ASSEMBLY
LANGUAGE
for the PDP-11

Charles Kapps
Robert L. Stafford

des 319 1 3iqiyut 1dn1J33ut WoJsy uinjal 900000 LYY | -0« & PNI— D YO 3AISN|IXd agyvLo ¥oX

PR uw:_ano HIYs e SSHELO JHSY

1dnuidjul wosj uinjas 200000 1.4 M /1o 8.:5_...:&_.&“, mmnmm .mu

. - L

2z 18 Sd ‘0Z 18 0d desy Indno/andur 400000 o |so0ss sxiou fidninw SS¥0L0 nw
Stiesd ‘viie d desjjutodyealq £00000 1d8 Jasidayy

) LLLYOT 0} -0 PAS—>p (40) 39s 31q aasss = (g)sia

9€ 1€ Sd ‘vE 38 Od desy 00v¥01 dviL “0 s PV(S~)>p Je3|d yq agssy = (8)018

—0 .« pvs (ONV) 3531 319 agsse (a)118

(3asn |esauad 4oy jou) LLEYOT O}
2€ 18 Sd ‘0€ 38 Od deJ} Jojeinwa 000v01 1W3
SON uonanysu| apoj do QWOWAUN | « « » & w“.uml w tm:“ww mmwmwm
L S ind
BELITETCTIR JPLTTYH B p-s aledwos gQssz e

-0 s—>p now aasst = (8)AOW

|e13uag
Jd vouuﬁ“z : Nw
= n—2d
0F# (W) yusy ‘T-(3) (0F 418 T1%e0aNS NNYLLO 80SY | 9 AZ N uonesadg uondnnsul apog do luowaup
uJinjas iqns ut pre p yiew NNY900 MYVAY
- o:;:ozsw wolj uInyal 402000 S1y
Y awes asn) noigns o3 dwnl QQG¥Y00 uSs(T ' . —
ISP - 9d dwn/ aarooo dNl H 00 40 S i 5 M 3009 40 u
L
SION uonanssu| apoj do dluowauw o s 9 8 & &
‘INILNOYEBNS B dWAT _ mo — m.m 2005 an“ _

0 S 9 ! nwooa St
1=9 > J3MO| JI YOURIG 0OVEQT 08 . . . ‘NvH3do 318noa
0=0 £ owesiosaydiyjiyduesq 000SOT SiHG 1P "4 ¥d0 10 ¥ 25 ¥d0 ISP 7215 ¥d0

1=2A9 > awes o Jamor 41 ydouesqg 00YIOT s018
0=2ZAD < Jaydiy 4t youesq 00010T 1HE
sayduelg |euonipuo) paudisun
T=(A*N)AZ 02> (0 0}) |enba 1o sS3] 41 uq 00YE00 318
0=(A#*N)AZ 0< (0) ueyy Jayeasd i uq 000€00 198
T=A*N 0> (0) ueyy ssaj 4t uq 004200 118
0= A+N 0< (0 03) ba 10 431e2.3 41 4q 000200 3989 -0 & - 1-100 puaixa udis aase00 1XSV¥
. s - [STERELNLT aQ9so = (8)28S
sayouesg jeuontpuod paudis | T ;- uo +w Kieappe 0Qoco = (8)2av
1=9 13s S1 K118 41 1q 00vE0T $28 u it adnn|
0--3 18312 51 K1sed 41 uq 000€01 08 uotstoaid aldninK
iSh | mimmie ma o ges o gkl O
= ! ! PPN 3| J1ys yy1e .
=N - s jyouesq oopoot wes [111l 2 WAL Bue Qassom (BSv
TE ol odtanwe me gmy|iii S e s g
= = . | N .. ‘ 311 3)e304
0=1 0F (0 03 1enba jou 1 19 000100 INEA . [R 143 330 QQos0 = (8)40¥
(skemie) (leuonipuodun) youeiq 00%000 ¥g f uws 3 a0y
saydueig | 9o, , p 159 Qa/50 = (8)1S1
PR P~ (1dwoo §,Z) ayedau aovso (8)93IN
n s s s 1-p juawariap Qaeso = (8)030
uonIpuoy youeig uonanysu| apoJ aseg duowauW M P ~v+] - ~:wﬁ%.m&%u_ mmmm - Awmvww%o_
. ~ s [.
XXX + 3po) aseg = apo) do 0010 0 1.0 aQoso = (8)410
; . , ; |esaudy
_r XXX _ 3007 3sve _
8 Sl
° ‘ IAZN Unsayisp uonansu| 0y do dMuowauw
2 + 215Ul 4q jo sipe
J|\
(9540 X 2) -+ 0d Paepdn — 2d MaN T T T T
‘uonjedo| 03 youelg ﬁ aa _ 3003 40 _
*palysies st uonipuod §| o s 9 s
uonedo| - - g “HINVEE ‘ONVY3dO 31INIS

ISP ¥d0

HOLLVHOJHOD INIWJIN®E TVLIDIA RLET ‘LLET ‘SL6T ‘#L6T *€L6T @

‘|eLIBJBW 3Y) JO SS3ua)a|dwod
J0 Aoeinooe au} Joj Anjiqisuodsal ou sawnsse uolesodio) Jusw
-dinb3 |eubig “pansasas siybu iy "uoneiodio) juswdinb3 jenbiq jo
uoissiwiad ay) yim paonpoidal uaaq aney |elalew Siy) Jo SuoiLod

s123ndwod 0//11 B Sy/11 8y} 0} sanddy = @
s1aIndwod 0//TT B Sb/TIT ‘Ov/T1 'SE/TL @y} 0} saiddy =V

310N
PS =1 10N =~
paiea|d =0 ¥0 3AISN|IXd = A
pajdaje jou = - ¥O 3AISN|OUL = A
paJea|d/}3as A|jeuon}ipuod = , aNy = V
$3p0J UOHIPUOY ueajoog
uonIuIap JaIsIBaL = % (s31q 9) Jaqunu = NN
sSaippe aAne|das = (S31q €) Jaqwnu = N
sawo0daq = - 821~ 0} LZ1+ '(S)!Q 8) 3510 = XXX
13151331 jo sjuauod = 4 L0V0'(SHGE)InsiBasuad = ¥
UOljeul}SAP JO SJUAJU0) = Pp. (s31q 9) pjay uoyeunsap = aa
92iN0S JO SJUUOI = S (531G 9) pIay 3dinos = SS
40 Sjuauod =() 9)4q J0j [/pIOMm IO Q0 = ®
suonesado sapo) do
N3O
sipe jo sipe SI X + ¢ + Sipe sisul Y@ pallasap aane|as L
sipesiX + v+ sipesjsui y aAlje|al 9
nsul sm o 10} ¥ Ssaippe YR ® aynjosqe €
J)SUl SMO||0} U puesado U ajelpawwy z
[.] sow | ¢=%u :smissavaav 431NN0D WYud0ud

Paiiajap xapu! L

xapu! 9

pasiajap 12ap-oyne 5

sipe st (¥) H(z 40 1) - (3) Juawaldap-oine v

. 7+ (¥ ‘sipe jo sipe si (¥) Paliajap Jour-oyne €

(Z 40 1) + () ‘sape si (¥) Judwaidui-ojne z

ssaippe si (¥) palsaap Jaysidal 1

(2% =2¥ "x3) puesado si (¥) 13)s1334 0
uondiiasag Ajoquiks JwenN Ppon

—_—
NOILVIN3S 38d 3
iD0 AuwNIG [
o ¢ % s 9 8 6 2 oS

S1VINHO0J QHOM

SYILNAWOI 11-dad 40 ATINVS ¥O4

agavo a9NINNWVYHOOdd

uonanysul dvyl

uonanisul 1N 0E0
Ilej Jamod $20
uonomIsul 10| 020
jJuawadeue Klowap 0SZ uoonIsul 10
juiod 3uneoly vz J)SU) pansasas g |eda 010
bas jut 30.d 'DYI4 ove $10JJ3 JaYlo g InQ awij 00
K}lied Arowaw FA88 (paniasal) 000
$SHOLIIA dVHL
L Lt
jutod 1 0178 'sd8 xXx v€ 01
3unjeoly 1 SIHE '008 XXX OE O 1S1 0Q (S 00
00 00 £ SA8 XXX vZ 01 78S Qd 95 00
A3 XXX 02 0T 20Y @Q SS 00
gns @@ ss 91 $018 XXX vI Ol 93N GG vS 00
8s1g aa SS SI IHB XXX 01 01 030 0d €5 00
8018 QQ SS vI IN8 XXX +0 0T ONI 00 25 00
g118 00 SS €1 148 XXX 00 0T W0J Qa 1§ 00
8dWJ Qa SS 21 413 QQ 0S 00
8AOW Q0 SS 11 80S NN ¥/ (0
¥Sr Qa ¥y 00
Lt ot T LL L9 Lo 198 XXX 5 00
Pl I j s
::2.:_; | Gogcar | 198 XXx 0f 00
00 £9 Of ov 0§ (0 118 XXX vZ 00
398 XXX 02 00
QdlW Qg 99 o1 A4 ¥E 05 L0 038 XXX v 00
QdiW SS §9 O W3 ¥Z 05 L0 ING XXX 0l 00
ansi ¥l 05 L0 48 XXX v0 00
LL v 01 aavs ¥0 0§ L0 avms 0 €0 00
(pasnun) | ¥OX QQ ¥Y L0
00 ¥9 OT o:m« wm xm Nm LL 20 00
HS ¥ (L
g1sY Qa £9 01 A0 Ss w1 zg| PP P4 |
8¥sy aQ 29 01 WSS ¥0 L0 1y 20 00
8104 ag 19 01 .
8404 Qg 09 Of Gav Qg SS 90| 55 dON O 20 00
S8 Qg SS S0 1dS NE 20 00
g1S1 QQ £§ Ol J18 da SS v0
808S QG 95 01 118 0Q SS €0 L2 20 00
82QY Qg SS Of dWd 0 SS 20| (pasnun)’ H
893N Qg vS Of AOW Qd SS 10
8230 @Q €5 01 01 20 00
8ONI Q@ S 0T LL LL 00
8W0J Q0 1S 0T\ (pasnyn).’ H S1¥ ¥0 20 00
8410 Qg 05 01 ﬁ dWl Qa 10 00
CLL Ly o 00 0400 y LL 00 00
13 [
O s ga 29 00| ™1 L5 00 00
! 141W 0Q 99 00 114 90 00 00
00 vv O1 IdIW SS S9 00 13534 SO 00 00
Y4YW NN ©9 00 101 v0 00 00
LL gy 01 ISV QQ €9 00 1d8 €0 00 00
1W3- 7 ¥Sv Qd Z9 00 114 20 00 00
r M 104 Q4 19 00 1IYM 10 00 00
00 Ov 0T 304 4Q 09 00 1IWH 00 00 00
JlUOW3UWN 3po) d0 | Jluowauw 3pod 40 | duowauw 3poJ 4o
+1S17 3003 d0 WWIIYIWAN
882'v2S 34 FALS 6
w129z 81 952 8
2LO'TET L1 8Z1 L
9€G'59 9t v9 9
89L:2¢ St 143 S
v8€.91 v1 91 v
14387} €1 8 €
960'% 4¢ v z
870'2 11 z 1
¥20'1 ot 1 0
4 u u u

T 40 SHIMOd

RE[] o — LET i LL0 sn L£0
~ 9L1 v I3 < 9£0 Sy 9€0
{ st} 431 = L0 s9 S£0
| [72¢ AN vET > L0 S4 ¥€0
} £L1] X344 t €40 283 €€0
z 122 z (434 : 2L0 ans €0
& ut A 1€1 6 L0 W3 1€0
x oLt X o€t 8 040 NYO 0€0
" 191 M 24 ¢ L £90 813 120
A 991 A 9zt 9 990 NAS 320
n [1:1¢ n [74¢ S $90 AYN 520
} $91 1 [74¢ v 90 90 920
s €91 S [X44 € £90 €90 £20
1 291 ¥ zet z 290 z%a 220
b 191] 121 1 190 4 100 120
d 091 d ozt 0 090 310 020
° (St 0 L11 / LSO 1S L10
u 951 N 9ll : 950 0s 910
w st W STt - S50 h] s10
| $S1 1 [23¢ ‘ 50 44 10
] X4] A4 + €50 LA €10
{ st f [AR ¢ . 250 i z10
! 151 1 ut (150 1H 110
y ost H ort) 050 | 010
3 Lyt 9 L01 ' L90 138 £00
) 124 4 901 3 9v0 %oV 900
Fl 12 3 501 % Sv0 ON3 500
p 22 i 01 $ v¥0 103 $00
2 [X2¢ k] €01 # £v0 X13 €00
q Zyt] 4 “ %0 X1S 200
e €2 v 101 i 170 HOS 100
. ov1) 00t ds ovo NN 000
ey) apos 1ey) apo) iey) apo) .yl apo)
18330 18330 18320 18330
$3009 1198V 118°L
e e s —sd Sd 01 81Aq anow SS¥901 Sd1W
Sd
-0 .. Sd — P woyy ahq drow Qaqz9ot SdIn
INZN (Aluo 11-197) sso1msedO (Sd) smeig Jossesoid
ALIHOIHA
dvdl 30VHL
JAILVO3IN
ow3z
MO13H3A0
AHHVO |||¢
= (sng-0)
\o>_~_ [+ QUOM SNLVLS
L2 € ¥ S L HOSS3IO0Hd
00+ s 3pIAIp 3uijeo
0051 kdninw aueon 450640 W
00+ engns uijeoy; 410520 ans3
00« » ppe 3uijeoj; ¥005£0 aavi
A

~N
z

‘LINN INIOd 9NILVO1S Ov/1L ‘SE/L1-d0d

L0 LLL— LY
90, LLL—9Y
SOL LLL—SY
YOl LLL— VY

dvHL 30VHL
3AILVI3N

045 LLL — 195133y Keidsiq 23 ! I]
€0L LLL—EY (S¥/11 Joj Jou)
20, LLL—TY
104 LLL— 1Y (Kjuo asn ajosuod)
00L LLL—ON $1315133Y |es3udy

[|

1
v S L 8 [T T T Y

9LL LLL-Sd
pIOM Smels 105533014

(SNGINN) S3SSINAAY ¥ILSIIY ¥OSSII0Ud

T
--=1
.
-1-cs
PR
0000
---0
Zlo2
Tl
0--=
IAZN

Su8 3002 ONGD 03193138 4 3S:
$118 3000 ONO5 0343° 18 v 15 20 Jh

$31q 92 jje Jas £.2000 208

N i3S 0£2000 N3IS

Z13s 92000 238

Al3s 292000 A3S

9198 192000 BN

$31Q 29 je Je3ld £52000 oo ko]

N Je3jo 062000 N1J

Z 1830 2000 210

A Je3jd 22000 A1)

Q1e3)d 12000 M)
uonanAsul apod dog dwowauw

N

T T
| | 02000 35v6 3000 90

Eﬁ

€

v S Sl

‘SY01VY¥3d0 3003 NOILIONOD

aoeds ejep snolaaid 0) arow ag9sot adine
22eds ejep sN01A3Id Wolj aA0W $S6901 adine
adeds Jjsur snotAald 0} arow 0A9900 [FIU4
deds J)Sul SNOIA3ID WOJ} AW $$5900 IdINY
(N 03) 13A3] A31014d 33s NEZ000 1dse

(uotjesado ou) 02000 dON

SNQ jeusdyxa 3asal 500000 13534

1dnuajur Joj ylem 100000 1IYM

ey 000000 11VH
uonanisu| apo) do dluowaupw

‘SNOINVITIISIN

ASSEMBLY
LANGUAGE
for the PDP-11

Charles Kapps
Robert L. Stafford

Temple University

A Joint Publication in Computer
and Management Information Systems

O Prindle, Weber & Schmidt
CBI Publishing Company, Inc.
CBI Boston, Massachusetts

PWS PUBLISHERS

Prindle, Weber & Schmidt - @ - Willard Grant Press - s -+ Duxbury Press - Q
Statler Office Building + 20 Providence Street + Boston. Massachusetts 02116

© Copyright 1981 by Prindle, Weber & Schmidt, 20 Providence St., Boston, MA
02116, and CBI Publishing Company, Inc., 51 Sleeper St., Boston, MA 02110.

All rights reserved. No part of this book may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher.

Prindle, Weber & Schmidt is a division of Wadsworth, Inc.

Library of Congress Cataloging in Publication Data

Kapps, Charles
Assembly language for the PDP-11.

Includes index.

1. Assembler language (Computer program language)
2. PDP-11 (Computer)--Programming. I. Stafford,
Robert L., joint author. II. Title.
QA76.73.A8K36 001.64 '24 80-39985
ISBN 0-87150-304-2

ISBN 0-871.50-304-¢

Printed in the United States of America.
10 9 8 7 6 5 — 86 85 84 83

Cover design and text art by Julie Gecha. Text design and production by Nancy
Blodget. Composed on a Compugraphic Editwriter in Times Roman by A & B Type-
setters. Cover printed by New England Book Components, Inc. Text printed and bound
by Haddon Craftsmen.

We dedicate this book to:
Christianne
Judy
Marcia
Sarah

The Authors

Charles Kapps received his Ph.D. in Computer Science from the University of
Pennsylvania in 1970. He has published papers on programming languages
and automated theory of large-scale integrated circuits, and has co-authored
Introduction to the Theory of Computing, published by Charles Merrill. In
addition, he has worked on the Apollo Moonlander Project as a numerical
analyst under a contract to Raytheon. Most recently he has worked with In-
tegrated Circuits Systems on the development of design processes for Very
Large-Scale Integrated Circuits. He is currently an Associate Professor of
Computer Science at Temple University.

Robert L. Stafford received his Ph.D. in Industrial Administration from Yale
University in 1969. He has done research in the area of picture processing and
has taught at the Pennsylvania State University and the University of
Pittsburgh. His current position is Associate Professor of Computer Science at
Temple University.

The Computer and Management Information
Systems Series

® Barry Bateman and Gerald Pitts/JCL in a System 370 Environment

e Charles Kapps and Robert L. Stafford/
Assembly Language for the PDP-11

¢ Jud Ostle/Systems Analysis and Design

SERIES
FOREWORD

This book is part of the Computer and Management Information Systems
Series from Prindle, Weber & Schmidt and CBI Publishing Company, Inc. As
publishers we recognize the impact that computer technology has on the
academic community, the business world, and the computer industry itself.
Recent rapid advancements in hardware and software have created a need to
communicate new developments to the varied audiences who teach, im-
plement, and initiate these new technologies. We have designed this series of
books as a timely, educational vehicle for the interchange of these ideas.

Traditional college textbooks that emphasize the theoretical aspects of
computer science are frequently used by industry professionals and business
executives. Conversely, books that reflect a more practical, ‘‘state-of-the-art’’
presentation are used by colleges and universities as texts. By merging the
resources and efforts of our two companies, we have made a commitment to
facilitate an interchange among the audiences mentioned above. We believe
this multi-market potential for books in Computer and Management Infor-
mation Systems is crucial to the exciting developments in computer-related
fields.

It has long been our publishing philosophy that the needs of an audience
are best served by concentrating on those areas of study where the publishers’
editorial, marketing, and production specialists have their greatest expertise.
Our companies are uniquely suited to implement this philosophy. CBI is a

vi

Series Foreword

well-known and established publisher of professional and reference books;
Prindle, Weber & Schmidt publishes exclusively in the computer and
mathematical sciences for the academic community. Together, we focus our
full editorial and marketing efforts on publishing books which can be utilized
by academics, business executives, and industry professionals. We welcome
your comments on this text, and any inquiries into our joint publishing venture
in Computer and Management Information Systems.

PREFACE

This book is designed for a one-semester course in assembly and machine
language programming for the PDP-11 family of computers. It is assumed
that people using this book will have some familiarity with computer program-
ming, most likely in a higher level language such as FORTRAN or BASIC.
However, minimal assumptions have been made in this regard, and the basics
of machine organization are covered very thoroughly. Our motivational
philosophy is to knit theory and practice firmly together. Every effort has been
made to develop a conceptual understanding of the PDP-11 architecture while
leading the student to early hands-on experience on the machine. This ap-
proach should also be ideal for individuals who wish to use the text as a self-
study guide for learning the assembly and machine language of the PDP-11
family.

The PDP-11 was chosen not only because of its popularity, but also
because we believe that the architecture is ideal for learning. The organiza-
tional consistency makes the PDP-11 an extremely easy computer to program
in machine or assembly language. The richness of the machine language makes
it easy to use the assembly language for complicated problems. This richness
also makes the PDP-11 ideal as a stepping-off point for learning the architec-
ture of other machines. By focusing on a single computer family, we are able
to include advanced topics such as floating point operations, hardware level
input and output, interfacing to a high level language, and operating system

vii

viii

Preface

functions. These topics extend the scope of the book into the larger field of
computer science.

Our major goal is to make the book both accessible and relevant for the
reader and the instructor. For example, the PDP-11 programming card is
printed on the inside front cover for easy reference. In the early chapters,
methods are shown which enable students to run simple programs on the com-
puter. Later, the reader is shown how to perform input and output both with a
bare machine and by using the RT-11 operating system. Appendices show how
to run PDP-11 machine language programs using ODT, and assembly
language programs using RT-11 both on line and with batch. Basic use of the
PDP-11 on-line editor is also explained. Although the appendices are centered
around use of the RT-11 operating system, most of the examples in the text are
not tied to any operating system, and therefore this book is appropriate for use
with any PDP-11 system.

The organization of the chapters is as follows: Chapters 1 and 2 contain
background information for persons who may have had limited experience
with computers. Chapters 3, 4, and 5 introduce the basic concepts of machine
language and assembly language on the PDP-11. By the end of Chapter 5 the
use of processor registers and simple subroutines has been covered so that the
students can start running fairly complex programs using input/output
routines shown in the appendix. Chapters 6, 7, and 8 present intermediate
material that focuses on the manipulation of data. This includes more
sophisticated operations with numbers, the processing of alphabetic informa-
tion, and arrays. Chapters 9-12 present the advanced topics of subroutines
and global symbols, macros and conditional assembly, hardware level in-
put/output, and floating point operations. These chapters can be covered in
any order or omitted. Chapter 13 ties together the advanced topics to form an
introduction to operating systems and systems programming.

Chapters 1-7 are intended for use in the order presented. The order of the
remaining chapters can be varied according to the following graph of chapter
dependencies.

