pointer.
H T Type the whole program.
nV Verify n - 1 lines either side of the line the pointer is on.

Equivalence of T E C O and EDIT (old editor) Commands

TECO EDIT Note

A R
nC nJ
nD nD
EX EX
ltext$ ltext$
J B
ZJ 999A Advance a large number of lines such as 999.
nK nK
nL nA
Stext$ Gtext$
nT nL
HT /L Pointer must be at the beginning in EDIT.
V V No number is allowed in EDIT.

O D T Commands

Command Description

For all ODT systems:

@ or *1000/123456 cr Examine the contents (123456) of memory cell
001000.

@ or *1000/123456 3 cr Change the contents of memory cell 001000 from
123456 to 000003.

@ or * 1000/123456 3 lf Same as above, but display the contents of memory
cell 001002 next.

For software ODT systems only:

»1020;B Make memory cell 001020 a breakpoint. That is,
when the processor is about to execute the instruc
tion in 001020, immediately return control to ODT.

*;B Eliminate all existing breakpoints.
*1000;G Execute (GO) the program beginning in memory cell

001000.
* c o n t r o l C Terminate the execution of ODT (hold down the

control key and type the letter C)

For LSI-11 ODT:

@1000G Execute (GO) the program beginning in memory cell
001000.

Assembly Language for the PDP-11 is designed to provide readers with the fun
damental principles of assembly language programming on a minicomputer , and to
enable them to acquire hands-on experience with the PDP-11 family of computers .
Extensive topical coverage and ample exercises make this text suitable for begin
ning students and professionals. Reviewers have made these comments :

"You have a winner here The manuscript is a vast improvement over its com
petition. The approach to the subject is just right...The Kapps/Stafford manuscript is
far superior to the texts I have used."

— James Gips, Boston College

"This is the only good text I have seen for this computer...If the main objective
is for s tudents to become proficient in assembly language programming, this is the
text...the strongest and best text on assembly language for the PDP-11..."

— George W. Gorsline, Virginia Polytechnic Institute and State University

A Joint Publication in Computer and Management Information Systems
Prindle, Weber & Schmidt, 20 Providence Street, Boston, Massachusetts, 02116
CBI Publishing Company, Inc., 51 Sleeper Street, Boston, Massachusetts 02210

37L 8000 I S B N 0 8 7 1 5 0 - 3 0 4 - 2