Preface ix

We extend sincere appreciation to our students who provided us with
many suggestions during the preparation of this material. James Gips of
Boston College also class-tested the manuscript and provided many valuable
comments. George Gorsline of Virginia Polytechnic Institute and State
University deserves special mention for his advice and detailed insights at
several stages during the development of the manuscript. We benefited from
the comments of the following people who reviewed all or parts of the
manuscript: Clifford Anderson, California State University, Los Angeles;
Donald Cooley, Utah State University; Paul Jalics, Cleveland State Univer-
sity; William Lau, California State University, Fullerton; and Michael Lutz,
Rochester Institute of Technology.

We would also like to acknowledge the following people who helped us in
preparing the manuscript: Patricia DeSpirito, Maryaurelia Lemmon, and Judy
Lennon.

Special thanks are due to our production editor, Nancy Blodget.

Charles Kapps
Robert L. Stafford

TABLE
OF
CONTENTS

INTRODUCTION

History
Developments in Computer Software
The PDP-11 Family of Computers

NUMBERS, COUNTING, AND LOGICIN A
COMPUTER

Number Systems

The Decimal and Octal Number Systems
Binary Numbers

Octal Encoding

Two’s Complement Arithmetic

Boolean Logic

Hexadecimal Encodings

Other Encodings

MACHINE LANGUAGE PROGRAMMING

Digital Computers

Memory Representation on the PDP-11 Computer
Processor Use of Memory

Machine Language Programs

—

15
17
20
23
26
28
30
30

33
34
39
42

xi

xii

3.5
3.6
3.7

CH. 4

4.1
4.2
4.3
4.4
4.5
4.6

CH. 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

CH. 6

6.1
6.2
6.3
6.4

CH. 7

7.1
7.2
7.3
7.4
7.5

CH. 8

8.1
8.2
8.3
8.4
8.5

Table of Contents

The Use of a Memory Cell
Writing Machine Language Programs
Memory Structure of Other Computers

ASSEMBLY LANGUAGE PROGRAMMING

Introduction

Developing an Assembly Language Program
The Assembly Process

Examples of Errors in the Assembly Process
Programs in the Computer

Running a Sample Program

PROGRAM CONTROL FEATURES

Introduction

Looping

Single-Operand Instructions

Machine Language Coding of the Branch Instructions
Other Instructions

Machine Language Operation Codes

Processor Registers

Subroutines

Stopping Your Program if Using RT-11

PDP-11 ARITHMETIC

Introduction

Signed and Unsigned Numbers
Multiplication and Division
Multiple-Precision Arithmetic

ARRAYS

Introduction and Review
Indexing

Other Addressing Modes

Full Set of Addressing Modes
Multiply-Dimensioned Arrays

ALPHABETIC INFORMATION—BYTE
INSTRUCTIONS

Representing Alphabetic Information
Manipulating Characters

Simplified Input and Output

Bit Manipulation Instructions

Other Character Representations

52
56

63
64
69
71
78
82

87
88
91
95
97
102
105
111
115

119
119
129
137

143
146
151
154
160

165
172
179
183
190

CH. 9
9.1
9.2
9.3
9.4
9.5

CH. 10

10.1
10.2
10.3
10.4
10.5

CH. 11

11.1
11.2
11.3
11.4
11.5

CH. 12

12.1
12.2
12.3
12.4
12.5

CH. 13

13.1
13.2
13.3
13.4
13.5

Table of Contents

SUBROUTINES

Introduction

Calling a Subroutine

Independent Assembly—Global Symbols
Interfacing Assembly Language with FORTRAN
Recursive Subroutines

MACROS AND CONDITIONAL ASSEMBLY

Repetitive Blocks of Code
Symbolic Expressions
Macros

Conditional Assembly
Nesting and Recursion

INPUT AND OUTPUT

Introduction

Device Polling

Other Input/Output Devices
Interrupts

Other Considerations

FLOATING POINT NUMBERS AND EXTENDED
INSTRUCTIONS

Introduction

Fixed and Floating Point Numbers
Floating Point Operations

PDP-11 Floating Point Numbers
Extended Instruction Set Operations

ADVANCED ASSEMBLY LANGAUGE TOPICS

Introduction
Program Format
Object Code

Load Files
Program Execution

APPENDIX A Running Machine Language Programs with

On-Line Debugging Technique

APPENDIX B Routines for Reading and Printing Numbers
APPENDIX C

C.1

C.2

Running Assembly Language and FORTRAN Programs
Using RT-11 Batch
Notes for the Instructor

xiii

197
197
206
209
214

219
223
229
232
234

239
239
247
252
260

265
265
269
275
281

289
290
296
302
304

309
313

319
322

xiv Table of Contents

APPENDIX D Running Assembly Language and FORTRAN
Programs from the Console Typewriter with the RT-11

System
D.1 Communicating with the RT-11 System 325
D.2 Files 326
D.3 Running a Program 327
APPENDIX E Using the RT-11 Editor
E.1 Function of the Editor 331
E.2 Creating a Program 332
E.3 Correcting Errors 333
E.4 Inserting and Locating the Pointer in a Line 334
E.5 Combining Commands 335
E.6 The Search Command 336
E.7 Terminating the Edit Run 336
E.8 Editing a Preexisting Program 337
E.9 Immediate Mode Editing 338
Glossary 341

Index 349

CHAPTER 1

INTRODUCTION

1.1 HISTORY

The Early Days

The history of automatic computers goes back much further than many people
realize. In the 1830s and 1840s, an English mathematician by the name of
Charles Babbage attempted to build an automatic computer based on gears and
punched cards. Unfortunately, Babbage was never able to complete his analytic
engine. Later in the century, however, an American named Herman Hollerith
developed a punched card tabulating system that was used with the 1890 U.S.
census.

Punched card tabulating equipment based on Hollerith’s designs came into
extensive use in the early part of the twentieth century. This equipment, which
came to use the initials EAM for Electronic Accounting Machinery, was made
of electrical and mechanical parts (motors, switches, solenoids, relays, gears,
clutches, ratchets, and so forth). Although modern equipment is considerably
different from the early EAM equipment, the original Hollerith standards are
still used for punched cards. (See page 190 for more detail on Hollerith codes.)

One major drawback to the EAM equipment was that it consisted of a con-
glomeration of special purpose machines, card duplicators, tabulators, sorters,
and collators. These were all hard-wired or designed to perform specific tasks.
Any variability in the system was accomplished by wiring configurations
through plug boards. These plug boards allowed the user to route data and con-

1

Introduction Ch. 1

trol information in much the same way that a switchboard operator routes
telephone calls.

The next big step in computing came around 1940, when a more general
and convenient method for controlling computations was developed. This ap-
peared in the form of the Mark I computer developed by Howard Aiken at Har-
vard University. The Mark I computer was essentially a cross between a giant
adding machine and a player piano. The entire control of the machine was
‘“‘programmed’’ by punching appropriate patterns of holes in several player-
pianolike scrolls.

Electronic Computers

Like its predecessors, the Mark I computer was electromechanical. In other
words, electricity was only used to move mechanical parts. These moving parts,
in turn, activated switches that controlled the electric currents. At best such
mechanical operations require about one one-thousandth of a second, and
often may require much more. The solution to such relative slowness was to
replace the mechanical switches with electronic switches. An electronic switch is
one that has no moving parts. The switching is accomplished by applying elec-
trostatic or magnetic fields to the materials or empty space where the electrical
conduction is taking place. In 1940, the available active element for an elec-
tronic switch was the vacuum tube.

Shortly after the Mark I was in operation, Presper Eckert and John
Mauchly built the first electronic computer, called the ENIAC, at the Universi-
ty of Pennsylvania. Because a vacuum-tube switch is capable of operating in
one one-millionth of a second, the ENIAC had the potential of being 1000 times
faster than the Mark I. As computers became faster, they began to tax people’s
ability to make use of the speed. In fact, one of the early computer scientists
was reputed to have said that six ENIAC’s would keep all the mathematicians in
the country busy forever, just finding problems for them to solve.

In order to perform a given computational process on the ENIAC, it was
necessary to plug in a large number of wires in a certain configuration, a time-
consuming process. The next innovation was the idea that a computational pro-
cess should be specified by a computer program that resides in memory along
with the data. In addition to making computers easier to use, an internally
stored program makes it possible for the computer program to modify itself as
it executes. (Although this was important with early computers, modern com-
puters have been designed with instruction sets so that modification is no longer
necessary or even desirable.)

In the past, many people have credited John von Neumann of Princeton
University for developing the idea of the internally stored program. However,
recent evidence indicates that Eckert and Mauchly deserve at least as much
credit as von Neumann. In any case, the computer field owes a great debt to all
three individuals.

Sec. 1.1

History 3

The Solid-State Era

In the late 1950s and early 1960s, transistors began to replace the vacuum-tube
switches in computers. Transistors have five distinct advantages over vacuum
tubes: they are smaller, they consume much less energy, they are faster, they are
less expensive, and they are more reliable.

Although there is no fundamental difference between transistor computers
and vacuum-tube computers, the five advantages of transistors have a tremen-
dous economic impact leading to two opposed trends in computer design:

1. First, it became feasible to build very large and powerful ‘‘super-
computers.”’ Early examples of these were the IBM 7094, CDC 6600, and
DEC PDP-6.*

2. It also became feasible, for the first time, to build small, inexpensive
‘“‘minicomputers.’’ These computers were low enough in cost so that small
laboratories could afford to have them for dedicated use, so that one user
could have the computer all to him/herself. (The large computers were so
expensive that use had to be scheduled and shared.) Early examples of
minicomputers were the IBM 1620, Royal McBee RPG 4000, and DEC
PDP-5.

The proliferation of both kinds of computers started the extensive use of
computers, and computers began to become better understood. Consequently
the architecture and organization of later computers reflect an improved
understanding; however, the organization principles have remained basically
unchanged since the days of the first general purpose machines.

Integrated Circuits

Transistors are made by implanting small amounts of impurities in a semicon-
ductor crystal such as silicon. Early transistors were all individually packaged in
a small metal or plastic container with contact leads protruding. Because the
actual transistor was much smaller than its package, much space was wasted.
Integrated circuits, on the other hand, are made by forming many transistors
on the surface of a silicon wafer. Wiring is then photographically applied right
on the surface of the wafer. This allows extremely complex circuits to be con-
structed in a very small space. (At present, it is possible to have 70,000 tran-
sistors on a ‘‘chip’’ less than 1 cm? in area.)

The advent of integrated circuits completely revolutionized the economics
of computers. Large computers have become less expensive and minicomputers
have become more sophisticated, so that now it is sometimes difficult to dis-

*Some people may argue the appropriateness of the term ‘‘supercomputer’’ for these ex-
amples. However, in the early to mid 1960s, they were pretty ‘‘super.’’

Introduction Ch. 1

tinguish one from the other. We also have the so-called microcomputers in
which an entire computer is placed on a single silicon chip that can be sold for
only a few dollars. Originally, microcomputers were rather crude, but recent
advances have blurred the distinction between microcomputers and mini-
computers.

At present, integrated-circuit technology is rapidly developing, and one
can only guess where the future will lead.

Other Hardware Advances

The physical components that make up a computer system are collectively
referred to as computer hardware. The previous subsections primarily dealt
with advances in processor design and implementation. Paralleling this, though
perhaps not so dramatic, have been advances in other hardware devices such as
memories and peripheral equipment.

Memory design has followed a similar history from electromechanical
designs to integrated circuits. On the other hand, peripheral devices such as
printers, card readers, magnetic tape units, disks and drums, and so forth have
not improved as much. As aresult, peripheral devices are by far the most expen-
sive parts of most computer systems.

1.2 DEVELOPMENTS IN
COMPUTER SOFTWARE

Machine and Assembly Language

To build a computer, designers first select a particular set of orders or instruc-
tions and then construct a machine that will carry out or execute programs com-
prised of these orders or instructions. The instructions or orders are called
machine-language instructions and the resulting programs are called machine-
language programs. Notice that the machine-language instructions of one
machine may be totally different from the machine-language instructions of
another machine.

Machine languages are usually numerical languages that are awkward for
human beings to use. For example, the PDP-11 machine-language instruction
to add the contents of one memory cell (in this case the memory cell called
001000) to another memory cell (called 002000) can be written as:

063737 001000 002000

where 063737 is the numerical operation code for a particular kind of addition.
In the early 1950s, assembly languages were developed to ease the burden
on programmers. In an assembly language, names are substituted for numbers.

Sec. 1.2

Developments in Computer Software 5

For example, the preceding PDP-11 machine-language instruction might be
rewritten in assembly language as follows:

ADD BONUS, SALARY

The advantage of using names instead of numbers should be obvious.

Before an assembly-language program can be executed, it must be
translated into machine language. This translation is basically a clerical process
that involves substituting the correct number for each of the names (that is,
substituting 063737 for ADD in the previous example). However, this is exactly
the kind of problem that is easily solved with a computer. Therefore, the
designer of an assembly language creates a program, called the assembler, that
will input a users’ assembly-language program and translate it into machine
language.

Higher-Level Languages

In the mid 1950s, the first higher-level languages were developed. Unlike an
assembly language, a higher-level language is not associated with any particular
machine language. Instead, the designer of a higher-level language concentrates
on developing a language that is convenient for solving a certain class of com-
puting problems. Then the designer builds a translator* called a compiler to
translate a users’ program into a given machine language. If it is desired to use
the high-level language on a computer with a different machine language, a
second translator is constructed. Thus the user of a high-level language does not
have to know the machine language of the computer being used. In addition, it
is possible to transfer a program written in a high-level language from one com-
puter to another without rewriting the program (assuming that the necessary
translators are available).

The difference between assembly language and higher-level languages can
also be described in terms of the translation process. Each assembly-language
instruction is generally translated into one machine-language instruction. In
contrast, each statement in a higher-level language may be translated into many
machine-language statements.

In the late 1950s and throughout the 1960s, a variety of high-level
languages became popular. The first of these was FORTRAN (FORmula
TRANSslation) which was developed by a group headed by John Backus at IBM.
FORTRAN was designed to help people solve scientific problems where a large
number of calculations are required as opposed to data-processing problems
where a large number of input and output operations (such as reading and
printing) are necessary. In order to solve data-processing problems, COBOL
(Common Business Oriented Language) was designed by a committee spon-

*Some higher-level languages are interpreted, which is a step-by-step translation dur-
ing program execution.

Introduction Ch. 1

sored by the Department of Defense. In 1960, an international group of com-
puter experts met to develop a new language for scientific problems. (The
original specifications for FORTRAN were written in 1954, and a great deal
had been learned about language design in the intervening years.) The result
was the programming language ALGOL 60 (ALGOrithmetic Language). In the
mid 1960s IBM developed the language PL-1 (Programming Language 1) which
was designed for both scientific programming problems and data-processing
applications. At about the same time, John Kemeny and Thomas Kurtz at Dart-
mouth College developed BASIC (Beginners’ All purpose Symbolic Instruction
Code). Although BASIC resembles a simplified version of FORTAN, it was
specifically designed to be used from an interactive time-sharing terminal.
Other languages that are now in common use include APL (A Programming
Language), which is also designed to be used from a time-sharing terminal, and
PASCAL, which resembles a simplified version of ALGOL. It should be noted
that this list of programming languages is far from exhaustive. There are lit-
erally hundreds of programming languages. Many are specialized languages
designed for a particular class of problems such as simulation.

Why Study Assembly Language?

Higher-level languages are easier to use than machine or assembly language. In
addition, higher-level languages can generally be transported from one com-
puter system to another without rewriting the program. Why then should peo-
ple still write programs in machine or assembly language?

In some cases, a user may wish to use features of a computer that are not
accessible from available higher-level languages. This situation often occurs in
developing operating-system software, especially in the portions involving
input, output, and other machine-dependent resources. In such cases it
becomes necessary to use machine and assembly language for at least some sec-
tions of the program.

For some applications, a carefully written assembly-language program to
solve a given problem will be more efficient (in terms of running time and/or
memory space used) than a carefully written program in a higher-level
language. This often overrides the fact that assembly-language programs may
require more programmer time to write, debug, test, and modify than an
equivalent program written in a higher-level language. The selection of a
language is an economic question, and the various costs for the particular ap-
plication must be examined in order to make a rational decision. With current
costs, it appears that higher-level languages will be the correct choice in the ma-
jority of applications but that assembly language is still appropriate for a
significant number of applications.

In addition, there are important reasons for knowing (as opposed to pro-
gramming in) machine and assembly language. To a large extent, the purpose of
a higher-level language is to ‘‘hide’’ the complexity of machine language from
the average programmer or user. However, the higher-level language is gener-

Sec. 1.3

The PDP-11 Family of Computers 7

ally not completely successful in burying the complexity. As a result, the higher-
level language may produce unexpected results such as arithmetic overflow,
and apparently simple changes in a higher-level language program may result in
large changes in running time or memory usage. A knowledge of machine
language is useful for understanding and predicting these results. Such
knowledge is particularly useful when a higher-level language program is
transported from one machine to another. Finally, computer scientists should
know machine and assembly languages for a variety of reasons, particularly if
they are to develop more effective higher-level languages.

EXERCISE SET 1

Exercise questions marked by an asterisk (*) will require outside reading.

1 Identify the following persons, and name their major accomplishment:

(a) Herman Hollerith
(b) Howard Aiken
(c) Presper Eckert
(d) John Mauchly
(¢) John von Neumann

*2 Using reference material other than this text, write a short (one page or so)
biography of any of the persons named in question 1.

3 Vacuum-tube computers have been completely replaced by solid-state
computers. This is true to the extent that there are very few if any vacuum-
tube computers in practical operation anywhere in the world today. To ac-
count for this, name as many disadvantages of vacuum-tube computers as
you can.

*4 One of the important names in the founding of computer science is Grace
Hopper. What is she best known for? And how do her accomplishments
differ from those referred to in question 1?

1.3 THE PDP-11 FAMILY OF COMPUTERS

Overview

The first PDP-11 computers were introduced at the end of the 1960s. These
computers were intended to replace the PDP-5/PDP-8 family of minicom-
puters that were then becoming obsolete. The PDP-11’s used integrated circuits
that allowed considerable sophistication at a reduced price. As a result, the
PDP-11 became a very popular minicomputer.

Introduction Ch. 1

Early PDP-11’s were used primarily with paper tape operating systems.
This means that programs are stored in the form of a punched paper tape that
can be read into the computer. All programs are stored this way, both user pro-
grams and system programs. As a result, use of such a machine was rather slow
and awkward. Fortunately inexpensive forms of magnetic media (tapes and
disks) have been developed. These are much faster and more convenient to use
and are within the economic reach of most users.

As a consequence, most PDP-11’s now have rather sophisticated operating
systems that use mass-storage media (disk or magnetic tape). These systems can
store many user programs and provide the user with a number of system func-
tions. One of these functions is to provide the user with a variety of languages in
which to write programs. These include assembly language, FORTRAN, and
BASIC. Full-blown systems will also include COBOL, APL, PASCAL, and
other languages. With the operating systems provided, these languages are
easily accessible to the user.

The PDP-11 Processors

The PDP-11 is designated a 16-bit minicomputer. The 16-bit designation means
that most operations in the processor deal with a unit of information that con-
sists of sixteen binary digits. (See Chapters 2 and 3.) This is also called the word
size of the processor. To a certain extent, the word size determines the speed at
which the processor can operate. It also tends to determine the price. While a
32-bit machine may be twice as fast as a 16-bit machine, it may also be twice as
expensive because it needs parts that are at least twice as complicated.*

Although the basic architecture and primary operations are the same on all
PDP-11’s, many different models have many different features. Some dif-
ferences are based on changes in technology that have occurred in the years
since the first PDP-11’s appeared on the market. Other differences are based on
how much a customer is willing to pay for a faster or more powerful computer.

The least expensive processors in the PDP-11 family are the so-called
LSI-11’s (see Figure 1.1). The name comes from the fact that the bulk of the
processor resides on a few Large-Scale Integrated-circuit chips. An LSI-11 pro-
cessor board can be bought for well under $1000. This processor has all the
power of the basic PDP-11 instruction set. In packaged form, this processor
forms the 03 series of models, such as the PDP-11V03. The 03 series of
PDP-11’s are the least expensive, but they are comparatively slow, limited in
the amount of memory, and limited in the selection of peripheral equipment
(see Figure 1.2).

A new version of the LSI-11 is called the PDP-11/23. This version is about
twice as expensive, but is much faster and allows four times as much memory. It
also allows for the operation of sophisticated peripheral devices. (See Chapter
11.)

*Note the word may; the bit-price ratio may vary because different technologies may
cause radical cost and speed differences.

Sec. 1.3

The PDP-11 Family of Computers 9

The full-scale PDP-11 processors use a high-speed parallel connection to
the outside world called the UNIBUS©. At the present time, in order to have
access to all of the available peripheral devices such as high-speed printers and
card readers, large-capacity disks, and magnetic tape, it is necessary to have a
UNIBUS © machine. The most popular machine with a UNIBUS © at present
is the PDP-11/34 (see Figure 1.3). The model 34 is somewhat faster than the
model 23 and has the added capability of the UNIBUS ©. The cost is somewhat
higher, but is well within the reach of dedicated laboratory use.

The PDP-11/50 and 11/70 (see Figure 1.4) are larger, faster, and more
powerful PDP-11 computers that may be too big to be called ‘‘minicomputers”’
(although most people do). They share the machine language of the other
PDP-11’s but have added features that entitle them to be classified as full-scale
computers. These computers are normally used in a multiuser environment,
which means that the computer is servicing a number of users during the same
general time period.

The VAX-11/780 is an even more powerful machine that can execute
PDP-11 machine-language programs. However, it is really a 32-bit machine in-
stead of a 16-bit machine, and it normally uses a different machine language.

Figure 1.1 LSI-11 Computer (Courtesy of Digital Equipment Corp.)

10 Introduction Ch. 1

Figure 1.2 PDP-11/03 Computer (Courtesy of Digital Equipment Corp.)

Figure 1.3 PDP-11/34 Computer System (Courtesy of Digital Equipment Corp.)

Sec. 1.3

The PDP-11 Family of Computers 11

Figure 1.4 PDP-11/70 Computer System (Courtesy of Digital Equipment Corp.)

Systems Software

Although it would be possible to enter one’s own programs into a machine
without an operating system, various areas such as input, output, file manage-
ment, and language translation would require much programming effort. As a
result, virtually all computer users purchase a packaged set of programs for
their computer for running the system. This is systems software.

Systems software falls into several categories:

1. Monitors—these programs coordinate and direct the execution of all other
programs.

2. Utility programs—these programs are used for creating, copying, deleting,
and updating files and operating systems themselves.

3. System subroutines—these allow user programs to perform system func-
tions as described in item 2.

4. Language processors—these enable the user to write programs in various
languages: assembly language, FORTRAN, BASIC, and so forth.

S. Special library packages—these allow one to use special mathematical
functions, statistical functions, graphics contrel, and so forth.

An operating system normally contains programs in categories 1 through
3, and user-selected features of 4 and 5. Since systems software requires a con-
siderable development effort, one must pay a license fee to use an operating
system. The cost of these licenses may be thousands of dollars for PDP-11
systems (and even more for full-sized computers).

12

Introduction Ch. 1

The most frequently seen operating systems for the PDP-11 are RT-11,
RSTS (pronounced ‘‘Ristiss’’), RSX-11, and paper tape systems. RT-11 is a
fairly simple operating system that services a single user at a time, although one
mode of operation allows two programs to execute at the same time. The intent
is to allow program development at the same time that the computer is con-
trolling laboratory equipment. While RT-11 has many sophisticated file and
language features, it is streamlined so that it is fast and uses a minimal amount
of memory. Most small PDP-11’s operate under the control of the RT-11
operating system.

RSTS is a multiuser system that was originally designed as a BASIC only
system but now allows other languages such as assembly language and FOR-
TRAN. The intended purpose of the RSTS is to service terminal users.

RSX-11 is a large, complex, general-purpose system. It allows many users
access to the machine at many levels. Because of the sophistication of RSX-11,
it requires much memory and much input/output activity. As a consequence,
RSX-11 is used on most of the larger PDP-11’s. The PDP-11/34 and 11/23
seem to be the dividing line. Larger computers use RSX-11; smaller ones use
RT-11, and model 34 and 23 users are split.

Paper tape systems had just about disappeared until the advent of inexpen-
sive ‘““home’’ versions of the PDP-11 such as the Heathkit© H-11. With a
paper tape system, the user purchases a supply of paper tapes, each of which
contains a system program that must be manually loaded using a paper tape
reader.

Peripheral Devices

Without peripheral devices, a computer would have no way of receiving or giv-
ing out information. Peripheral devices are any input or output or external
data-storage devices. The PDP-11 computer can accommodate a large variety
of peripheral devices. These include teletypewriters, cathode-ray-tube (CRT)
displays, card readers, punched paper tape readers, and punches and various
kinds of magnetic media (tapes and disks).

Originally minicomputers such as the PDP-5 and later the PDP-8 and then
the PDP-11 had rather meager input and output facilities. This is because the
cost of peripheral equipment tends to be much greater than the cost of the com-
puter. Therefore, most early minicomputers only had a teletypewriter that was
equipped with a paper tape reader/punch. With such a system, it was not
unusual for a program to require thirty minutes time to be read into the
machine.

Later machines had some rudimentary tape and disk capability. And now
it is possible to outfit a PDP-11 with the most sophisticated magnetic tapes,
multiplatter disks, high-speed printers, card readers, and more specialized
devices. The powerful, high-speed peripheral equipment found its way to the
PDP-11’s by two routes. First, there are the big PDP-11’s that need the high-
speed equipment to operate effectively. Second, PDP-11’s are used as input/

Exercise Set 2 13

output controllers for some larger computers such as the DEC System 20 and
the VAX-11/780.

On the other hand, recent hardware developments have brought many
medium-speed devices within reach of the user with limited resources. Perhaps
the most significant of these at present is the floppy disk system. The floppy
disk is a small circular disk made of flexible plastic coated with magnetizable
iron oxide. The disk resides in a cardboard envelope from which it is never
removed. There are apertures in the cardboard that allow access to the rotating
disk by the read/write mechanism. Floppy disk systems are inexpensive,
moderately fast, and can store a fairly large amount of data. As a result, many
small systems are configured with a teletypewriter or a CRT along with a dual
floppy disk. Such a system would be considered minimal by today’s standards
for practical use.

The next step up from a floppy disk system would be a single-platter hard
disk. Such systems are somewhat more expensive, but are much faster and can
store more data.

EXERCISE SET 2

Exercise questions marked by an asterisk(*) will require outside reading.

1 Identify the following PDP-11 processors. What are the main characteris-
tics and main applications?

(a) PDP-11/03
(b) PDP-11/23
(c) PDP-11/34
(d) PDP-11/70

*2 Identify the following peripheral devices that can be attached to the
PDP-11. What purposes do they serve? What is their data-handling

capacity?

(a) CR-11 (b) LA-180
(c) DX-01 (d LA-34
(e) LP-11 () RP-11
(8) VT-100 (h) VT-11

*3 What does DEC mean by ‘‘traditional product line’’? Name several tradi-
tional products and state how they were superceded.

CHAPTER 2

NUMBERS, COUNTING,
AND LOGIC
IN A COMPUTER

2.1 NUMBER SYSTEMS

Historical Aspects

Throughout history, people have devised many and varied methods for reckon-
ing or counting. Even today we can still find people using such primitive
methods of counting as placing stones in a bag or carving notches in a stick. In
contrast with the primitive schemes, we can find the elaborate Roman numeral
system which is now used mostly for show. However, the number system with
which all of us are most familiar is the decimal or A-abic system.* Figure 2.1
shows some examples of numbers represented in various systems.

One thing that is common to all these systems is that they use a physical
event or phenomenon such as a pile of stones, a carving, or a configuration of
ink on paper, to represent a number. Note the word represent. Numbers are not
physical objects but are abstract concepts which are used to answer the question
‘‘How many?’’ The objects or shapes which we build or write down are often
referred to incorrectly as numbers. In reality they are representations of
numbers.

*Arabic numerals were introduced to the European culture in the twelfth century by
means of a Latin translation of a book by the Arabic mathematician Muhammad ibn-
Musa al-Khwarizmi (ca. A.D. 780-850). A corruption of al-Khwarizmi’s name gives us
the word algorithm, meaning a well-defined, step-by-step process for solving a problem.

15

Numbers, Counting, and Logic in a Computer Ch.2

Figure 2.1 Several Systems of Number Representation

I o 1o IV V.. YA/ N/ aN/// A

Roman Numerals Tally Marks

one two
three four
five

1 2 3 4 5

Arabic Numerals

(o9) 9 Q 3 Q0 Spoken Numbers
o od ¢Q oo g0« (in English)

Piles of Stones

Spoken Numbers

Dice (in French)

un deux
trois quatre
cing...

Decimal Notation

Another feature of most of the traditional number representation systems is
that the schemes of representation tend to use groupings of fives and tens. This
causes us to regard 5, 10, and their multiples and powers as extremely important
numbers with almost magical properties. After all, it is very easy to multiply or
divide a number by 10. It is not so easy to do those same operations with 8, 9,
11, or 12.

The fact is that the only reason that the numbers 5 or 10 have any special
properties is because the numbers’ representations are based on 10s. As we shall
soon see, number representations can be based upon numbers other than 10.
There is really no particular advantage to a ten-based system. The only reason
that fives and tens received such importance in number representation is that
humans are endowed with ten fingers (five per hand), and long before any writ-
ten forms of counting were developed, people counted on their fingers. Since
computers do not have five-fingered hands, there is no special advantage to
fives or tens in a computer. In fact, the contrary is true. Computers can be built
to operate more efficiently if they operate using number-representation systems
based on numbers other than 10.

Sec. 2.2

The Decimal and Octal Number System 17

2.2 THE DECIMAL AND OCTAL
NUMBER SYSTEMS

Counting

As we introduce other number systems, we will review the basic concepts of the
decimal system. This includes counting, addition, and subtraction, as well as
the interpretation of number representations. In the decimal system, numbers
are expressed in the form of a string of symbols chosen from a collection of ten
digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Counting is performed by starting with 0,
and writing down successive digits, that is, 0, 1, 2. When we get up to 9, we have
used every digit, and thus continue by going back to 0 and placing a 1 to the left
to get 10, 11, 12, and so forth. When we get to 19, we bring the 9 back to 0 and
count once with the digit on the left to get 20, and so on. When a sequence of 9s
occurs on the right, they all go back to 0 and a count, or carry, is propagated to
the left. Thus, after 3999, we get 4000.

As stated in the preceding section, there is nothing sacred about the
number 10, nor is there any magic about using a set of ten digits. Suppose there
were only eight. This might be the number system we would be using if people
had four fingers on each hand rather than five. As it turns out, we are doing
more than just an intellectual exercise here because the base eight, or octal,
number system is extremely useful when dealing with some computers.

In the octal number system, we have eight digits: 0, 1, 2, 3, 4, 5, 6, and 7.
Counting is basically the same in octal as in decimal, except that since there are
no 8s or 9s, we must revert to 0 and produce a carry when 7 is reached. Thus, the
next number after 7 is 10, after 17 we get 20, and after 277 we get 300. Table 2.1
shows a sequence of counting, both in octal and decimal. (For the moment, ig-
nore the columns labeled binary and hexadecimal). Note the octal and decimal
correspondences. For example, the table shows that the decimal number 30 is
equivalent to the octal number 36.

Addition and Subtraction

Addition and subtraction of numbers is an extension of the counting process. In
effect, you are performing counting for addition and backward counting for
subtraction. As we all learned in our early education, such counting becomes
quite tedious when dealing with large numbers. To avoid this, we were all
taught a shortcut method for addition and subtraction. This method required
that we memorize tables that give the results for adding or subtracting any com-
bination of one-digit numbers. We then add or subtract the numbers digit by
digit. If the result of simple digit operation is greater than 9 or less than 0, we
carry a 1 into or borrow a 1 from the next digit to the left.

Addition and subtraction in the octal number system are basically the same
processes except that the tables are different. Since there is no 8 or 9, the carry-
ing takes place when a sum goes over 7.

18

Numbers, Counting, and Logic ina Computer Ch.2

TABLE 2.1 COUNTING IN DECIMAL, BINARY, OCTAL,
AND HEXADECIMAL

Hexa- Hexa-
Decimal Binary Octal decimal Decimal Binary Octal decimal
0 0 0 0 32 100000 40 20
1 1 1 1 33 100001 41 21
2 10 2 2 34 100010 42 22
3 11 3 3 35 100011 43 23
4 100 4 4 36 100100 4 24
5 101 5 5 37 100101 45 25
6 110 6 6 38 100110 46 26
7 111 7 7 39 100111 47 27
8 1000 10 8 40 101000 50 28
9 1001 11 9 41 101001 51 29
10 1010 12 A 42 101010 52 2A
11 1011 13 B 43 101011 53 2B
12 1100 14 C 4 101100 54 2C
13 1101 15 D 45 101101 55 2D
14 1110 16 E 46 101110 56 2E
15 1111 17 F 47 101111 57 2F
16 10000 20 10 48 110000 60 30
17 10001 21 11 49 110001 61 31
18 10010 22 12 50 110010 62 32
19 10011 23 13 51 110011 63 33
20 10100 24 14 52 110100 64 34
21 10101 25 15 53 110101 65 35
22 10110 26 16 54 110110 66 36
23 10111 27 17 55 110111 67 37
24 11000 30 18 56 111000 70 38
25 11001 31 19 57 111001 71 39
26 11010 32 1A 58 111010 72 3A
27 11011 33 1B 59 111011 73 3B
28 11100 34 1C 60 111100 74 3C
29 11101 35 1D 61 111101 75 3D
30 11110 36 1E 62 111110 76 3E
31 11111 37 IF 63 111111 77 3F
64 1000000 100 40
65 1000001 101 41

Small octal numbers can be added using Table 2.1. Using the table you can
convert the octal numbers to decimal, perform the addition in decimal, and
then use the table to convert the sum to octal. Instead of using the table, it is
possible to add two octal digits using the following rule: Add the two digits as
though they were decimal digits. If the resulting sum is 7 or less, it represents the

Sec. 2.2

The Decimal and Octal Number System 19

correct octal sum. If the sum is greater than 7, add 2 more to the decimal sum to
get the correct octal answer. Thus 3 + 3 is 6 in decimal, which is less than or
equal to 7. Therefore 3 + 3 is 6 in octal. Similarly, 4 + 5is 9 in decimal, which
is greater than 7. Therefore, add 2 to get 11. Thus 4 + Sis 11 in octal. (The
reason that 2 is added is to skip over the decimal digits 8 and 9 which do not
appear in the octal system.) Analogous techniques can be developed for octal
subtraction.

Figure 2.2 shows several examples of octal addition and subtraction. Note
that octal arithmetic behaves like decimal arithmetic in that it is never necessary
to carry or borrow more than once from any given digit position. (This is based
on the assumption that just two numbers are added at a time, that is, no column
additions.)

Figure 2.2 Examples of Octal Addition and Subtraction

Addition Subtraction
2
A It
4 5 5 13
+ 3 + 4 - 3 - 6
7 11 2 5
8
S ~
& $
43 53 46 53
+ 21 + 16 - 23 - 27
64 71 23 24
NN §& s
S
17432 75643
+ 56716 - 47705
76350 25736
S A &S
S
77435 57234
+ 506 - 56460
100143 00554
$8888
AAdDA
57642 157443
+ 77777 — 77777
157641 57444

20

Numbers, Counting, and Logic ina Computer Ch.2

Octal to Decimal Conversion

The numbers computed in Figure 2.2 may seem bewildering. For example, what
do the octal numbers 23, 554, or 25736 represent? This raises the whole ques-
tion of interpretation of numbers. One method of interpretation is to count
until you get there. For example, if Table 2.1 is examined, it is easy to see that 23
octal is equal to 19 decimal. If the table were extended, larger octal numbers
could be interpreted. However, the counting method would be almost useless
for large numbers such as 25736. To handle these numbers, we must treat them
just as we do multidigit decimal numbers. The respective digits of a decimal
number going from right to left are designated the units, tens, hundreds, and
thousands, and so on, columns. This means that the value of the number is
determined by multiplying the value of each digit by 1, 10, 100, and 1000, and
so on, and adding the products together. In other words, the decimal number
3469 is equal to (9 x 1) + (6 x 10) + (4 x 100) + (3 x 1000).

The same principle applies to the octal number system. The only difference
is that the multipliers are powers of eight rather than powers of ten. Thus, the
octal number 23 represents the number (3 X 1) + 2 X 8 =3 + 16 = 19
(decimal). This is the same result we obtained by counting in Table 2.1. Simi-
larly, the octal number 554 represents (4 X 1) + (5 X 8) + (5 X 64) = 4 + 40
+ 320 = 364 (decimal). Finally, the octal number 25736 can be converted as is
shown in Figure 2.3.

Figure 2.3 Octal to Decimal Conversion

6 x 8° 6 x 1 6
3 x 8 3 x8 24
25736 (octal) = 7 x 8 7 X 64 = 448
5 x 8 5 % 512 2560
2 x 8 2 x 4096 8192
11230 (decimal)

2.3 BINARY NUMBERS

The Need for Binary Numbers

In the previous section, the octal number representation system was introduced
as an example of a system other than the decimal system. We will later see that
the octal system is extremely important for programming the PDP-11 com-
puter. However, in the meantime we will consider a number system that is even
more important for computers, the binary system.

Recall that our use of the decimal number system is based upon the

Sec. 2.3

Binary Numbers 21

primitive practice of counting on our fingers. In other words, the original
human hardware available for counting was fingers. Since fingers are used in a
ten-state fashion, we perceive the base 10 number system as natural for human
use. The use of base 5 and base 20 (the score) by some societies has a similar
origin.

The question now is, ‘““What is natural for the computer?’’ Clearly, com-
puters do not have fingers and thus would have no propensity toward using the
decimal system. What is natural for computers is dependent upon the kinds of
operations that occur within the various parts of a computer. As we look at the
workings of a digital computer, virtually every operation consists of one or
more events that either happen or fail to happen. If you look at a certain region
of a punched card, that area can either have a hole punched through it or it can
fail to have a hole punched through it. There are just two alternatives and no
others. A hole cannot be half-way punched. A physical event that can only
occur in one of two ways (such as a hole either existing or not existing) is called a
binary event.* Table 2.2 lists several different binary events.

TABLE 2.2 BINARY EVENTS

Event States
Hole in punched card Can be punched or not punched
A toggle switch Can be on or off
A light bulb Can be lighted or dark
A wire Can have high voltage or low voltage

Because the design of most digital computers consists of combinations and
collections of two-state events, it is reasonable for computer designers to find it
natural to use base 2. As a consequence, the number system that is natural for
the computer is the base 2, or binary number representation system.

Binary Counting

The binary number system operates in much the same way as the decimal or
octal systems, except that there are only two digits, 0 and 1. When you count,
you start at 0 as usual. The next number is 1, but you cannot go further since
there are no more digits. Therefore, you must go back to 0 and carry a 1 to the
next place, giving us 10 for two. The second column of Table 2.1 (page 18) il-
lustrates binary counting.

*Readers may note that it is possible for events such as hole punches to be multistate
rather than just two-state. For example, three or four or more differently shaped holes
could be punched. However, for computer design, this is not usually practical because
the construction of a device capable of reliably recognizing several different hole shapes
would be considerably more expensive than a device that merely has to recognize the
presence or absence of a hole.

22

Numbers, Counting, and Logic in a Computer Ch.2

Binary Arithmetic

Binary addition and subtraction follow the same scheme shown in the previous
section for octal arithmetic. First, a rule is needed for adding together two
binary digits. Although techniques analogous to those used with octal digits
could be used, it is easier simply to memorize the following table:

0 + 0 = 00 (zero with no carry)
0 + 1 = 01 (one with no carry)
1 + 0 = 01 (one with no carry)
1 + 1 = 10 (zero with a carry)

A similar set of rules can be developed for subtraction. Figure 2.4 shows some
sample binary calculations.

Figure 2.4 Binary Calculations

Addition Subtraction
a 101 d. 110
+ 10 - 10
111 100
PN $é
b. 11010 e 11001
+ 1011 - 1101
100101 1100
NN $S8sS
<

C. 11111 f. 100000
+ 101 — 1011
100100 10101

Binary numbers can be interpreted in much the same way that octal or
decimal numbers are interpreted. Since there are just two digits, the value of
each digit is weighted by a power of 2. Thus, the binary number 11010 is equal
to(0x1)+(1XxX2)+O0Ox4)+(1x8+(x16)=2+8+ 16 = 26.
Similarly, 1011 = (1 X 1) + (1 X2)+ (0 x4)+ (1 x8 =1+2+8=11.
And finally, 100101 = (1 x 1) + (0 x2) + (1 x4) + (0 x 8) + (0 x 16) +
(1 x 32). Thisis 1 + 4 + 32 = 37. Note also that 37 = 11 + 26, as might be ex-
pected from example b in Figure 2.4. A list of the powers of 2 is shown on the
endsheets at the back of the book.

Sec. 2.4

Octal Encoding 23

2.4 OCTAL ENCODING

Purpose for Encoding

It may be noted that the lower the base of the number system, the fewer possible
values for a single digit: 10 for decimal, 8 for octal, and 2 for binary. Because
there are fewer possibilities for each digit, the digits carry less information. As a
consequence, numbers represented in the octal system tend to require more
digits than the same numbers represented in decimal. For example, 10000 octal
represents the same number as 4096 in decimal. The problem is even more
severe with binary numbers. For example, the number 71230, as expressed in
decimal, comes out as 10001011000111110 in the binary system. There are more
than three times as many digits in the binary representation of this number as
there are in the decimal representation. This is usually the case.

A single binary digit contains the smallest possible amount of digital infor-
mation and is usually referred to as a bit for binary digit. Because binary
numbers tend to be very long, they are very difficult for humans to deal with.
Consider your seven-digit telephone number. If it were translated into binary, it
would have around twenty-one binary digits or bits. How many people would
be able to remember their own telephone number, much less dial a string of
twenty-one 1s and Os without making a mistake? It turns out that even profes-
sional computer programmers who have been practicing for many years are not
usually capable of dealing with large binary numbers very well. How then can
people and machines communicate?

Method for Encoding

One solution comes in the form of octal encoding. Octal encoding operates as
follows: A large binary number is split into groups of three bits starting from
the right. For the number discussed in the previous section, this would be done
in the following manner:

10001 011000111110

e e e e e e e e

Extra0 ——— 010 001 011 000 111 110
added

Note that since the original number contains 17 bits and since 17 is not a multi-
ple of 3, it was necessary to pad the left end of the number with a 0 to fill out the
leftmost group of three. Note that this does not change the number because ap-
pending Os to the left of the number does not change the number.

The next step is to consider each group of three bits as a three-bit binary

24

Numbers, Counting, and Logic in a Computer Ch.2

number. Three bits can be arranged in 2° or 8 ways. However, a single octal
digit can also be arranged in 8 ways. In this sense, one octal digit is equivalent to
three binary digits because they both represent a particular setting of an 8 posi-
tion switch.

The next step is to replace each group of three binary digits with the
equivalent octal digit (see Figure 2.5). Applying this rule to the binary string
produces the following:

10001 011 000 111 110 Binary number
—_— N —— —— —— ——~
Extra0 — 010 001 011 000 111 110 After grouping
added ¥ { 4 { v ¥
2 1 3 0 7 6 Octal encoding

Thus the octal representation of the binary string is 213076.

It is important to notice that this procedure actually converts the binary
number into the equivalent octal number. For example, if the binary number
and the octal number above are both converted to decimal, the result will be
71,230 (decimal) in both cases. The reason that the conversion from binary to
octal (or from octal to binary) is so simple is that the octal number system
weights its digits by powers of eight, but eight is a power to two, namely 2°.
Consequently, it is not surprising that there is a simple relationship between
binary and octal.

The octal representation not only looks somewhat like the numbers with
which we are all familiar, but it has one-third the number of digits as the binary
number, and therefore it is much easier for humans to deal with. In addition, if
one wishes to examine the original binary number, it is easy to convert the octal
representation back to binary by using Figure 2.5 in reverse. For this reason,
throughout the remainder of this text, we will usually deal with binary numbers
in their octal encoded form.

Figure 2.5 Encoding of Binary Groups

Octal
Binary Grouping Encoding
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Exercise Set 1 25

EXERCISE SET 1

1 Making use of information available in dictionaries and encyclopedias,
describe three historical number systems other than the Roman and
Arabic. How do these number systems compare in:

(a) ease of learning (b) use for computational purposes
(c) use for representing large numbers

2 Continue the octal counting sequence shown in Table 2.1 until you reach
the equivalent of 200 decimal.

3 Perform the following octal additions:

(a) 573 (b) 674 ©) 777
+ 132 + 326 + 123
(d) 2146 (e) 2173) 5723
+ 3704 + 3442 + 2710
(g) 71426 (h) 716534 @) 7713642
+ 53402 + 61244 + 65413
4 Perform the following octal subtractions:

(a) 573 (b) 674 ©) 521
- 132 - 326 - 123
d) 3704 (e 3442 f) 2345
— 2146 - 2173 — 1346
(®) 71426 (h) 716534 @) 10067134
— 53402 - 61244 - 67253

5 Give the decimal equivalent for the following octal numbers:
(@) 53 b) 146 (©) 632
d) 742 (e) 1675 ® 1777
(g) 43721 (h) 53462 (i) 52717

6 Continue the binary counting process shown in Table 2.1 until you reach
the equivalent of 100 decimal.

7 Perform the following binary additions:

(a) 101 (b) 110 (©) 101
+ 11 + 101 + 101

d) 10111 Q) 11011) 11101
+ 1010 + 1001 + 101

(8 1011011 (h) 110101101 @ 110101100011

+ 101101 + 10110010 + 101100011010

26

Numbers, Counting, and Logic ina Computer Ch.2

8 Using the same pairs of numbers as in exercise 7, perform binary subtrac-
tion rather than addition.

9 Give the decimal equivalent of the following binary numbers:

(a) 101 (b) 11010 (c) 111010

(d) 101110 (e) 110011 (f) 1011101

(g) 1100011 (h) 1101111 (i) 11100101

(G) 1110101011 (k) 101110100001 () 11001010101110

10 Give the octal equivalents of the binary numbers shown in exercise 9.

2.5 TWO’S COMPLEMENT ARITHMETIC

Fixed Register Arithmetic

Our discussion so far has treated numbers assuming that there are no size
limitations on the numbers. However, in a computer, arithmetic is generally
performed in devices called registers. A register is a device which contains the
representation of a number. A familiar example of a register is the automobile
odometer, which registers the accumulated mileage traveled. The odometer is
made of wheels with digits around them which can be rotated to display any
number from 0 through 99999 miles. It is important to note the fixed upper
bound. Most registers in computers have a fixed number of parts and,
therefore, there is a fixed upper bound to the size of the number that can be
represented. For example, most operations in the PDP-11 are limited to sixteen
binary digits. As a result, you can get some strange results as happens when an
old automobile has gone more than 100,000 miles and registers a very ‘‘low’’
mileage.

It actually turns out that this property can be useful. Consider a small
machine with 5-bit binary registers. We will look at what happens when we add
11101 or decimal 29 to various numbers such as 7, 8, and 9. Figure 2.6 shows
this arithemetic in binary. It should be noted in each case that a carry is lost off
the answer because we are restricted to five bits.

Figure 2.6 Addition in a 5-Bit Register

11101 = 29 11101 = 29 11101 = 29
+ 00111 = 7 + 01000 = 8 + 01001 = 9
00100 = 4 00101 = 00110 = 6

Sec. 2.5

Two’s Complement Arithmetic 27

Negative Numbers

Examining the results in Figure 2.6, we can see that when we add 11101 to the
binary representation of either 7, 8, or 9, the result is 3 less than the original
number. It is as if we had subtracted 3. This works for other examples as well.
As aresult, in a 5-bit system, 11101 can be thought of as a negative 3. Similarly,
11111 behaves like — 1, 11110 behaves like —2, and so on. Figure 2.7 shows all
32 possibilities of 5-bit numbers with their appropriate signed decimal
equivalent. To divide the number representations so that approximately half
are positive and half are negative, the leading digit is used to designate the sign:
1 means negative, and 0 means positive. Note that this means that numbers like
11101, which look as if they were large positive numbers, are in fact negative. It
should also be noted that thereis a — 16 but no + 16. This is to make up for the
fact that there is a positive 0 but no negative 0.

Figure 2.7 5-Bit Two’s Complement Numbers

10000 -16 11000 -8 00000 0 01000 8
10001 —15 11001 -7 00001 1 01001 9
10010 —14 11010 -6 00010 2 01010 10
10011 —-13 11011 -5 00011 3 01011 11
10100 —12 11100 -4 00100 4 01100 12
10101 -11 11101 -3 00101 5 01101 13
10110 —10 11110 -2 00110 6 01110 14

10111 -9 11111 -1 00111 7 o1111 15

Representing negative numbers in this way is called the two’s complement
system. The name derives from the fact that the negative of a number is ob-
tained by subtracting the number from the power of 2 which is just too large to
fit in the register. For example:

100000
— 00011

11101

3
-3

Another way of computing the two’s complement of a number is to change
all of the Os in the number to Is and vice versa, and then add 1. For example:

00011 = 3
11100 Interchange Os and 1s
11101 Add 1toget —3

One’s Complement

Some computers negate numbers more rapidly by eliminating the step of adding
1. Thus 11100 would be the representation of —3. This system is called the

28

Numbers, Counting, and Logic ina Computer Ch.2

one’s complement system because negatives are obtained either by interchang-
ing 1s and Os, or by subtracting the number from all 1s. For example:

11111
- 00011 3

11100 = -3 in one’s complement

Of particular note in the one’s complement system is that there are two
representations of 0. They are 00000 and its complement 11111. The two
representations of 0 may require programmers to be cautious if they are check-
ing to see if a result is 0. The arithmetic operations of addition and subtraction
as well as multiplication and division must be modified somewhat if one’s com-
plement notation is used. However, since very few computers* use one’s com-
plement arithmetic, these topics will not be discussed here.

Nevertheless, one’s complementing is important to note because it is used
for logical as well as numerical operations as can be seen in the next section.

2.6 BOOLEAN LOGIC

Values and Operations

In the nineteenth century, an English mathematician named George Boole
developed algebraic methods for dealing with the logical values of true and
false. In computers it is quite useful at times to interpret the binary one and zero
as the Boolean values of true and false.

In order to manipulate the Boolean value, it is necessary to have Boolean
operations. The Boolean operations are AND, OR, and NOT. The AND and
OR combine the truth values of two sentences together in much the same way
that is done in English. For example, a AND b is true if and only if both aand b
are true. Similarly @ OR b is true when a or b is true or if both a and b are true.
The NOT operation reverses the truth value; thus, NOT a is true if a is false,
and NOT ais false if a is true. Figure 2.8 shows all of the possible combinations

Figure 2.8 Boolean Operations

0ANDO =0 OOR0O=0 NOTO =1
OANDI =0 OOR1 =1 NOT1 =0
1ANDO =0 10RO =1
1ANDI =1 IOR1 =1

*The CDC Cyber computers are notable examples of one’s complement machines.

Sec. 2.6

Boolean Logic 29

of operations for the three Boolean operators. As is done in most computer
usage, TRUE is represented as 1 and FALSE as 0.

Tables of a Boolean operation such as the one shown in Figure 2.8 are
called truth tables and can be used to define any Boolean operation other than
the basic three just shown. For example, another commonly used Boolean
operation is the exclusive OR. This is defined as the same as OR but false when
both operands are true. The truth table for exclusive OR is:

0 exclusive OR0 = 0
0 exclusive OR 1 =1
1 exclusive OR 0 =1
1 exclusive OR'1 =0

It turns out that any Boolean operation can be formed from the basic three;
AND, OR, and NOT. For example:

a exclusive OR b = (@ OR b) AND NOT (a AND b)

Multibit Operations

Computers are usually designed with registers that contain a string of bits.
Because of this, Boolean operations in computers are often extended to operate
in a bit-by-bit fashion across corresponding bits in a pair of registers. For exam-
ple, with 16-bit registers such as in the PDP-11, we could have the following
operation:

1011011111001010
OR 0010010101010011
1011011111011011

Note that each bit of the result is the OR of the two corresponding bits above it.
There are operations other than purely logical ones that can make use of
Boolean operations this way. For example, the following use of AND could be
used to mask out the leading bits of a string:

1011011111001010 string
AND 0000000011111111 mask
0000000011001010 result

Finally note that if the NOT operation is applied to the bits of a string, it
will invert each bit, or change each 1 toa 0 and each Oto a 1. Note that thisis the
definition of one’s complement given in the previous section. As a result, the
terms NOT and ‘‘one’s complement’’ are used interchangeably.

30

Numbers, Counting, and Logic in a Computer Ch.2

2.7 HEXADECIMAL ENCODINGS
(Optional Section)

The manufacturer of the PDP-11 computer has published all its PDP-11
literature using octal encoding for binary numbers, which is why we have given
so much attention to the octal system. Some other manufacturers (IBM in par-
ticular) prefer to use the hexadecimal or base 16 number system for encoding,
the basic difference being that binary numbers are split up into groups of four
bits rather than three.

Because four bits can be arranged in 2* or 16 different ways, the hexa-
decimal system requires 16 different digits. The 10 decimal digits are augmented
with the first six letters of the alphabet. Ais 10, Bis 11, Cis 12, Dis 13, E is 14,
and F is 15. Since F is the last single digit, adding 1 to F causes a carry; that is
1 + F = 10. The fourth column of Table 2.1 shows hexadecimal counting from
1 through 65.

When converting from hexadecimal to binary, each digit is converted to a
4-bit binary string using the table of Figure 2.9. When converting back, the
binary number is split into four-bit groupings and converted back using the
table. Thus, the hexadecimal representation of the binary number 0001 0001
01100011 1110 is 1163E.

Figure 2.9 Hexadecimal Encoding of Binary Groups

Hexadecimal Hexadecimal
Binary Grouping Encoding Binary Grouping Encoding
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101) 1101 D
0110 6 1110 E
0111 7 1111 F

2.8 OTHER ENCODINGS

Numbers can be represented in other ways as well. For example, four bits can be
used to represent a decimal digit in the following manner: Four bits can, of
course, be arranged in 16 different ways. If six of these possibilities are con-
sidered to be ‘‘illegal,’’ the remaining ten ‘‘legal’’ arrangements result in a ten
position switch that can represent a single decimal digit. With this system, the
string of binary digits

0001 1000 1001 0010 0000 0100

Exercise Set 2 317

represents the decimal number 189204 (where 0000 represents the decimal digit
0, 0001 represents the decimal digit 1,and so on).This representation is called
binary coded decimal. Another representation that is based on scientific nota-
tion is called real or floating point representation. It is similar to the exponent
notation used to represent large numbers in more expensive calculators (such as
3.84536E + 08).

Finally, the emphasis on representing numbers may give a reader the im-
pression that computers are mainly used to perform arithmetic computations.
This is simply not true. Strings of binary digits can be used to represent any
physical event that can be detected. For example, many computer terminals are
capable of printing 95 separate characters (including the blank space). Seven
bits of information can be arranged in 27 or 128 ways. Thus seven bits are suffi-
cient to represent any one of the 95 printable characters with 128 — 95 or 33
combinations that can be used to represent the special function keys such as
RETURN or TAB. Indeed, Chapter 8 will use such a 7-bit code in order to pro-
cess strings of characters. Using these coding techniques, it is possible to write
programs for analyzing literary works.

Similarly, there are 88 keys on a standard piano. Seven bits of information
could therefore be used to designate the pressing of a particular key. (Addi-
tional bits may, of course, be required to indicate such things as the time at
which the key was pressed, the velocity at which the key was struck, and the
length of time that the key was depressed.) With such coding techniques, it is
possible to write programs for analyzing music or even composing music.

As a final example, it is possible to represent pictures in terms of strings of
bits. To do this, a grid pattern with perhaps 1000 rows and 1000 columns is
drawn on top of a photograph. From each of the 1 million square areas on the
photograph, the amount of light that is reflected is measured and the result con-
verted to a binary number. [If 64 different shades can be detected, the light
reflected from each square might be converted to a 6-bit number where 000000
(base 2) represents white, 111111 (base 2) represents black, and the other com-
binations represent various shades of gray.] The picture has now been con-
verted into a form that can be processed by computer. Photographs from
satellites and certain kinds of X-ray images are regularly processed by com-
puters using similar encodings.

EXERCISE SET 2

1 Continue the hexadecimal counting sequence shown in Table 2.1 until you
reach the equivalent of 200 decimal.

2 Give the hexadecimal equivalents of the binary numbers shown in exercise
9 on page 26.

*3 Show how to count to the equivalent of 200 decimal in the base 7 number
system. In the base 7 system, how can you tell even numbers from odd
numbers? Is there a simple rule, as in decimal?

Numbers, Counting, and Logic ina Computer Ch.2

4 Add the following pairs of 5-bit two’s complement numbers. Show the
signed number equivalents of both numbers and the result in decimal with
each problem.

(a) 00011 (b) 01011 © 11101
00101 11100 11010
(d) 11100 (e 00111 ® 11101
11111 11011 00101

5 Repeat exercise 4 but subtract the second number from the first instead of
adding.

6 Show the signed decimal equivalents for the 64 binary combinations in a
6-bit two’s complement number system.

7 For the pairs of binary numbers shown in exercise 4, show the results of the
multibit Boolean operations, AND, OR, and exclusive OR.

*8 Give an algorithm for converting a number in any base to any different
base.

CHAPTER 3

MACHINE LANGUAGE
PROGRAMMING

3.1 DIGITAL COMPUTERS

System Blocks

Figure 3.1 illustrates the important parts of a digital computer: an input device,
an output device, a memory, and a central control unit. The input device per-
mits us to get information into the computer. The input device might be as sim-
ple as the buttons on an electronic calculator or as complicated as a card reader.
The output device allows us to get results back from the computer. The output
device might be as simple as the lighted numerals on an electronic calculator or
as complicated as a high-speed line printer. The memory is used for storing in-
formation. Generally, memory consists of a set of boxes or cells, each of which
contains a number. The input device, the output device, and the memory are all
connected by electrical wires to a central control unit called the processor. By
sending electrical signals on these wires, the processor can:

1. Ask the input device to get or read a number and make that number avail-
able to the processor or memory.
Ask the output device to print a particular number.

3. Ask memory to save or store a particular number in a particular memory
cell.

4. Ask memory to retrieve or fetch the number that was previously stored in a
particular memory cell.

33

34

Machine Language Programming Ch.3

Figure 3.1 A Simple Computer

Input Output
p. Processor p
Device Device

Memory

In this simple computer, the input device, the output device, and the
memory are passive devices. They do not do anything unless they are told to do
something by the processor. The processor is the active device that controls the
shuffling of numbers between itself and the other devices. The sequence of
operations that the processor performs is determined by a set of instructions
that form a computer program. The job of a programmer is to set up an ap-
propriate set of instructions that direct the processor to perform the necessary
operations to solve a particular problem.

3.2 MEMORY REPRESENTATION
ON THE PDP-11 COMPUTER

Memory as a Collection of Bytes

Memory on the PDP-11 computer can be viewed as a large number of boxes or
memory cells, each of which contains an 8-bit binary number. For example, the
following illustrates a memory cell that contains the 8-bit number 00110101.

An 8-bit binary number is called an 8-bit byte, or simply a byte. Since each
memory cell can contain an 8-bit byte, we will refer to the contents of each
memory cell as a memory byte.

Each memory byte is identified by a number called the address. The ad-
dress of a memory cell identifies it as a specific physical device, and can be
thought of as being analogous to the street address of a building. A street ad-
dress allows you to find or identify a particular building; a memory address
allows you to find or identify a particular memory cell.

On the PDP-11 computer, an address is a 16-bit binary number. Notice
that two numbers are associated with each memory byte—the address, which is
16 bits long, and the contents, which is 8 bits long. The following example
shows that the memory byte with address 0000111100001111 contains
00110101:

Sec. 3.2

Memory Representation on the PDP-11 Computer 35

Address Contents

0000111100001111

Since 16 binary digits can be arranged in 2'¢ or 65,536 different ways, a
PDP-11 computer may have up to 65,536 different memory cells. The first byte
in memory has an address of 0000000000000000 (binary) and the last byte has
the address 1111111111111111 (binary). Since each of the 65,536 memory cells
can contain an 8-bit byte, the total storage capacity can be as high as 65,536
times 8 or 524,288 bits. Figure 3.2 illustrates the first 10 bytes of memory.

Figure 3.2 Byte Representation of Memory

Binary Address Binary Contents
0000000000000000 01010011
0000000000000001 11010101
0000000000000010 00001010
0000000000000011 00000000
0000000000000100 11111111
0000000000000101 11010001
0000000000000110 00000001
0000000000000111 11100000
0000000000001000 00000000
0000000000001001 00000000

Memory as a Collection of Words

Although 8 bits is a convenient amount of information for some purposes, it is
inconveniently small for others. For example, 8 bits can only be arranged in 2*
or 256 different ways. If an 8-bit byte is used as a counter, it is only possible to
count from 0 through 255 (decimal).

To avoid this problem, memory on the PDP-11 combines two bytes to
form a 16-bit word. This situation is illustrated in Figure 3.3.

Figure 3.3 Byte/Word Representation of Memory

Binary Address Binary Contents Binary Address
0000000000000001 11010101 01010011 0000000000000000
000000000000001 1 00000000 00001010 0000000000000010
0000000000000101 11010001 11111111 0000000000000100
0000000000000111 11100000 00000001 0000000000000110
0000000000001001 00000000 00000000 0000000000001000

36

Machine Language Programming Ch. 3

Notice that the contents of the 10 bytes in Figure 3.3 are identical to the bytes in
Figure 3.2. The position of the bytes has simply been rearranged. The 16-bit
word beginning at memory cell 0000000000000000 consists of the 8-bit byte in
0000000000000000 along with the 8-bit byte in memory cell 0000000000000001.
Similarly, the 16-bit word beginning at memory cell 00000000000001 10 consists
of the 8-bit byte in memory cell 0000000000000110 along with the 8-bit byte in
memory cell 0000000000000111. A word in memory always consists of the con-
tents of an even-numbered byte on the right, along with the contents of the next
successive byte on the left. For example:

16-bit word

Next higher [8-bit byte | 8-bit byt?| Even address
address

Because of this, the address of a word must be an even number. In binary, this
means that the address of a word must end with a zero.

Octal Representation of Words

Dealing with binary numbers is awkward for human beings. To avoid this prob-
lem, memory is usually represented using the octal number system. As shown in
Chapter 2, converting from binary to octal is accomplished by replacing three
binary digits with one octal digit using Figure 2.5 (page 24). For example, a
16-bit address is converted to octal as follows:

Address
0O 000 111 100 001 111
—— —— N —) N — N — N —

0 0 7 4 1 7

In converting from a 16-bit binary address to a 6-digit octal address, the
leftmost bit must be treated as a special case. (Six octal digits would normally
represent 3 times 6 or 18 binary digits.) The conversion is made by assuming
that there are two binary zeros immediately to the left of the 16-bit address.
This is the same as in decimal; adding zeros to the left of a number does not
change it. For example, the following shows the conversion of the largest legal
word address from binary to octal:

Assume two zeros
added here 16-bit binary address

\»l 111 111 111 111 110

—— N — N — [—— [—— N —’
1 7 7 7 7 6

6-digit octal address

Notice that the largest legal word address is 177776.

Sec. 3.2

Memory Representation on the PDP-11 Computer 37

Just as a 16-bit address can be represented in octal, the contents of a 16-bit
word can be represented in octal. For example, the contents of the word begin-
ning at memory cell 000000 is represented in octal as follows:

16-bit binary word

1 101 010 101 010 01 1]
N —’ e —’ —— —_— e — N —

1 S 2 5 2 3
6-digit octal word

As when converting addresses, it is necessary to add two binary zeros at the left
of the 16-bit binary word. If all of the 16-bit words in Figure 3.3 are converted
to octal, the result is Figure 3.4. Notice that Figure 3.2, 3.3, and 3.4 specify
identical memory contents. These figures represent different ways of describing
the contents of the first 10 bytes (or the first 5 words) in memory.

Figure 3.4 Word Representation of Memory

Octal Octal
Address Contents
000000 152523
000002 000012
000004 150777
000006 160001
000010 000000

In using the octal representation of words, it is important to remember
three things. First, a 16-bit word is composed of two 8-bit bytes. Second, the
byte with the even (and lower) address forms the right half of the word and the
byte with the odd (and higher) address forms the /eft half of the word. Finally,
the address of a word must be even. (In octal, this means that word addresses
must end in either 0, 2, 4, or 6.)

Addresses versus Contents of Memory

" It is important to avoid confusion between the address of a memory word and

the contents of a memory word. In Figure 3.4, for example, we might describe
memory word 000004 in any of the following ways:

1. The memory word with address 000004 contains 150777.
2. Memory word 000004 contains 150777.

3. 000004 contains 150777.

4. The contents of memory word 000004 is 150777.*

*The word “‘contents’’ is often used in computer jargon as a singular noun meaning ‘‘the
number contained in some location.”’

38

Machine Language Programming Ch. 3

In each of these cases, 000004 is the address, and 150777 is the contents. It is
possible to change the contents of a memory word but never its address. In
other words, the contents of a memory word is variable but the address of a
word in invariable.

In the vast majority of cases, we will consider memory to consist of 16-bit
words as shown in Figure 3.4. Indeed, when reference is made to the contents of
memory, it should be assumed that we are referring to 16-bit words, not to 8-bit
bytes. Furthermore, most of the PDP-11 operations will be described in terms
of the octal representation. This is possible because, in many instances, the
octal representation and the binary representation give equivalent results. For
example, with addition:

Binary Encoding Octal Encoding
0 000 000 010 110 O11 000263
+ 0 000 000 001 101 110 000156
0 000 000 100 100 001 000441

The sum of the octal encodings, 000263 and 000156, is 000441, which is the
octal encoding of the binary answer.

As we proceed, octal encodings will be used for just about everything—so
much so in fact that there is a tendency to start thinking that the PDP-11 is an
octal computer rather than a binary computer. This is not the case, however,
since there are a few operations in the PDP-11, such as shifting*, which can
most easily be understood in terms of the actual binary representation.
However, for a vast majority of the PDP-11 operations, it is quite acceptable to
think in terms of the much more compact octal representation.

EXERCISE SET 1

1 Convert each of the following binary words to octal:
(@ 0 111 000 111 000 111
(b) 1 111 111 111 111 111
(c) 0 000 000 O11 111 111
(d) 1 111 111 100 000 000
(e) 0 001 010 011 100 101
(f) 1 110 101 100 011 010

2 The contents of memory words 000000 through 000010 is represented
below as five words, each of which consists of six octal digits. Represent

*Shifting a binary number left has the effect of multiplying it by 2; that is, 110 (base 2) is 6
(base 10) and 1100 (base 2) is 12 (base 10).

Sec. 3.3

Processor Use of Memory 39

the memory contents in terms of 10 bytes, each of which consists of 8 bits.
(In other words, specify the contents of bytes 000000 through 000011 in

binary.)
Address Contents
000000 177776
000002 000377
000004 176000
000006 123456
000010 000777

3 Each of the following octal words represents an unsigned number. Give the
decimal equivalent.

(a) 000001
(b) 000010
(c) 000100
(d) 000064
(e) 000144

3.3 PROCESSOR USE OF MEMORY

Fetch and Store Operations with Memory

Memory is controlled by the processor. The processor can either ask memory to
fetch the contents of a particular memory cell, or to store a particular number in
a particular memory cell. A fetch does not change the contents of the
designated memory location but a store does. In order to perform a fetch, the
processor sends memory the address of the desired memory location, and
memory responds by sending the processor the contents of the addressed cell.
For example, using the data from Figure 3.4, if the processor asked memory to
fetch the contents of memory cell 000004, memory would respond by sending
the number 150777 back to the processor. Memory cell 000004 would still con-
tain 150777.

In order to perform a store, the processor sends memory the address of the
desired memory cell along with a number that is to be placed in the designated
cell. Again using data from Figure 3.4, assume that the processor asked
memory to store the number 123123 in memory cell 000004. The old contents of
memory cell 000004 would be lost or destroyed, and 123123 would become the
new contents. There would be no record of the fact that memory cell 000004
ever contained 150777. If the processor subsequently asked memory to fetch the
contents of memory cell 000004, memory would respond by sending back the
new contents, 123123.

40

Machine Language Programming Ch. 3

The fetch and store operations are the only operations that memory can
perform. (Memory cannot perform an addition, for example.) However,
memory can perform the store and fetch operations quite rapidly (typically
more than 1 million operations in a single second).

Not all addresses are legal addresses. As previously noted, the memory ad-
dress of a 16-bit word must be an even number. The use of an odd address dur-
ing a fetch or store operation will cause an error, called an addressing error, to
occur.

Second, it is possible to purchase a PDP-11 computer with less than the
maximum amount of memory. For example, it is possible to purchase a
memory that only contains, and thus only responds to, memory addresses
000000 through 017777. An attempt to fetch or store from an address outside
this range, such as 040000, also causes an addressing error to occur.

Finally, memory addresses between 160000 and 177777 are reserved for
special purposes on many PDP-11 computers. Certain of these locations con-
trol input/output devices and are described in Chapter 11. Using these memory
locations may produce unpredictable results.

The ADD Instruction

As previously noted, the processor is the active device that controls the shuf-
fling of numbers back and forth between itself and the other devices that form
the computer, such as memory. The programmer, in turn, controls the pro-
cessor by writing a set of instructions, called a program, that the processor ex-
ecutes. For example, the following instruction will cause the processor to add
the 16-bit word contained in memory cell 000026 to the 16-bit word contained in
memory cell 000032, and place the 16-bit result in memory cell 000032:

ADD THE CONTENTS OF 000026 TO 000032

Note that this instruction does not cause the processor to add 26 (octal) to 32
(octal) to get 60 (octal). Rather, this instruction causes the contents of memory
cells 000026 and 000032 to be added, and the sum to be placed in memory cell
000032. The processor executes this instruction in four steps:

Step 1: Fetch the contents of memory cell 000026.
Step 2: Fetch the contents of memory cell 000032.
Step 3: Add the numbers fetched during steps 1 and 2.
Step 4: Store the resulting sum in memory cell 000032.

Notice that instructions such as ADD THE CONTENTS OF 000027 TO 000032
are illegal. Word addresses must be even numbers.

Sec. 3.3

Processor Use of Memory 41

The SUBTRACT, MOVE, and HALT Instructions

The MOVE and the SUBTRACT instructions are similar to the ADD instruc-
tion. To execute the instruction:

SUBTRACT THE CONTENTS OF 000040 FROM 000050

the processor performs the following steps:

Step 1: Fetch the contents of memory cell 000040.
Step 2: Fetch the contents of memory cell 000050.

Step 3: Subtract the number fetched in step 1 from the number fetched in
step 2.

Step 4: Store the resulting difference in memory cell 000050.
To execute the instruction:

MOVE THE CONTENTS OF 000070 TO 000060
the processor performs the following two steps:

Step 1: Fetch the contents of memory cell 000070.
Step 2: Store the number fetched during step 1 in memory cell 000060.

A program is simply a sequence of instructions. For example, the follow-
ing will set the contents of memory cell 000032 equal to the sum of the numbers
that are contained in memory cells 000024, 000026, and 000030.

Instruction 1: MOVE THE CONTENTS OF 000024 TO 000032
Instruction 2: ADD THE CONTENTS OF 000026 TO 000032
Instruction 3: ADD THE CONTENTS OF 000030 TO 000032
Instruction 4: HALT

The processor executed these instructions one after the other. The HALT in-
struction causes the processor to stop executing instructions. Figure 3.5 shows
the effect of each instruction on the contents of memory locations 000024
through 000032.

Figure 3.5 Memory Contents During Execution

Original Contents Contents Contents Contents
Address Contents after after after after
Instruction] Instruction2 Instruction3 Instruction4
000024 000003 000003 000003 000003 000003
000026 001000 001000 001000 001000 001000
000030 000200 000200 000200 000200 000200

000032 000000 000003 001003 001203 001203

42

Machine Language Programming Ch. 3

3.4 MACHINE LANGUAGE PROGRAMS

Machine Language Codes

One question that should arise at this point is where the computer program
physically exists. In our previous description of the computer, there was one
place for holding information, the memory. The memory therefore can be used
for storing computer programs. However, since the memory cells are only
capable of storing binary strings, the specific processor instructions must be en-
coded using a binary code. The following table shows the operation codes for
the instructions MOVE, ADD, SUBTRACT, and HALT. Each 6 digit octal
number in the table represents a 16-bit binary operation code.

Operation Name Operation Code
MOVE 013737
ADD 063737
SUBTRACT 163737
HALT 000000

It should be noted that these codes can be broken down into significant
pieces. For example, the operation code for MOVE is really 01. The 37s are ad-
dressing mode codes that indicate which of several ways there are for accessing
the data. The addressing modes. are described in more detail in Chapters S
and 7.

Forming a Program

Substituting the operation code for each operation in the previous program
would produce the following numerically encoded program:

Numerical Encoding English Meaning
1. 013737 000024 000032 Movethe contents of 000024 to 000032
2. 063737 000026 000032 Add the contents of 000026 to 000032
3. 063737 000030 000032 Add the contents of 000030 to 000032
4. 000000 Halt

Instructions in the all-numerical format are called machine language in-
structions. While this encoding is quite inconvenient for human beings, it is the
language computers ‘‘understand.’’ In order to determine what the program
does, it is necessary to know that 013737 is the code for a MOVE operation,
063737 is the code for an ADD operation, and so on. The preceding program
consists of 10 numbers, each of which consists of 6 octal digits. These 10

Sec. 3.4

Machine Language Programs 43

numbers can be placed in memory cells 000000, 000002, 000004, . . ., 000022,
to produce the program shown in Figure 3.6.

Figure 3.6 A Simple Machine Language Program

Address Contents Meaning

000000 013737

000002 000024 Move the contents of 000024 to 000032
000004 000032

000006 063737

000010 000026 } Add the contents of 000026 to 000032
000012 000032

000014 063737

000016 000030 } Add the contents of 000030 to 000032
000020 000032

000022 000000 Halt

000024 000003 The octal number 000003

000026 001000 The octal number 001000

000030 000200 The octal number 000200

000032 000000

A program in this format is called a machine language program. If the proces-
sor is told to execute the program that begins at memory cell 000000, the pro-
cessor will execute instructions in sequence as follows:

Execute the MOVE instruction that begins at memory cell 000000.
Execute the ADD instruction that begins at memory cell 000006.
Execute the ADD instruction that begins at memory cell 000014.
Execute the HALT instruction in memory cell 000022.

o o o

As the result of executing these four instructions, the sum of the numbers in
memory cells 000024, 000026, and 000030 will be placed in memory cell 000032.

Although a program might reside almost anywhere in memory, the
numeric operation codes are 16 bits long and therefore must be located at even-
numbered addresses.

The Program Counter

The way that the processor keeps track of what it is doing as it executes a pro-
gram is by use of a special register called the program counter. The program
counter contains a 16-bit number that is the address of the next instruction to be
executed. Every time an instruction or part of an instruction is fetched from
memory, the processor adds 2 to the program counter. In the previous example,
the program starts in memory location 000000. Therefore to start our program,
we must somehow set the program counter to 000000. (This can be done
manually with the switches on the machine if need be.)

44

Machine Language Programming Ch.3

The MOVE instruction at the beginning of the program requires three
words of memory: one for the operation code and one for each data address. As
each of these words is fetched, the program counter has 2 added to it. It will
therefore have a value of 000006 when the operation is complete. Note that
since 000006 is the address of the beginning of the next instruction, the pro-
cessor is all set to start the next instruction in sequence.

The execution of a given instruction can be divided into a fetch cycle dur-
ing which the instruction is fetched and an execute cycle during which the in-
struction is actually executed. For example, consider the move instruction that
begins in address 000000. Since this instruction occupies memory words
000000, 000002, and 000004, the fetch cycle requires three fetches from
memory. In order to achieve the move, it is necessary to fetch the contents of
memory cell 000024 and store the result in memory cell 000032. Thus the ex-
ecute cycle requires one fetch operation and one store operation. (Chapters 5
and 7 will describe the fetch and execute cycles in a somewhat different way.) In
total, the MOVE instruction requires four fetch operations and one store
operation. The reader should be able to determine that an ADD instruction re-
quires a total of five fetch operations and one store operation—three fetches
for the fetch cycle and two fetches and one store for the execute cycle.

3.5 THE USE OF A MEMORY CELL

As was just stated, the contents of a memory cell can be interpreted or used in a
variety of different ways. In Figure 3.6 for example, the contents of some
memory cells were treated as operation codes, others were treated as numbers.
It is not possible simply to examine the contents of a memory cell and determine
how the contents should be interpreted. If a given memory cell contains 000000,
the contents could be interpreted as either the number 0, the address of the first
memory cell, or a HALT instruction. To make the classification, it is necessary
to see how the processor uses the contents of the memory cell.

Consider the following machine language instruction that moves the con-
tents of memory cell 000024 into memory cell 000032:

Address Contents Use
000000 013737 Operation code
000002 000024 Address
000004 000032 Address
000024 000003 Operand

000032 000000 Operand

Sec. 3.5

The Use of a Memory Cell 45

When this instruction is executed, a total of five memory cells are involved. The
contents of 000000 is treated as an operation code, the contents of 000002 and
000004 are treated as addresses, and the contents of 000024 and 000032 are
treated as operands. (An operand is simply data that is operated on by the
processor.)

Operation Codes

It is important to distinguish between operation codes, addresses, and operands
because different rules apply to each. The operation code directs the processor
to perform some operation such as MOVE, ADD, SUBTRACT, or HALT.
Only certain operation codes are legal or valid. For example, 000100 is an illegal
operation. If memory cell 000000 contained the (illegal) operation code 000100
and the processor were directed to execute the program beginning in memory
cell 000000, an error would occur and execution of the program would ter-
minate. Only four legal operation codes have been discussed: 013737 (MOVE),
063737 (ADD), 163737 (SUBTRACT), and 000000 (HALT).

Addresses

Just as there are legal and illegal operation codes, there are legal and illegal ad-
dresses. As noted previously, addresses of 16-bit words must be even numbers.
In addition, computers that have less than the maximum amount of memory
will have an upper limit on legal addresses.

Signed and Unsigned Numbers

Finally, any octal number from 000000 to 177777 is a legal operand. As noted in
Chapter 2, the binary digits that are represented by these octal encodings can be
interpreted in a variety of ways. For the moment, our discussion will be limited
to two interpretations—unsigned numbers and signed numbers.

Table 3.1 shows how octal numbers between 000000 and 177777 can be in-
terpreted as unsigned or signed numbers. As shown in the table, unsigned
numbers range from 0 to 65535 (decimal) with 000000 (octal) representing 0 and
177777 (octal) representing 65535 (decimal). For signed numbers, the two’s
complement representation is used (see page 26 of Chapter 2). Signed numbers
range from —32768 (decimal) to 32767 (decimal). Note that 100000 (octal)
represents — 32768 (decimal), 177777 (octal) represents —1, 000000 (octal)
represents 0, and 077777 represents 32767.

It is important to realize that only one ADD instruction is required. For
example, if 177774 and 000003 are added, the result is 177777. With the un-
signed interpretation, this corresponds to adding 65532 to 3 to get 65535 (see
Table 3.1). With the signed interpretation, this corresponds to adding —4 to 3
to get —1.

46

Machine Language Programming Ch. 3

TABLE 3.1 THE RANGE OF SIGNED AND UNSIGNED NUMBERS IN
OCTAL WITH DECIMAL EQUIVALENTS

Octal Unsigned Signed
Contents Interpretation Interpretation
000000 0 0
000001 1 1
000002 2 2
000003 3 3
000004 4 4
000005 5 5
000006 6 6
000007 7 7
000010 8 8
000011 9 9
000012 10 10
000013 11 11
077774 32764 32764
077775 32765 32765
077776 32766 32766
077777 32767 32767
100000 32768 —32768
100001 32769 -32767
100002 32770 —32766
100003 32771 —32765
177774 65532 -4
177775 65533 -3
177776 65534 -2
177777 65535 -1

Overflow errors are possible with either interpretation; for example, the
sum of 177777 and 000003 is 000002 (what would normally be the correct sum,
namely 200002, will not fit in a memory cell). For signed numbers, this is cor-
rect because the sum of —1 and 3 is 2. However, for unsigned numbers, the
result is incorrect because 65535 plus 3 is certainly not equal to 2, and we say
that unsigned overflow has occurred. Similarly, the sum of 077776 and 000004
(octal) is 100002. In this case, the unsigned result is correct (32766 + 4 =
32770) but the signed result is incorrect (32766 + 4 is not equal to —32766), and
we say that signed overflow has occurred. Obviously, either kind of overflow
condition indicates that an arithmetic operation may have produced an incor-

Sec. 3.5

The Use of a Memory Cell 47

rect result. However, the processor does not treat overflow as an error, and it is
the programmer’s responsibility to ensure that overflow does not produce
wrong answers. Chapter 6 discusses how to test for overflow.

Multiple Interpretations

Let us now look at some ramifications of the fact that it is possible to interpret
the contents of a memory cell in more than one way. The contents of a given
memory cell might be interpreted or used as an operand, an address, and an
operation code at different times. Assume, for example, that the processor is
told to execute the program shown in Figure 3.7 beginning at memory cell
001000. This program appears to consist of three instructions—a SUBTRACT
instruction in memory cells 001000 through 001004, a SUBTRACT instruction
in memory cells 001006 through 001012, and a HALT instruction in memory
cell 000014. However, the first instruction directs the processor to subtract the
contents of memory cell 001000 from memory cell 001006. Since both cells con-
tain 163737, executing this instruction causes the contents of memory cell
001006 to be set to 000000. In effect, the SUBTRACT operation code in
memory cell 001006 has been changed into a HALT operation code. When the
processor executes this instruction, it halts.

The program shown in Figure 3.7 obviously does not accomplish anything
useful. In fact, most programmers consider instruction modification of this
sort to be extremely bad style. However, there are important applications where
it is necessary to treat a memory cell in more than one way. In order to translate

Figure 3.7 A Self-modifying Program

Before executing the instruction in memory cells 001000 to 001004:

Address Contents Apparent Interpretation
001000 163737
001002 001000 Subtract the contents of memory cell
001004 001006 001000 from memory cell 001006
001006 163737
001010 002000 Subtract the contents of memory cell
001012 002000 002000 from memory cell 002000
001014 000000 Halt

After executing the instruction in memory cells 001000 to 001004:
Address Contents Interpretation
001000 163737
001002 001000 Subtract the contents of memory cell
001004 001006 001000 from memory cell 001006
001006 000000 Halt

001012 002000
001014 000000

001010 002000
Unused

48

Machine Language Programming Ch. 3

a computer program written in one language into another language, it is
necessary to treat operation codes and addresses as numbers. In order to pro-
cess tables or arrays, addresses are frequently interpreted as numbers.

The processor uses very simple rules to decide whether the contents of a
memory cell will be interpreted as an operation code, an address, or an
operand. These can be illustrated by describing the sequence of steps the pro-
cessor goes through to execute the program in Figure 3.7:

Step 1: Fetch the first instruction (fetch cycle). Because the program counter
was initially set to 001000, the processor fetches and interprets the
contents of that location as an operation code. Because 163737 is an
operation code for a subtract instruction that occupies three memory
cells, the processor fetches the contents (001000) of memory cell
001002 and the contents (001006) of memory cell 001004 as well, in-
creasing the program counter to 001006.

Step 2: Execute the first instruction (execute cycle). At this point, the pro-
cessor has been instructed to subtract the number in memory cell
001000 from the number in memory cell 001006. (The processor is
totally unaware of the fact that it just interpreted the contents of
memory cell 001000 as an operation code.) To execute the instruction,
the processor (a) fetches the number (163737) contained in memory
cell 001000; (b) fetches the number (163737) in memory cell 001006;
(c) subtracts the two numbers to obtain 000000; and (d) stores the
result (000000) in memory cell 001006. As the result of executing this
instruction, memory cell 001006 now contains 000000.

Step 3: Fetch the second instruction (fetch cycle). Since the program counter
now contains 001006, the processor fetches the operation code
(000000) in memory cMl 001006. (The processor is totally unaware
that the previous instruction modified the contents of memory cell
001006.)

Step 4. Execute the second instruction (execute cycle). The operation code
000000 causes the processor to halt.

As this example implies, the processor executes a program by blindly
fetching then executing instructions. This process continues until either (a) a
HALT instruction is executed, (b) an illegal operation code is encountered, (c)
an illegal address is encountered, or (d) the computer operator manually stops
the computer.

Some Additional Instructions

The MOVE, ADD, and SUBTRACT instructions have a similar format. Each
of the instructions occupies three memory cells. The first memory cell contains
a 16-bit operation code, the second word contains the first 16-bit address, and

Sec. 3.5

The Use of a Memory Cell 49

the third word contains the second 16-bit address. Consider the following
MOVE instruction:

Address Contents Interpretation

001000 013737 Operation code (Move)

001002 002000 First address (the address 2000)
001004 003000 Second address (the address 3000)

This instruction will, of course, cause the contents of memory cell 002000 to be
moved to memory cell 003000. The contents of memory cell 002000 is the source
of the operand that is moved, and memory cell 003000 is the destination of the
operand. For this reason, the first address is called the source and the second
address is called the destination.

The MOVE NUMBER, ADD NUMBER, and SUBTRACT NUMBER
instructions are very similar to the MOVE, ADD, and SUBTRACT instruc-
tions with one major exception: the second word of the instruction is a number
rather than an address. (In other words, the second word of the instruction is
the operand rather than the address of the operand.) Consider the following
MOVE NUMBER instruction:

Address Contents Interpretation

001000 012737 Operation code (MOVE NUMBER)
001002 002000 Source (the number 002000)
001004 003000 Destination (the address 003000)

Note that the operation code for the MOVE NUMBER instruction is 012737
while the operation code for the MOVE instruction is 013737. Executing the
MOVE NUMBER instruction causes the number 002000 to be placed in
memory cell 003000. The contents of memory cell 002000 is not involved in the
execution of this instruction in any way. In a similar manner, the ADD
NUMBER instruction can be used to add a number to the contents of a memory
cell. For example, the following instruction will add the octal number 000001 to
the contents of memory cell 001400. The operation code for the ADD
NUMBER instruction is 062737.

Address Contents Interpretation

001000 062737 Operation code (ADD NUMBER)
001002 000001 Source (the number 000001)
001004 001400 Destination (the address 001400)

In the last example, notice that the source is an odd number. This is legal
because the source is a number rather than an address. In a similar manner, the
SUBTRACT NUMBER instruction with an operation code of 162737 can be
used to subtract a number from the contents of a memory cell.

Recall that executing a MOVE instruction requires a total of four fetch

50

Machine Language Programming Ch. 3

operations and one store operation. Three memory fetch operations are re-
quired during the fetch cycle to fetch the instruction, and one fetch and one
store are required during the execute cycle. In contrast, the MOVE NUMBER
instruction only requires a total of three fetch operations and one store opera-
tion. The fetch cycle still requires three fetch operations. However, the execute
cycle requires only a store operation. The reader should be able to verify that
the ADD NUMBER and SUBTRACT NUMBER instructions require a total of
four fetch operations and one store operation. The seven instructions described
up to this point are summarized in Figure 3.8.

Figure 3.8 List of Seven Operation Codes

Instruction Operation Source Destination Fetch Store
Code Operations Operations
HALT 000000 None None 1 0
MOVE NUMBER 012737 Number Address 3 1
MOVE 013737 Address Address 4 1
ADD NUMBER 062737 Number Address 4 1
ADD 063737 Address Address 5 1
SUBTRACTNUMBER 162737 Number Address 4 1
SUBTRACT 163737 Address Address S 1

EXERCISE SET 2

1 Assume that memory cells 001200 through 001236 contain the following:

Address Contents Address Contents
001200 000001 001220 000037
001202 000777 001222 177776
001204 123456 001224 001200
001206 177777 001226 000004
001210 001000 001230 001234
001212 177775 001232 000003
001214 001214 001234 000006
001216 077777 001236 100000

What will be the effect of executing each of the following instructions? That
is, what memory cell will be changed by each instruction, and what will be
the new contents of the memory cell?

(a) 013737 (b) 012737 (c) 063737
001202 001202 001200
001230 001224 001202

(d) 162737 (e) 062737 (f) 063737
001210 000002 001216

001214 001206 001232

Exercise Set 2 517

(g) 163737 (h) 163737 (i) 012737
001234 001204 000000
001236 001204 001220

(G) 163737
001216
001222

2 Assume that you are using a PDP-11 with 4096 decimal words (10000 octal
words) of memory, so that the largest legal memory address is 017776.
Which of the following instructions will execute without error?

(a) 013737 (b) 012737 () 163737
001234 020000 000000
012345 020202 000000

(d) 062737 (e) 000000 f) 162737
062737 013737
001000 013736

(g) 063737 (h) 163737
017772 000001
016744 001000

3 Each of the following programs will modify zero to three memory cells and
then terminate, either by executing a HALT instruction or encountering an
illegal operation code or address. Assume that any operation code other
than the seven that have been discussed is illegal. Assume that the largest

of the memory cell is not known. For each program, list the new contents of
any memory cell that is modified, and describe the way in which the pro-
gram terminates.

(a) Address Contents
001000 012737
001002 000020
001004 001014
001006 062737
001010 177760
001012 001014
001014 777777
Execute beginning at 001000.

(b) Address Contents
002000 012737
002002 012737
002004 002012
002006 000000
002010 000000
002012 000000

Execution begins at 002000.

52 Machine Language Programming Ch. 3

(c) Same as (b) except execution begins at 002002.

(d) Address Contents
002000 062737
002002 000001
002004 002010
002006 163737
002010 002016
002012 002016
002014 000000
002016 277777
Execution beginning at 002000.

(e) Address Contents
001000 163737
001002 001200
001004 001200
001006 012737
001010 000001
001012 001200
001014 000000
Execution begins at 001000.

(f) Address Contents
004000 012737
004002 012737
004004 004006
004006 000000
004010 000000
004012 004014
004014 277777

Execution begins at 004000.

3.6 WRITING MACHINE
LANGUAGE PROGRAMS

Using the seven machine language instructions currently available, it is possible
to implement very simple computer programs. In this section, the FORTRAN
and BASIC programs shown in Figure 3.9 will be manually translated into
machine language.* These programs are identical in the sense that, when the

*Strictly speaking, there is no integer data type in BASIC, therefore the BASIC example
is perhaps somewhat erroneous. It is given here because some readers may know BASIC
but not be familiar with FORTRAN. Consequently, for this and other examples to
follow, the reader should assume that we are dealing with an ‘‘integer only”’ version of
BASIC. Such versions of BASIC do indeed exist and are implemented on some small
microcomputers such as those based on the National Semiconductor-based Nibbler.

Sec. 3.6

Writing Machine Language Programs 53

Figure 3.9 A Simple FORTRAN and BASIC Program

A Simple FORTRAN Program An Identical BASIC Program
INTEGER J,K,L,M
J=3 10 LET J=3
K=J+4 20 LET K=J+4
L=K-J 30 LET L=K-J
Mz=K-L+J 40 LET M=K-L+J
STOP 50 STOP
END 60 END

STOP statement is reached, memory cell J will contain 3, K will contain 7, L
will contain 4, and M will contain 6.

It is important to regard a variable name, such as J, K, L, or M, as the sym-
bolic name of a memory cell rather than the contents of a memory cell. For ex-
ample, the statement K =] +4 tells the computer to add 4 to the number in
memory cell J and place the resulting sum into memory cell K. It does not tell
the computer to set the number K equal to the number J plus 4. Although this
may seem like a minor semantic point, it is really the difference between the
name of a memory cell and the contents of a memory cell. To emphasize this
distinction, we refer to variable names such as J, K, L, and M in the preceding
programs as symbolic addresses. They are symbols that represent the name
(rather than the contents) of a memory cell.

The machine language program is to occupy consecutive memory cells
beginning at memory cell 001000. This area of memory must contain space for
the variables J, K, L, and M as well as the machine language instructions.
Creating the program is easier if space for the variables is allocated first as
shown in the following table:

Symbolic Memory Contents
Address Address
J 001000 277777
K 001002 2777
L 001004 2777177
M 001006 277772

A table such as this, which shows the relationship between symbolic addresses
and actual memory addresses, is called a symbol table. Note that we are not
concerned with the contents of these memory cells. At this time, therefore,
question marks have been used to indicate the contents. The machine language
program will place numbers into these memory cells during execution. It is now
quite easy to implement each of the FORTRAN or BASIC statements as
follows:

1. J=3

Since J is the symbolic name for memory cell 001000, the instruction can be
implemented in machine language by a MOVE NUMBER instruction that

Machine Language Programming Ch. 3

moves the number 000003 into memory cell 001000. Since memory cells
001000 through 001006 have already been allocated, this instruction can be
placed into memory beginning at memory cell 001010:

Address Contents Comment
001010 012737 J=3
001012 000003
001014 001000

2. K=J+4

J is the symbolic name of memory cell 001000, and K is the symbolic name
of memory cell 001002. We can implement this instruction by (a) moving
the contents of memory cell 001000 to 001002, and then (b) adding the
number 4 to the contents of memory cell 001002. In effect, the complex
FORTRAN statement, K=1J +4, is replaced by two simple FORTRAN
statements, K =J and K =K + 4. The machine language implementation is:

Address Contents Comment
001016 013737 K=]J
001020 001000
001022 001002
001024 062737 K=K+4
001026 000004
001030 001002

3. L=K-1J
This FORTRAN statement is also implemented with two machine language
instructions, MOVE and SUBTRACT. In effect, the FORTRAN state-
ment, L=K -1, is being replaced by two simpler statements, L =K, and
L=L-1J.

Address Contents Comment
001032 013737 L=K
001034 001002
001036 001004
001040 163737 L=L-J
001042 001000
001044 001004

4. Similarly, M=K - L +J can be simplified to M=K, M=M-L, and M=
M+,

Address Contents Comment
001046 013737 M=K
001050 001002

001052 001006

001054 163737 M=M-L
001056 001004

001060 001006

001062 063737 M=M+]
001064 001000

001066 001006

Sec. 3.6

Writing Machine Language Programs 55

5. STOP
This statement is implemented with a HALT instruction:
Address Contents Comments
001070 000000 STOP

The complete program is shown in Figure 3.10. Note that the processor
should begin executing instructions at memory cell 001010, not 001000.

Figure 3.10 Machine Language Simple FORTRAN Program

Address Contents Comments

001000 777777 Memory cell J

001002 777777 Memory cell K

001004 777777 Memory cell L

001006 2777772 Memory cell M

001010 012737 J =3 (Move the number 000003
001012 000003 to memory cell 001000)

001014 001000

001016 013737 K =1J (Move the contents
001020 001000 of 001000 to 001002)

001022 001002

001024 062737 K=K +4 (Add the number 000004
001026 000004 to memory cell 001002)

001030 001002

001032 013737 L =K (Move the contents of
001034 001002 001002 to 001004)

001036 001004

001040 163737 L =L —1J (Subtract the contents
001042 001000 of 001000 from 001004)
001044 001004

001046 013737 M =K (Move the contents of
001050 001002 001002 to 001006)

001052 001006

001054 163737 M =M —L (Subtract the contents
001056 001004 of 001004 from 001006)
001060 001006

001062 063737 M =M +1J (Add the contents of
001064 001000 001000 to 001006)

001066 001006

001070 000000 STOP

The process of manually translating FORTRAN programs into machine
language can be viewed in the following manner. The machine language in-
structions MOVE, MOVE NUMBER, ADD, ADD NUMBER, SUBTRACT,
and SUBTRACT NUMBER can each implement a certain type of FORTRAN
or BASIC expression. These are shown in Figure 3.11.

Machine Language Programming Ch. 3

Figure 3.11 FORTRAN to Machine Language Correspondence

Sample FORTRAN Machine Language Implementation
Statement

J=5 MOVE NUMBER instruction

J=K MOVE instruction

J=J+5 ADD NUMBER instruction

J=J+K ADD instruction

J=J-5 SUBTRACT NUMBER instruction

J=J-K SUBTRACT instruction

In order to implement any FORTRAN statement that does not match one of the
six types shown, it is necessary to decompose the statement into simpler
statements that do match. For example, the statement N =5 — N can be decom-
posed into

Decomposed Type
Statement
T=5 Figure3.11linel
T=T-N Figure 3.11 line 6
N=T Figure 3.11 line 2

Notice that temporary storage cells, such as T in the preceding example, may be
necessary to implement a given FORTRAN statement.

3.7 MEMORY STRUCTURE OF OTHER

COMPUTERS (Optional Section)

We are primarily concerned with the organization and structure of the PDP-11
family of computers. However, in various sections in the text, the similarities
and differences between the PDP-11 and other computers will be discussed.
Although these sections are not required in order to understand the PDP-11,
they are very useful for someone who wants to gain a general knowledge of
computers.

One of the most obvious ways that computers differ is in the structure of
memory. The three most important factors in describing memory are (1) the
size of a memory cell, (2) the size of a word, and (3) the size of an address. The
size of a memory cell is usually referred to as the unit of addressable storage. On
the PDP-11, the unit of addressable storage is an 8-bit byte. It is simply the
quantity of information that is contained in each memory ‘‘box’’ or memory
cell. (If the processor fetches the contents of memory byte 000123, the result is
an 8-bit byte.) On all of the computers to be mentioned here, the unit of ad-
dressable storage is a certain number of bits. This, however, is not true of all

Sec. 3.7

Memory Structure of Other Computers 57

computers. Computers have been built in which the unit of addressable storage
is a ten-digit decimal number.

The range of addresses is sometimes called the address space and indicates
the maximum number of memory cells that a program can access. On the
PDP-11, an address is 16 bits long. Since 16 bits can be arranged in 2'¢ or 65,536
different ways, there are a maximum of 65,536 bytes of memory on the PDP-11
computer. For the computers to be described here, the size of an address is a
certain number of binary digits. However, other arrangements, such as decimal
addresses, are possible.

On many computers, the processor manipulates quantities of information
that are larger than the unit of addressable storage. For example, the processor
on the PDP-11 manipulates 16-bit quantities. This larger quantity of informa-
tion that the processor can manipulate is called a word. Typically, the size of a
word on any processor is some multiple of the unit of addressable storage.

Many small computers, called microcomputers, have a memory structure
that is very similar to the PDP-11 memory structure. That is, the size of an ad-
dress is 16 bits and the unit of addressable storage is 8 bits. However, on many of
these computers, the word size is only 8 bits. That is, the ADD instruction can
only add two 8-bit numbers. If longer additions are required, a series of several
instructions must be used. Such processors are called 8-bit microprocessors, and
computer systems built with these processors are called 8-bit microcomputers.
Processors in this category include the 8085 (Intel Corporation), the Z80 (Zilog
Corporation), the 6800 (Motorola), and the 6502 (MOS Technology). Com-
puter systems based on these processors include the TRS 80 (Radio Shack) the
APPLE (Apple Computer), and the PET (Commodore).

Many of these computer systems use base 16 (hexadecimal) rather than
octal to represent memory. As shown in Chapter 2, the hexadecimal system uses
16 “‘digits’’—0, 1,2,3,4,5,6,7, 8,9, A, B, C, D, E, and F. Since each hexa-
decimal (hex for short) digit represents four bits, a 16-bit address is represented
with four hex digits, and an 8-bit byte is represented with two hex digits. The
contents of memory might be illustrated as shown in Figure 3.12.

A variety of minicomputers* have an addressing structure that is identical
to the PDP-11. That is, the unit of addressable storage is 8 bits, the size of an
address is 16 bits, and the size of a word is 16 bits. Examples of such computers
include the TMS 9900 (Texas Instruments) and the Series 1 (IBM Corporation).
In most instances, memory is represented in terms of 16-bit words instead of
8-bit bytes, as in the PDP-11. However, hexadecimal numbers are often used
instead of octal numbers. Thus, memory is represented as shown in Figure 3.13.

*Computers used to be classified into three approximate sizes based on their cost—small,
medium, and large. When computers were developed that were far less expensive than
small computers, they were called minicomputers. When even less expensive computers
were developed, they were called microcomputers. The PDP-11 is generally considered a
minicomputer. However, very small PDP-11’s, like the LSI-11, are often classified as
microcomputers, and very large PDP-11’s, like the PDP-11/70, are too large to be called
minicomputers.

58

Machine Language Programming Ch. 3

Figure 3.12 Hexadecimal Memory Representation for 8-Bit Computer

Address Contents

(in hex) (in hex)
0000 13
0001 4A
0002 00
0003 FF
0004 BO
4099 03
409A E3
409B 52
409C 19
409D AA
409E 3C
409F 73
40A0 C2
FFFD 59
FFFE DF
FFFF 01

Figure 3.13 Hexadecimal Memory Representation for 16-Bit Word Computers

Hex Hex
Address Contents
0000 0135
0002 2A4F
0004 56B3
0006 537D
0008 AB2E
000A FFFF
000C 0012
000E 0000
0010 B3BC
FFFC 1234
FFFE 6ABC

International Business Machines Corporation (IBM) has produced and in-
stalled a large number of medium- and large-scale computers. The IBM 360
series of computers was introduced in the mid-1960s. The 370 series was in-
troduced in the early 1970s and the 303x and 43xx series were introduced in the
late 1970s. Each of these series represents a family of computers that vary in

Sec. 3.7

Memory Structure of Other Computers 59

capacity (and price). For example, the 303x series is currently available in three
models: 3031, the 3032, and the 3033. All of these computers are compatible in
that they have the same basic set of machine language instructions and thus
form an ‘‘extended family.’’ (Several additional instructions and features were
added to the later series.)

On all of these computers, the unit of addressable storage is an 8-bit byte.
The hexadecimal (base 16) system is used, so that a byte is specified with two
hexadecimal digits. An address is 24 bits long, which means that memory may
contain up to 2*¢ or 16,777,216 bytes. However, most installed systems have
much less memory than this. In addition to manipulating bytes, the processors
can manipulate 16-bit, 32-bit, 64-bit and longer quantities. These quantities of
information are given the following names:

Number of Number of 7 T
Name Bits Bytes
Halfword 16 2
Word 32 4
Doubleword 64 8

Notice that the length of a word on this machine is 32 bits or 4 bytes. In other
words, a word consists of 4 consecutive bytes in memory. (On some machines,
the address of a word must be divisible by 4 while other machines do not have
this restriction. Analogous comments apply to halfwords and doublewords.)

Figure 3.14 shows a section of memory that contains a variety of bytes,
halfwords, words, and doublewords. The 24-bit addresses are represented as six
hexadecimal digits.

Figure 3.14 Sample Memory Contents for Large IBM Computers

Address Contents Quantity of Information
0A3B0 3A63CD55AA12335F Doubleword

0A3B8 05BC3894 Word

0A3BC F53E16C3 Word

0A3CO0 3E Byte

0A3ClI 82 Byte

0A3C2 5AE6 Halfword

0A3C4 98F320E4 Word

All of the computers described to this point are examples of byte ad-
dressable machines. On such machines, the unit of addressable storage contains
a small number of bits, such as 8. In contrast, many computers have a unit of
addressable storage that contains larger quantities of information, such as 36,
48, 60, or 64 bits. On these machines, the word size is generally the same as the
unit of addressable storage. For example, a variety of computers manufactured
by Control Data Corporation (CDC) have a 60-bit word as the unit of ad-
dressable storage. The contents of a memory cell is generally represented as 20

60

Machine Language Programming Ch. 3

octal digits. On these machines, addresses are 18 bits long and are usually
represented with 6 octal digits. Figure 3.15 shows how the contents of memory
is represented.

Figure 3.15 Sample Memory Representation for the CDC Cyber Computers

Address Contents

303627 57263433716263540536
303630 03613027451200353011
303631 53374620025323325536
303632 36264472613302004520
305633 47267773530025342302

The computers with large word lengths tend to be expensive. They are
generally designed to perform scientific calculations very rapidly. Computers
with a small word size, such as an 8-bit byte, tend to be less expensive and
slower. However, this is only a crude rule of thumb. One of the problems is that
we have described memory as the programmer sees it. If one looks at the elec-
trical components and circuits inside a computer, it is possible to reach quite
different conclusions. Consider the problem of fetching a byte from memory
on a PDP-11 computer. The processor actually fetches a 16-bit word and then
“throws away’’ 8 of the bits to leave an 8-bit byte. This process is totally
transparent to the programmer. However, an electrical engineer looking at cir-
cuit diagrams might well conclude that the unit of addressable storage on the
PDP-11 was 16 bits rather than 8 bits.

EXERCISE SET 3

1 Beginning in memory cell 001000, write a machine language program that is
equivalent to the following FORTRAN program. (Remember to convert the
decimal numbers to octal.)

INTEGER J,K,L
J=15

K=22

L=J-K+9

STOP

END

2 Beginning in memory cell 001000, write a machine language program that is
equivalent to the following:

INTEGER J,K
J=27
K=-J
STOP
END

FExercise Set 3 61

3 Translate the following FORTRAN program into a machine language pro-
gram that begins at address 001200. Notice that multiplication can be
achieved with successive addition. (Your program should use a temporary
memory location to store the sum of J and K. When your program halts, J
and K should still contain 5 and 9, respectively.)

INTEGER J,K,L
J=5

K=9

L=3%(J+K)
STOP

END

4 Translate the following FORTRAN program into a machine language pro-
gram beginning at address 001000. (Hint: K can be computed from J with
fewer than 10 additions.)

INTEGER J,K
J=5

K=J%#32

STOP

END

5 Solve exercise 4 assuming that K =1J*23. (Hint: Express 23 decimal in
binary. Each 1 represents a multiple of J that must be added to K.)

6 Solve exercise 1 assuming that the machine language program is to begin at
address 000000 instead of 001000. What numbers change when a program is
relccated? Can you easily change the program so that it begins at address
002000?

CHAPTER 4

ASSEMBLY
LANGUAGE
PROGRAMMING

4.1 INTRODUCTION

Programming in machine language is difficult for a programmer. For example,
in order to add a quantity called TAX to a quantity called TOTAL, a program-
mer would have to write a machine language instruction such as:

Operation Source Destination
Code
063737 002000 003000

In creating this instruction, the programmer must remember that (a) 013737 is
the operation code for addition, (b) TAX is the symbolic name for memory cell
002000, and (c) TOTAL is the symbolic name for memory cell 003000. In order
to appreciate the problems that face a programmer, it is worth noting that the
PDP-11 contains several hundred different operation codes. Furthermore, it is
not unusual for a computer program to use several thousand memory cells.

Assembly languages relieve some of the demands on a programmer’s
memory by using symbolic names instead of numbers. For example, the
preceding machine language instruction could be written in assembly language
as:

Operation Source Destination
Code \
ADD TAX,TOTAL

63

64

Assembly Language Programming Ch. 4

A computer program, called the assembler, translates the assembly language
program into machine language by substituting appropriate numbers for the
symbolic names. For the preceding assembly language statement, the assembler
should substitute 063737 for ADD, 002000 for TAX, and 003000 for TOTAL.

In addition to allowing the programmer to use symbolic names, the
assembler also performs computational services such as converting numbers
from one base into another. Typically, each type or model of computer has its
own assembly language. Indeed, there are sometimes different assembly
languages for a given type or model of computer. The assembly language to be
described for the PDP-11 computer is called MACRO-11.

4.2 DEVELOPING AN ASSEMBLY
LANGUAGE PROGRAM

Mnemonic Operation Codes

In order to understand the assembly process, it is useful to see how an assembly
language program could be developed from a machine language program. In
this section, the machine language program presented in the previous chapter
(Figure 3.10) will be converted to assembly language. For convenience, this pro-
gram is reproduced as Figure 4.1. Notice that the format has been altered
however. For instructions that occupy three memory cells, only the address of
the operation code is listed. Source and destination are obviously contained in
the next two memory cells. In addition, the location for J, K, L, and M have
been moved to the end of the program so that execution will begin at location
001000. In Figure 4.1, memory cell 001000 contains the operation code 012737,
memory cell 001002 contains the operand 000003, and memory cell 001004 con-
tains the address 001062.

Figure 4.1 Machine Language Program

Address OpCode Source Destin- Comments
ation

001000 012737 000003 001062 J=3
001006 013737 001062 001064 K=J+4
001014 062737 000004 001064

001022 013737 001064 001066 L=K-J
001030 163737 001062 001066

001036 013737 001064 001070 M=K-L+J
001044 163737 001066 001070

001052 063737 001062 001070

001060 000000 STOP

001062 27727727 MEMORY CELL J
001064 272227272 MEMORY CELL K
001066 27272722 MEMORY CELL L

001070 2722222 MEMORY CELL M

Sec. 4.2

Developing an Assembly Language Program

The first step in converting this program is to substitute names for the
operation codes, using Figure 4.2. Notice that some of the symbolic operation
codes are abbreviated. For example, the MOVE operation code is shortened to
MOV, and the MOVE NUMBER operation code is written as MOV #. (The
programmers who created the MACRO-11 assembler chose these abbrevia-
tions. These abbreviations are often called Mnemonic op codes. Mnemonic
refers to a human memory aid that uses association.) Substituting symbolic
operation codes for the numerical operation codes in Figure 4.1 produces

Figure 4.3.

Figure 4.2 Seven Operation Codes

Symbolic
Operation

Code

ADD
ADD #
HALT
MOV
MOV #
SUB
SUB #

Numerical
Operation

Code

063737
062737
000000
013737
012737
163737
162737

Figure 4.3 Machine Language Program with Symbolic Op Codes

Address

001000
001006
001014
001022
001030
001036
0010uy
001052
001060
001062
001064
001066
001070

Symbolic Addresses

Just as numerical operation codes can be replaced with mnemonic operation
codes, numerical addresses can be replaced with symbolic addresses. Figure 4.4
is a symbol table that lists the numerical addresses along with the symbolic ad-

Op Code

MOV
MOV
ADD
MOV
SUB
MOV
SuB
ADD

HALT
2722277

......
......

Source Destination Comments

#000003
001062
#00000u
001064
001062
001064
001066
001062

001062
001064
001064
001066
001066
001070
001070
001070

J=3
K=J+4

L=K-J

M=K-L+J

STOP

MEMORY CELL J
MEMORY CELL K
MEMORY CELL L
MEMORY CELL M

66

Assembly Language Programming Ch. 4

dresses that the authors have chosen. The first entry indicates that every occur-
rence of the numerical address 001000 should be replaced by the symbolic ad-
dress START.

Figure 4.4 A Symbol Table

Symbolic Numerical
Address Address

START 001000

J 001062
K 001064
L 001066
M 001070

Using this symbol table, each numerical address of importance in Figure
4.3 can be replaced by a symbolic address. Performing this series of substitu-
tions produces the partially converted program shown in Figure 4.5.

Figure 4.5 Program with Symbolic Op Codes and Addresses

Symbolic Op Code Source Destin- Comments

Address ation
START MOV #000003 J J=3

MOV J K K=J+4

ADD #000004 K

MOV K L L=K-J

SUB J L

MOV K M M=K-L+J

SUB L M

ADD J M

HALT STOP
J Yarararard MEMORY CELL J
K 2?7277 MEMORY CELL K
L 27722 MEMORY CELL L
M 727277 MEMORY CELL M

Symbolic addresses such as J and START in Figure 4.5 are also called sym-
bolic names or labels. Symbolic addresses such as J, K, L, and M are analogous
to variable names in FORTRAN or BASIC. They are the names of memory
cells that contain ‘‘numbers’’ which are manipulated by the program. Symbolic
addresses such as START are analogous to statement labels in FORTRAN and
BASIC. They are the names of memory cells that contain (machine language)
instructions. Higher-level languages such as FORTRAN or BASIC clearly
distinguish between variable names and statement labels. The statement label
10 is very different from the variable name J. Other higher-level languages,
such as PL/1, do not make this distinction so clearly. In machine language or
assembly language, however, this distinction does not really exist. A symbolic
address is the name of a memory cell, regardless of whether the contents of the
memory cell is a number or an instruction.

Sec. 4.2

Developing an Assembly Language Program 67

The partially converted program in Figure 4.5 is certainly much easier to
understand than the machine language program in Figure 4.1. However, the
conversion process has not altered the meaning of the program in any way.
Figures 4.1 and 4.5 are really just two different representations for the same
program.

The Syntax of Assembly Language
The final step in conversion is the addition of some punctuation so that the pro-
gram satisfies certain rules of syntax required of assembly language programs.
The complete assembly language program is shown in Figure 4.6.

Figure 4.6 Assembly Language Program

Label Op Code Operands Comments

.TITLE SIMPLE PROGRAM

.ENABL AMA +SEE TEXT
START: MOV #3,d 3J=3

MOV J,K K=Jd+1

ADD #4,K

MOV K,L sL=K-J

SUB J,L

MOV K,M sM=K-L+J

SUB L,M

ADD J,M

HALT ;STOP
J: .BLKW 1 sMEMORY CELL J
K: . BLKW 1 sMEMORY CELL K
L: . BLKW 1 sMEMORY CELL L
M: .BLKW 1 sMEMORY CELL M

.END START ;SEE TEXT

The assembly language program consists of four columns or fields. The
first field contains symbolic addresses, the second field contains operation
codes, the third field specifies operands, and the fourth field is for comments.
Each of these fields will be described in greater detail.

The label field contains labels or the names of symbolic addresses. Each
label is the name of a memory cell. (Generally, the remaining fields on each line
specify the contents of the memory cell.) Labels are composed of one to six let-
ters and numbers. In addition, the first character must be a letter. Thus A,
Z123, and SUNDAY are valid, but 52, AB?CD, and TUESDAY* are illegal. A

*Names that are too long do not produce error messages, but the extra characters are ig-
nored, and thus confusion could occur between TUESDAY and TUESDAQ, which
would be indistinguishable. Additionally, periods and dollar signs can be used in names
as if they were letters of the alphabet. However, since they are frequently used in systems
programs, their use in non-systems programs is not recommended.

68

Assembly Language Programming Ch. 4

colon (:) must immediately follow a label. A label may begin anywhere on a
line, but by convention they are normally typed beginning in column 1.

The operation code field contains mnemonic operation codes such as
MOV, ADD, SUB, and so on. In addition, however, it may contain things like
.TITLE, .ENABL, .BLKW, and .END, which are definitely not operation
codes. These are called assembly directives (with some assemblers, they are
called pseudo-operations). It is easy to distinguish operation codes from
assembly directives because MACRO-11 assembly directives always begin with
a period (.). The .BLKW 1 indicates that a word of memory is to be reserved
without specifying its contents. In other words, it is equivalent to our writing six
question marks (??????). In Figure 4.6, .BLKW 1 simply indicates that J, K, L,
and M are the names of four memory cells (16-bit words) whose contents are
not known. Specifically .BLKW means ‘‘block of words.’’ The number follow-
ing .BLKW is called an argument and indicates the number of words in the
block. The .TITLE, .ENABL and .END assembly directives are described fur-
ther on. Operation codes and assembly directives may begin in any column, but
by convention they are usually typed beginning in column 9.

The contents of the operand field on a given line depends on the contents
of the operation code field. A HALT op code must not have any operands, an
.END directive in this context should have one operand, and a MOV op code re-
quires two operands. When two operands are required, they must be separated
by a comma with no spaces between the two operands. Notice that leading zeros
on numbers may be eliminated, so that #000003 may be typed as #3. By conven-
tion, the operand field begins in column 17.

A comment must start with a semicolon (;). Anything after the semicolon is
ignored in the sense that it is not considered to be part of the assembly language
program. Comments can begin anywhere on a line after the operands (or after
the op code or assembly directive if there are no operands). It is possible to
make an entire line a comment by placing a semicolon in column 1.

The .END, .ENABL, and .TITLE directives still have to be described. The
.END directive is analogous to the END statement in FORTRAN or BASIC.
.END, which must appear on the last line of an assembly language program,
simply marks the physical end of the program. The operand following .END is
called an argument and specifies the symbolic address where execution is to
begin.

The function of the .ENABL directive is more difficult to explain. There
are two slightly different versions of the operation code table. The directive
.ENABL AMA is a message to indicate that the operation code table shown in
Figure 4.2 is being used. The PDP-11 has two memory addressing schemes:
relative (discussed later) and absolute. In absolute, the actual numerical address
is used in the instruction. Enabling AMA tells the assembler to use the easier to
understand absolute memory addressing wherever possible. The .TITLE direc-
tive is simply for identification purposes. It has a message in the operand field
that is printed at the top of every page of assembly language listing. Therefore,
each listing page for this example would say SIMPLE PROGRAM in the upper

Sec. 4.3

The Assembly Process 69

left hand corner. The .TITLE directive is not necessary to the program and has
little more effect than a comment. However, its use is important for the proper
documentation of the program.

Another commonly used assembly directive that was not used in the exam-
ple is .WORD. This directive is used to place one or more numbers into con-
secutive memory locations. For example, .WORD 57,34,171 would cause three
words to be inserted into the program:

000057
000034
000171

4.3 THE ASSEMBLY PROCESS

The PDP-11 Assembler

In order to create machine language programs for the PDP-11, programmers
typically write assembly language programs such as the one in Figure 4.6. The
assembly language program is input data to another computer program called
the assembler which translates the assembly language program into machine
language. The assembler to be described here is called MACRO-I11.
MACRO-11 was written by the manufacturer of the PDP-11, Digital Equip-
ment Corporation.

Simple Translation

If the symbol table and the operation code table are available, the assembly pro-
cess is simple. Consider, for example, the assembly language program in Figure
4.6. Using the symbol table (Figure 4.4), replace each symbolic address with the
equivalent numerical address. Using the operation code table (Figure 4.2),
replace each symbolic operation code with the equivalent numerical operation
code. Remove the punctuation characters, and the result is the machine
language program shown in Figure 4.1.

The previous description assumed that (a) the operation code table is
available, and (b) the symbol table is available. The operation code table does
not vary from one program to another. That is, the symbolic operation code
HALT is always replaced with the numerical operation code 000000. For this
reason, the operation code table is built in to the program called MACRO-11
that translates assembly language programs into machine language.

In contrast, the symbol table varies from program to program. It would be
possible to require the programmer to construct the symbol table and give
the table to MACRO-11. However, creating the symbol table is almost as
difficult as creating the machine language program directly. A much better

70

Assembly Language Programming Ch. 4

method is to let MACRO-11 create the symbol table from the assembly
language program.

Creating a Symbol Table

MACRO-11 creates the symbol table by assuming that numbers are to be placed
in consecutive memory cells. For example, suppose that MACRO-11 has deter-
mined that START in the following program segment is the symbolic name of
memory cell 001000:

START: MOV #3,J
MOV J,K

Since the instruction MOV #3,] is a three-word instruction, it will occupy loca-
tions 001000, 001002, and 001004. The next available location is 001006.
Therefore, the second MOV instruction will be located starting at 001006. Since
it also requires three words, locations 001006, 001010, and 001012 will be used,
and the next available location will be 001014.

Using this technique, the assembler can determine the exact address of
each instruction or data location in the program. Since some of these lines in the
program contain a label, the labels can be identified with addressses to form a
symbol table. For example, this allows us to determine that J would be location
001062, K would be 001064, and so on. The assembler can then use these ad-
dresses to fill in the addresses of such instructions as MOV #3,]J.

Let us now review the method that MACRO-11 uses to construct the sym-
bol table. MACRO-11 keeps track of a single quantity—the address of the next
available memory cell. This quantity is called the location counter. MACRO-11
scans the assembly language program from beginning to end using the follow-
ing rules:

Rule 1: 'When MACRO-11 encounters a symbol followed by a colon (such as
START:, A:, or ZONK:), a symbolic address is being defined.
MACRO-11 inserts the symbolic address into the symbol table along
with the current value of the location counter. The value of the loca-
tion counter is not changed.

Rule 2: 'When MACRO-11 encounters a symbol in the operation code field,
MACRO-11 adds an appropriate quantity to the location counter as
shown by the following table:

Op Code Appropriate Op Code Appropriate
Field Quantity Field Quantity

ADD 6 SuB 6
ADD# 6 SUB# 6
HALT 2 .BLKW 2 times the argument
MOV 6 .ENABL O
MOV # 6 .END 0

Sec. 4.4

Examples of Errors in the Assembly Process 71

It should be noted that the location counter is to the assembler what the
program counter is to the processor during execution. Although producing a
symbol table is crucial to the assembly process, the primary objective of the
assembler is to produce a machine language program. Let us now examine the
problems associated with producing machine language.

Examining the program in Figure 4.6, we can see what the assembler
‘‘sees’’ during the translation process. The first thing is the . ENABL AMA line.
As described earlier, this directive does not generate any machine language
code, but merely sets a mode switch in the assembler. The next line, however, is
START: MOV #3,]J. This line causes much to happen. First the symbol START
is entered in the symbol table with the starting address of 001000. Next the
MOV # instruction is encountered. The assembler searches the table in Figure
4.2 to determine that MOV # is a 6-byte or 3-word instruction and the location
counter is modified. Finally, we would like to produce the three words of the in-
struction, 012737, 000003, and 001062. However, there is a problem. The last
of these words, 001062, is the address of J. But how can the assembler ‘‘know’’
the address of J since it has not yet ‘‘seen’’ the line J: .BLKW 1 where J is
defined.

Two-Pass Assembly

To solve this problem, the PDP-11 assembler uses two passes. (Chapter 13 men-
tions other possible solutions to this problem.) This means that the assembler
reads through the assembly language program twice. The first time, no machine
language code is generated because address definitions are missing. However,
addresses can be determined as the program is read, and the symbol table is
generated. Then in a second pass through the program, the assembler will have
all the addresses defined in the symbol table, and the machine language code is
produced.

The process of constructing the symbol table by scanning the assembly
language program is called pass 1 of the assembly process. The machine
language program is produced during pass 2. During pass 2, MACRO-11 scans
the assembly language program a second time and, using the operation code
table and the symbol table, substitutes numbers for symbolic names to create
the machine language program.

4.4 EXAMPLES OF ERRORS IN
THE ASSEMBLY PROCESS

Kinds of Errors

Two distinct steps are required to execute an assembly language program. First,
the assembly language program is given to the MACRO-11 assembler which
translates the assembly language into machine language. Second, the machine

72

Assembly Language Programming Ch. 4

language program is executed. Errors can occur during either one of these steps.
The errors that may be generated during each step are quite different.

The errors generated during the assembly step are generally either syntax
errors or undefined symbols. In order to translate an assembly language pro-
gram into machine language, MACRO-11 must be able to find the label field,
the op code field, and the operands field on each line of the assembly program.
In order to make this possible, the assembly program must contain appropriate
punctuation, such as a colon after a symbolic address. Syntax is the set of punc-
tuation and other grammar rules, and if the punctuation is incorrect, a syntax
error will be produced. An undefined symbol occurs when MACRO-11 en-
counters a name that is not contained in either the operation code table or the
symbol table. This will occur if the operation code MOV is misspelled as
MOVE, or if the .END directive is misspelled as END. This error will also occur
if the programmer forgets to define a symbolic address. (Symbolic addresses
are defined by placing the name in the label field, followed by a colon.) It is also
possible to generate an error by defining the same symbolic name twice.

It is important to understand that errors such as syntax errors and unde-
fined or multiply defined symbols are the only kinds of errors that MACRO-11
detects. In particular, MACRO-11 does not check the validity of the machine
language program that it produces in any way. MACRO-11’s only function is to
substitute numbers (such as operation codes and addresses) for names. It is the
programmer’s responsibility to ensure that the result is a valid machine
language program.

Once the assembly process is completed, the machine language program
can be executed. The errors that occur during execution include such things as
illegal addresses and illegal operation codes. In addition, of course, the pro-
gram may simply produce incorrect answers.

Examples of Errors

To illustrate these points, a series of assembly language programs and their
machine language translations are described next. Each example consists of
eight columns. The assembly language program is contained in columns 2, 3,
and 4, with column 2 containing the label field, column 3 containing the opera-
tion code, and column 4 containing the operands, if any. Column 1 contains the
numerical addresses, so that columns 1 and 2 represent the symbol table created
by pass 1 of the assembly process. The machine language program produced by
MACRO-11 is shown in columns 5 through 8. In each case, it is assumed that
the location counter is initialized to 001000, so that cell 001000 is the first
memory cell used by the program.

Sec. 4.4 Examples of Errors in the Assembly Process

73

EXAMPLE 1 This assembly language program is designed to (a) set the
contents of memory cell A to 000003 (octal), (b) set the contents of
memory cell B equal to the contents of memory cell A, or 000003, and (c)
add the number 000004 to memory cell B, so that its contents become
000007. Notice that we do not say that the value of B is 000007. The value
of B is its symbol table entry, 001026. The value contained in memory cell
B is 000007.

ASSEMBLY LANGUAGE
PROGRAM MACHINE LANGUAGE PROGRAM
Address Label Op Code Operands Address Op Code Operand Operand
.TITLE EXAMPLE i1 Program title
.ENABL AMA Use the op code table in Figure 4.2
001000 ST: MOV #3,A 001000 012737 000003 001024
MOV A,B 001006 013737 001024 001026
ADD it4,B 001014 062737 000004 001026
HALT 001022 000000
001024 A: .BLKW 1 001024 2272772
001026 B: .BLKW 1 001C26 277?77
.END ST

During pass 1 of the assembly process, the symbol table is con-
structed. ST becomes the symbolic name for memory cell 001000, A
becomes the symbolic name for memory cell 001024, and so on. During
pass 2, the machine language program is created. Finally, the machine
language program is executed beginning at memory cell 001000. When the
program halts at memory cell 001022, memory cell 001024 will contain
000003, and memory cell 001026 will contain 000007.

EXAMPLE 2 The second example is similar to example 1 except that
the programmer has forgotten the .BLKW directive on the fifth and sixth
lines of the program. The omission of .BLKW does nof cause an assembly
error. Recall that the only function of the .BLKW directive is to add
000002 to the location counter during pass 1 of the assembly process.
Because .BLKW is omitted, A and B are both symbolic names for
memory cell 001024. (MACRO-11 simply assumes that the programmer
wishes to refer to memory cell 001024 by two different symbolic names.)
When the machine language program is executed, the MOV # in-
struction in 001000 replaces the contents in 001024 with the number
000003. The MOV instruction moves the new contents 001024 into
001024, and the ADD #instruction adds 000004 to the contents of 001024.
When the HALT instruction is executed, memory cell 001024 will contain
000007. Obviously, this is not what the programmer intended. However,
this is a difficult error to find because no error messages are produced.

Assembly Language Programming Ch. 4

ASSEMBLY LANGUAGE
PROGRAM MACHINE LANGUAGE PROGRAM
Address Label Op Code Operands Address Op Code Operand Operand
.TITLE EXAMPLE #2 Program title
.ENABL AMA Use the op code table in Figure 4.2
001000 ST: MOV #3,A 001000 012737 000003 001024
MOV A,B 001006 013737 001024 001024
ADD #4,B 001014 062737 000004 001024
HALT 001022 000000
001024 A: 001024 2777?72
001024 B: 001024
.END ST

EXAMPLE 3 Example 3 is identical to example 1 except that the
number 3 has been changed to 7 and the programmer has forgotten the
HALT statement. This too will fail to produce an assembly time error.
During execution, however, the PDP-11 will eventually execute the ADD
instruction in memory cells 001014, 001016, and 001020. The processor
will then try to execute the ‘‘instruction’’ in memory cell 001022 (sym-
bolic address A). By this time, memory cell 001022 contains 000007,
which happens to be an illegal operation code. The computer will stop
executing the program and print an error message such as:

TRAP TO 000010 FROM 001024

The TRAP TO 000010 simply indicates that the processor has found an il-
legal operation code. The address that follows (in this case 001024) is
generally one or two memory cells affer the memory cell that caused the
problem.

The programmer in this example was lucky because the machine
language program ‘‘bombed’’ immediately. If the contents of memory
cell 001022 were a valid machine language instruction, the processor might
execute a large number of ‘‘garbage instructions’’ in memory cells
001022, 001024, 001026, 001030, and so on.

If the processor finally encountered an illegal instruction at memory
cell 001040, an error message such as:

TRAP TO 000010 FROM 001044

would be produced. This message is not particularly useful in finding the
cause of the error (the missing HALT instruction). A clue is that the value
001044 is the contents of the program counter when the error was
detected. However, the value will usually be somewhat higher than the in-
struction causing the error because the program counter will be in-
cremented some number of times depending upon how many fetches were
needed before the error was detected.

Sec. 4.4

Address

001000

001022
001024

Examples of Errors in the Assembly Process

ASSEMBLY LANGUAGE

Label

ST:

PROGRAM MACHINE LANGUAGE PROGRAM
Op Code Operands Address Op Code Operand Operand

.TITLE EXAMPLE #3 Program title

.ENABL AMA Use the op code table in Figure 4.2

MOV #7,A 001000 012737 000007 001022
MOV A,B 001006 013737 001022 001024
ADD #4,B 001014 062737 000004 001024
. BLKW 1 001022 2777727

. BLKW 1 001024 272727772

.END ST

75

Address

001000

001024
001026

EXAMPLE 4 This example is identical to example 1 except that the
number sign (#) has been omitted from the assembly language instruction
MOV #3,A. Recall that the number sign is really part of the operation
code. Omitting the number sign changes the operation code in memory
cell 001000 from 012737 to 013737. The rest of the machine language pro-
gram is unchanged. Since MACRO-11 was able to substitute a number for
each symbol in the program, no error message is generated.

When the machine language program is executed, however, the MOV
instruction beginning in memory cell 001000 instructs the processor to
move the contents of memory cell 000003 into memory cell 001026.
Because 000003 is an illegal (odd) address, the program will ‘‘bomb’’ with
an error message such as TRAP TO 000004 FROM 001004.

A quite different result would occur if the number sign were omitted
on the instruction ADD #4,B in example 1. The assembly language in-
struction ADD 4,B generates a machine language instruction that tells the
processor to add the contents of memory cell 000004 to memory cell B
(001026). Since the contents of memory cell 000004 has not been
specified, it must be assumed to contain garbage. When the machine
language program halts, memory cell B (001026) will contain garbage.

ASSEMBLY LANGUAGE

Label

ST:

PROGRAM MACHINE LANGUAGE PROGRAM
Op Code Operands Address Op Code Operand Operand

.TITLE EXAMPLE #4 Program title

.ENABL AMA Use the op code table in Figure 4.2

MOV 3,A 001000 013737 000003 001024
MOV A,B 001006 013737 001024 001026
ADD #4,B 001014 062737 000004 001026
HALT 001022 000000

. BLKW 1 001024 22772727

.BLKW 1 001026 7777722

.END ST

Assembly Language Programming Ch. 4

EXAMPLE 5 The previous examples have emphasized errors that may
occur when a machine language program is executed by the processor.
The following example illustrates the kinds of errors that will be detected
by MACRO-11 during the assembly process.

Label Op Code Operands Error
.TITEL EXAMPLE #5 .TITLE IS MISSPELLED
ENABL AMA ENABL IS UNDEFINED (MISSING PERIOD)
ST; MOV #3,A ST IS UNDEFINED (";"™ TYPED FOR ":")
MOV A,B B IS UNDEFINED (SEE BELOW)
ADD ##4,B B IS UNDEFINED (SEE BELOW)
,HALT ILLEGAL SNYTAX (ADDED COMMA)
B . BLKW 1 B IS UNDEFINED (MISSING COLON)
A: . BLKW 1
.END ST ST IS UNDEFINED (SEE ABOVE)

Some of these errors deserve greater explanation. On the third line,
the programmer has inadvertently typed a semicolon (;) instead of a colon
(:). As aresult, MACRO-11 assumes that ST is in the operation code field
and that the remainder of the line is a comment. (ST cannot be in the label
field, because arguments in the label field must end with a colon.)
MACRO-11 searches the operation code table and the symbol table look-
ing for the symbol ST. In this case, no such symbol is found and an error
message is printed. Because of the error, ST is not entered in the symbol
table and a second error message is printed with the .END statement
because the operand is undefined.

The missing colon on the sixth card produces a similar result. B is
undefined and every line that uses B as an operand will be flagged with an
error message. A single error can generate a large number of error
messages.

EXERCISE SET 1

1 In examples 1 through 4, it was assumed that the location counter was
initialized to 001000. Reassemble example 1 assuming that the location
counter is initialized to 000000. Does this change affect the content of
memory cells A and B when the machine language program halts?

2 Assume that the fourth line in example 1 is modified to read MOV #A,B.
(That is, a number sign is added in front of the operand A.) Hand assemble
this program assuming that the location counter is initialized to 001000.
What will be contained in memory cell B when the machine language pro-
gram halts? (Hint: Remember that the number sign just changes the opera-
tion code.)

Exercise Set 1 77

3 Hand assemble the following program beginning at memory cell 001000.
What will be contained in memory cell LAST when the machine language
program halts? Can you describe what this program does in a few (English)
words?

Label Op Code Operands

.TITLE EXERCISE

.ENABL AMA

FIRST: MOV #LAST, LAST
SUB #fF IRST, LAST
ADD #2,LAST
HALT

LAST: .BLKW 1
.END FIRST

4 Hand assemble the following program beginning in memory cell 001000.
What number will be contained in memory cell ANS when the program
halts?

.TITLE EASY

.ENABL AMA
START: MOV #10,J
MOV #20, ANS
ADD J,ANS
HALT
J: .BLKW 1

ANS: . BLKW 1
.END START

5 What effect will each of the following changes have on the program in exer-
cise 4?7 (The changes are not cumulative.) If the program reaches the HALT
statement, either identify the final contents of ANS or indicate the source of
the garbage that makes the contents of ANS unknown. If the program ex-
ecutes a garbage instruction, identify the memory cell that contains the gar-
bage instruction.

(a) The number sign is omitted from the third line so that the line becomes
START: MOV 10,J.

(b) The line containing the HALT instruction is omitted.

(c) A number sign is added to the fifth line so that the line becomes
ADD #J,ANS.

(d) The assembly directive, .BLKW is omitted from the seventh line so that
the line contains only the label definition J:.

78

Assembly Language Programming Ch. 4

4.5 PROGRAMS IN THE COMPUTER

Multiple Programs in Memory

The memory of a modern computer typically contains more than one machine
language program. Figure 4.7 illustrates a computer system in which memory
contains two programs labeled A and B.

Figure 4.7

| input Ir processor l output |

memory

Program A

Program B

At any point in time, only one program is actually being executed by the pro-
cessor. However, there are special machine language instructions that cause the
processor to stop executing one program and start executing another. There are
several reasons why it is desirable to have more than one program in memory.
Some of these are described next.

Modular Programs

Debugging one large program is usually much more difficult than debugging
several small programs. As a result, good programmers usually break up a large
problem into two or more small programs. In Figure 4.7, for example, pro-
grams A and B might be two programs, written by the same programmer, that
were designed to solve a single complex problem. When a problem is split up in
this fashion, the first program (in this case program A) is called the main pro-
gram. The other programs (in this case B) are called subprograms or
subroutines. There are two instructions in the PDP-11 for calling subroutines
and returning from them: JSR and RTS. The JSR instruction (Jump to
SubRoutine) can be used to tell the processor to temporarily stop executing the
main program and start executing the subroutine. The RTS instruction
(ReTurn from Subroutine) can be used to stop executing the subroutine and
resume execution of the main program. These instructions will be described in
more detail in the next chapter.

It is even possible for the programs to be written in different languages. In
Figure 4.7, program A could be the machine language translation of an
assembly language program, while B could be the machine language translation

Sec. 4.5

Figure 4.8

Address

001000

001024
001026

Programs in the Computer 79

of a FORTRAN program. By breaking a large problem into smaller sub-
problems, the programmer can select the best language for solving each
subproblem.

Even if the programmer writes a single program with no subroutines, there
is usually another program in memory. In Figure 4.7, program A could be a
user’s program, while program B could be part of the RT-11 operating system.
The user program can use the RT-11 operating system to obtain various services
such as input or output operations. These services are obtained by placing an
EMT instruction (EMulate Trap) in the user program. The EMT instruction
stops the execution of the user program and starts executing the RT-11
operating system. For example, if you are using RT-11, you should use an EMT
350 instruction to terminate your program rather than a HALT instruction.
EMT 350 simply informs RT-11 that your program has finished executing.
RT-11 can then load the next user’s program into memory and execute it.

Relocation

Because there are multiple programs in memory, it is important to be able to
move or relocate a program from one area of memory to another. (It would be
very unfortunate if a user accidentally placed a machine language program in
memory cells that were already occupied by the RT-11 operating system.) One
way of relocating an assembly language program is to reassemble the program.

Figure 4.8 contains the same assembly and machine language program that
previously was shown in example 1 (page 73). This example assumed that the
location counter was initialized to 001000. During pass 1 of the assembly pro-
cess, the following symbol table was generated:

Symbolic Address Numerical Address

ST 001000
A 001024
B 001026

During pass 2, the machine language program on the right side of Figure 4.8
was generated. During execution, this program resides in memory cells 001000
through 001024.

ASSEMBLY LANGUAGE
PROGRAM MACHINE LANGUAGE PROGRAM

Label Op Code Operands Address OpCode Operand Operand
.TITLE EXAMPLE #1 Program title
.ENABL AMA Use the op code table in Figure 4.2

ST: MOV #3,A 001000 012737 000003 001024
MOV A,B 001006 013737 001024 001026
ADD #4,B 001014 062737 000004 001026
HALT 001022 000000

A: .BLKW 1 001024 272222

B: . BLKW 1 001026 777227

.END ST

80

Figure 4.9

Address

000000

000024
000026

Assembly Language Programming Ch. 4

ASSEMBLY LANGUAGE
PROGRAM MACHINE LANGUAGE PROGRAM

Label Op Code Operands Address Op Code Operand Operand
.TITLE RELOCATION
.ENABL AMA Use the op code table in Figure 4.2

ST: MoV #3,A 000000 012737 000003 000024
MOV A,B 000006 013737 000024 000026
ADD #4,B 000014 062737 000004 000026
HALT 000022 000000

A: . BLKW 1 000024 2777222

B: . BLKW 1 000026 ?77777??
.END ST

The assembly language program in Figure 4.9 is identical to the one in
Figure 4.8. However, the location counter has been initialized to 000000 rather
than 001000. As a result, the symbol table produced from Figure 4.9 is:

Symbolic Address Numerical Address

ST 000000
A 000024
B 000026

The resulting machine language program, shown on the right side of Figure 4.9,
occupies memory cells 000000 to 000026 during execution.

The Relocation Process

Notice that both machine language programs produce the same answer. When
either program halts, the contents of memory cell B will be 000007. It should be
obvious that the assembly language program can be relocated to any area in
memory by initializing the location counter to an appropriate value. If the loca-
tion counter is initialized to address n, the resulting machine language program
will occupy memory cells n through n + 26.

It should also be noted that most of the actual words of both programs do
not change when we go from the machine language of one to the other. There
are, however, four exceptions. These exceptions are words that contain ad-
dresses within the program. In Figure 4.8 and 4.9, the four words that change
when the program is relocated have been underlined. Notice that each of the
underlined quantities is an address in the program and that the relocation
changes each address by the amount of 001000. This result is obvious if the
assembly process is considered. The only difference between the two assemblies
is the initial value given to the location counter—001000 in the first assembly
and 000000 in the second. Changing the location counter by 001000 changes
each address by 001000.

This suggests a way of relocating a machine language program: simply add

Sec. 4.5

Programs in the Computer 81

the appropriate constant to each address and each underlined word in Figure
4.9. For example, if 001000 is added to each underlined word, the machine
language program in Figure 4.8 is produced. If 003000 is added to each number,
the following machine language program is produced:

Address Op Code Source Destination

Use the op code table in Figure 4.2
003000 012737 000003 003024
003006 013737 003024 003026
003014 062737 000004 003026
003022 000000
003024 2772772
003026 1?77?7272

Execution begins at 003000

During execution, this machine language program will occupy memory cells
003000 through 003026.

In a machine language program, the addresses that must be changed when
a program is relocated are called relocatable addresses and all other numbers
are called absolute. In Figure 4.9, for example, the relocatable addresses are
underlined, while the absolute, or unchanging, locations are not. The assembler
uses a simple rule to distinguish relocatable from absolute quantities. Any word
that contains an address within the program is relocatable and must change
when the program is moved. For example, the address A is relocatable. On the
other hand, data, numerical operation codes or fixed addresses in memory are
absolute. The following example shows where a program uses a fixed address in
memory:

.TITLE ABSOLUTE EXAMPLE

.ENABL AMA
ST: MOV 10,A
HALT
A: . BLKW 1
.END ST

This program contains an absolute address (000010) and a relocatable address
(A). If the program is relocated to begin at memory cell 004000, then A is the
symbolic name of memory cell 004010. In contrast, 000010 is an absolute ad-
dress. No matter where the program is relocated, the processor will fetch the
contents of memory cell 000010 when the MOV instruction is executed. In most
assembly language programs, the use of an absolute address is an error, unless
it is used for special system purposes.

Modern large computer systems attempt to allocate memory to programs
at the last possible moment. This allows the allocation decision to be tailored to
the current workload of the computer system. The relocation technique
described previously allows the allocation decision to be made after the pro-
gram is assembled. Some computer systems attempt to delay the decision until

Assembly Language Programming Ch. 4

the program is actually executing. This involves techniques such as paging,
segmentation, and virtual memory, which are beyond the scope of this book.
Memory is an important computer resource, and the management of this
resource is a fairly complex topic.

4.6 RUNNING A SAMPLE PROGRAM

A Sample Program

As an illustration, the following program will be assembled, relocated, and
executed:

.TITLE SAMPLE PROGRAM

.ENABL AMA

ST: MOV #7,A
MOV #u4,B
MOV A,C
SUB B,C
HALT

A: . BLKW 1

B: . BLKW 1

C: .BLKW 1
.END ST

The first step is to load the MACRO assembler program into memory and ex-
ecute it. (On a large PDP-11, the MACRO-11 program would almost certainly
be stored on a magnetic disk of some kind. On a small system, the user might
have to put a paper tape containing MACRO-11 into the paper tape reader).

The MACRO-11 program reads the user’s assembly language program and
translates it into a relocatable machine language program called an object pro-
gram. (An object program is simply a machine language program in which the
relocatable numbers are marked in some way.) During the translation process,
MACRO-11 prints the following information for the user:

SAMPLE PROGRAM RT-11 MACRO VO3-02B 14:51:11 PAGE 1

.TITLE SAMPLE PROGRAM

=2 2 WoOEONO0OU ZTWwh =

- O

.ENABL AMA

000000 012737 000007 000032' ST: MOV #7,A
000006 012737 000004 000034 MOV #u4,B
000014 013737 000032' 000036' MOV A,C
000022 163737 000034' 000036 SuB B,C
000030 000000 HALT
000032 A: . BLKW 1
000034 B: .BLKW 1
000036 C: . BLKW 1

000000"' .END ST

Sec. 4.6 Running a Sample Program 83

SYMBOL TABLE

A 000032R B 000034R
C 000036R ST 000000R

ERRORS DETECTED: O
FREE CORE: 18096. WORDS

The assembly language program is printed on the right side, and the object pro-
gram is printed on the left. The first memory cell used is (relocatable) memory
cell 000000. The relocatable words in the object program are followed by an
apostrophe (°).

Below the program listings, MACRO-11 lists the symbol table. In the sym-
bol table, relocatable numbers are followed by the letter R. The symbol table
entry for A is 000032R.

Object Output

In addition to the listing, MACRO-11 also outputs a machine-readable copy of
the object program to some output device such as a paper tape punch or a disk.
The object program that is produced by the assembler contains the following
kinds of information.

The size of the program
Address and contents of each location to be loaded into memory

3. A code of some sort indicating which locations contain relocatable values
that must be changed

4. The (unrelocated) address where the program begins

Linking and Loading

The next step is to load and execute a program called LINK (for linker). One of
the linker’s functions is to relocate programs. To accomplish this, the linker in-
puts the object program that was created by MACRO-11, adds a constant to all
the addresses to relocate the program to an unused area in memory. It then out-
puts the relocated program, adding the constant to all of the relocatable loca-
tions. In addition, the linker prints information such as the following:

SECTION ADDR SIZE
. ABS. 000000 001000
001000 000040

The first line indicates that something is using a section of memory called
. ABS. which occupies memory cells from 000000 up to (but not including)
memory cell 001000. (The something is the RT-11 operating system which uses

Assembly Language Programming Ch. 4

memory cells 000000 through 000776 for special purposes.) The second line in-
dicates that an unnamed section of memory occupies memory cells from 001000
up to (but not including) 001040. This is the machine language program that has
been relocated to run in memory cells 001000 through 001036. This completes
the link step.

The final step is to load and execute the relocated program that was created
by the linker. In order to see if the program ran correctly, it is necessary to
dump the contents of memory cells 001000 through 001036 after the program
halts. The memory dump produces the following:

MOV #7,A MOV i#*4,B MOV A,C
N A A
4 N 7 r
012737 000007 001032 012737 000004 001034 013737 001032
001036 163737 001034 001036 000000 000007 000004 000003
~ v v ¥ /N s d
SUB B,C HALT A B C

Memory cell C contains 000003 indicating that the program generated an
answer that happens to be correct. Notice that the number 001000 was added to
the contents of each of the relocatable locations.

EXERCISE SET 2

1 The following FORTRAN programs appeared in the exercises at the end of
Chapter 3 (pages 60-61). Translate each program into assembly language.

(a) INTEGER J,K,L (b) INTEGER J,K
J=15 J=27
K=22 K=-J
L=J-K+9 STOP
STOP END
END

(c) INTEGER J,K,L) INTEGER J,K
J=5 J=5
K=9 K=J#%32
L=3%(J+K) STOP
STOP END
END

(e) INTEGER J,K
J=5
K=J %23
STOP

END

Exercise Set 2 85

2

In a previous exercise (page 77, exercise 3), the following program was
hand assembled beginning at memory cell 001000. Hand assemble the pro-
gram beginning at memory cell 000000 and then relocate the program so
that it begins in memory cell 002000. When the program executes, will the
same number be left in memory cell LAST?

.TITLE EXERCISE

.ENABL AMA

FIRST: MoV #LAST, LAST
SUB #F IRST, LAST
ADD #2,LAST
HALT

LAST: .BLKW 1
.END FIRST

The following is a nonsense program that uses instruction modification.
However, the program will terminate normally. Hand assemble this pro-
gram beginning at memory cell 000000, relocate the program so that it
begins at memory cell 001000, and then specify the contents of memory cells
001000 through 001020 when the program halts (and it will halt).

.TITLE HARD

.ENABL AMA
STRT: ADD #101000,BAD
BAD: ADD #NOHOPE , NOHOPE
NOHOPE: MOV BAD, STRT

.END STRT

CHAPTER 5

PROGRAM
CONTROL
FEATURES

5.1 INTRODUCTION

As anyone experienced with computers knows, the whole purpose for having
high-speed circuitry is so that programs or sections of programs can be executed
repeatedly. Repeated sections of programs are called loops. In order to have a
loop, there must be some way of transferring control from one part of the pro-
gram to another. In FORTRAN or BASIC, the GO TO statement can be used
to achieve this transfer of control. In order to be executed, these statements are
translated into branch and jump instructions that are part of the PDP-11
machine and assembly language.

Another important point of any loop is the determination of how many
times the instructions are to be repeated. In order to make such determinations,
the computer must have some decision-making capability. The computer can
then determine whether to go back to loop again, or to continue on without
looping, or even to jump out of the loop from somewhere inside. In FORTRAN
and BASIC, this can be done with IF statements. Such statements are translated
into conditional branch instructions that are part of the machine language in-
struction set of the PDP-11.

Another topic discussed in this chapter is the use of processor registers.
The processor registers are special locations that can hold 16-bit words of data.
Because they are faster than memory, their use can improve program speed. In
addition, some special operations require using the processor registers.

Finally, this chapter will look at how to write subroutines for the PDP-11.

87

88

Program Control Features Ch.5

Although this topic is covered in considerable detail in Chapter 9, we will take a
brief look at simple cases of subroutine use. As we shall see, the PDP-11 has in-
structions to which the CALL or GO SUB statements and the RETURN state-
ment of FORTRAN and BASIC are translated. The reader is shown how to use
subroutines to read and print numbers.

5.2 LOOPING

An Example of Looping

Figure 5.1 contains program segments designed to compute the sum of the in-
tegers from 1 to 10 (decimal).* After each program segment is executed,
memory cell K will contain 1 +2+3+4+5+6+7+8+9+10=55 (decimal) or
000067 (octal). Notice that the examples shown in Figure 5.1 are program
segments rather than complete programs. It is therefore assumed that certain
lines of program precede and follow the segments. For this reason, the STOP
and END statements are missing from the BASIC and FORTRAN segments.
Similarly, the HALT instruction and all of the assembly directives (ENABL,
.BLKW, and .END) are missing from the assembly language segment.

Figure 5.1 Simple Loop

BASIC FORTRAN Assembly Language
20 LET K=0 K=0 MOV #0,K
30 LET J=10 J=10 MOV #12,d
40 LET K=K+J 40 K=K+J LOOP: ADD J,K
50 LET J=J-1 J=J-1 SUB #1,d
60 IF J<>0 THEN 40 IF (J.NE.O) GO TO 40 TST J
70 e 70 . BNE LOOP

AFTER:

Testing and Branching

The last two instructions in the assembly language segment are TST J and BNE
LOOP. The machine language translation of these instructions tells the pro-
cessor to test the value of J, and then branch to (GO TO) statement LOOP if
memory cell J does not contain 0. If J contains 0, the processor will execute the
next sequential instruction (that is, the instruction contained in memory cell
AFTER). The first 11 (octal) times that the branch instruction is executed, J will
be greater than 0, and the processor will branch to LOOP to repeat the loop

*Again we are assuming an ‘‘integer only’’ form of BASIC, and integer variables in
FORTRAN.

Sec. 5.2

Looping 89

again. On the twelfth (octal) time, J will be 0 and no branch will occur. Instead,
the processor will execute the next sequential instruction which begins in
memory cell AFTER.

The process of performing a conditional branch involves two separate pro-
cesses that require two separate instructions. First, a value must be tested, and
then a conditional branch can occur based upon the value tested. In this case,
the instruction TST J tests the value of J. Then, the BNE LOOP instruction
branches to location LOOP if the tested value is not equal to 0. Note that the
BNE instruction itself does not state what is being compared with 0. The
assumption is that this instruction will be preceded by a test such as TST J.

Several other things about Figure 5.1 should be mentioned. First, notice
that the octal number 12 was used on the second line of the assembly language
segment. When FORTRAN or BASIC programs are converted to assembly
language, decimal constants should be converted to octal constants. Notice that
symbolic addresses (statement labels) in BASIC or FORTRAN must be
numbers, while symbolic addresses in assembly language must begin with a let-
ter. It is strongly recommended that assembly language programmers select
meaningful names for symbolic addresses. Such names can be a very important
aid in understanding and debugging an assembly language program. Most
BASIC dialects require a symbolic address (statement label) on each line. FOR-
TRAN and assembly language do not have this restriction. Finally, each BASIC
or FORTRAN statement in Figure 5.1 was translated into one or two lines of
assembly language. It frequently requires many lines of assembly language to
implement a single BASIC or FORTRAN statement.

Additional Instructions

The BR (for BRanch) instruction is an unconditional branch instruction. It is
analogous to the GO TO statement in FORTRAN or BASIC.

BASIC FORTRAN MACRO-11
40 GOTO 80 40 GO TO 80 OLDADR: BR NEWADR

The operation code is BR. The operand NEWADR is the symbolic address to
which the processor branches. The machine language instruction that is pro-
duced from this assembly language statement causes the processor to fetch its
next operation code from memory cell NEWADR. (The processor simply uses
the information from the branch instruction to place the desired branch address
in the program counter).

The BEQ (for Branch if EQual to 0) instruction is the opposite of the BNE
instruction.

BASIC FORTRAN MACRO
TST L
30 IF L=0 THEN 90 IF (L.EQ.0) GO TO 90 BEQ LZERO
. . 40 . . NEXT: ..

90

Program Control Features Ch.5

In the MACRO-11 program segment, the number contained in memory cell L is
tested. If memory cell L contains 0, the processor will branch to memory cell
LZERO. Otherwise, the next sequential instruction (beginning in memory cell
NEXT) will be executed.

The Testing Process

As was the case with the BNE and BEQ instructions, each conditional branch
requires that a value be tested before the branch can have meaning. In all the
previous examples, this was accomplished with the TST instruction. There are,
however, a number of other ways to test a value.

One of these ways is to perform an arithmetic operation. Every arithmetic
instruction automatically tests its result as it is stored in the destination loca-
tion. For example, the instruction ADD A,B automatically tests the value being
stored in B. The result is almost as if the pair of instructions:

ADD A,B
TST B

were executed. Since this is true of all arithmetic instructions, the same applies
to ADD #, SUB, SUB #, and (although no computation is performed) MOV
and MOV #.

The advantage of this is that many times the TST instruction will be un-
necessary. In fact, this happens to be the case in the example shown in Figure
5.1. Note that the instruction SUB #1,] is followed by TST J. Since the instruc-
tion SUB #1,J automatically tests the resulting value of J, the instruction TST J
is redundant and can be eliminated. As a result, the program segment of Figure
5.1 can be shortened to:

MOV #0,K
MOV #12,4
LOOP: ADD J,K
SUB #1,d
BNE LOOP

The computed result would be exactly the same.

As it turns out, this is not a freak situation. It is usually the case that the
value being tested by a conditional branch is, in fact, the most recently com-
puted number. Consequently, it is rare that the TST instruction is needed. The
following is an example where the TST instruction is necessary:

BASIC FORTRAN MACRO
20 LET K=K--4 K=K-4 SUB #4,K
30 IF L=0 THEN 90 IF (L.EQ.0) GO TO 90 TST L

4o e .« .. BEQ LZERO

Sec. 5.3

Single-Operand Instructions 91

5.3 SINGLE-OPERAND INSTRUCTIONS

Program Execution Time

In building computers, it is often inexpensive to add additional machine
language instructions. It is significantly more expensive to speed up the pro-
cessor or to add additional memory. As a result, modern computers typically
have in excess of 100 different machine language instructions, many of which
are unnecessary in the sense that their functions can be accomplished in other
ways. However, these unnecessary instructions generally reduce program ex-
ecution time and memory requirements. For example, only two of the three
branch instructions described up to this point are absolutely necessary. A BNE
instruction such as:

TST THETA
BNE GAMMA
NEXT: .

can always be replaced with a BEQ and a BR instruction. For example:

TST THETA
BEQ NEXT
BR GAMMA

NEXT :

Both program segments will branch to GAMMA if the number contained in
memory cell THETA is not equal to 0. If the number in THETA is 0, the in-
struction beginning at NEXT will be executed.

The Clear Instruction
In writing a program, it is frequently necessary to set the contents of a memory
cell to 0. This can be accomplished with a MOV # instruction. For example:

MOV #0,ALPHA

This method requires a total of four memory operations—three fetches to fetch
the instruction, and one store to execute the instruction. The same result can be
achieved with a SUB instruction. For example:

SUB ALPHA, ALPHA
However, this approach requires six memory operations—three fetches to fetch

the instruction, and two fetches and a store to execute the instruction.
To save time and space, the PDP-11 instruction set includes a CLR (for

92

Program Control Features Ch.5
CLeaR) instruction whose only purpose is to set a memory cell to 0. For
example:

CLR ALPHA
will set the contents of memory cell ALPHA to 0. Assuming that the instruction

is located at address 001012, and that ALPHA is the symbolic name for address
002000, the machine language translation of this instruction would be:

Address Contents Comment
001012 00503